New Constraints on Gauged $U(1)_{L_{\mu}-L_{\tau}}$ Models via Z-Z' Mixing

Coh Miyao Kyushu U. PLANCK2024 6th June 2024

Based on [arXiv : 2401.17613] working with K. Asai(ICRR), S. Okawa(KEK), and K. Tsumura(Kyushu U.).

Background

• The discrepancy of muon g-2 between the SM and experimental results.

 \rightarrow U(1)_{L_u-L_t} gauge models can explain.

• The recent experiments of the neutrino oscillation become more precise.

→ Simple $U(1)_{L_{\mu}-L_{\tau}}$ gauge models seem hard to describe the neutrino physics.

Cited from https://www-sk.icrr.u-tokyo.ac.jp/sk/

Purpose

- To find the $U(1)_{L_{\mu}-L_{\tau}}$ gauge models which are consistent to the latest neutrino experiments.
- To get new (model dependent) constraints on the $U(1)_{L_{\mu}-L_{\tau}}$ gauge models.

Cited from	NuFIT v5.2
------------	------------

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.4)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
lata	$\sin^2 heta_{12}$	$0.303\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.341$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$
	$ heta_{12}/^{\circ}$	$33.41\substack{+0.75 \\ -0.72}$	$31.31 \rightarrow 35.74$	$33.41\substack{+0.75 \\ -0.72}$	$31.31 \rightarrow 35.74$
ric ($\sin^2 heta_{23}$	$0.451\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.569\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.613$
sphe	$ heta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$
atmo	$\sin^2 heta_{13}$	$0.02225\substack{+0.00056\\-0.00059}$	$0.02052 \rightarrow 0.02398$	$0.02223\substack{+0.00058\\-0.00058}$	$0.02048 \rightarrow 0.02416$
SK a	$ heta_{13}/^\circ$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$
with	$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \rightarrow 350$	276^{+22}_{-29}	$194 \rightarrow 344$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	6.82 ightarrow 8.03	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.507\substack{+0.026\\-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486\substack{+0.025\\-0.028}$	$-2.570 \rightarrow -2.406$

Minimal $U(1)_{L_{\mu}-L_{\tau}}$ gauge model

- Fields : SM + three right-handed neutrino N_i + one scalar field.
- Symmetry : SM gauge $\times U(1)_{L_{\mu}-L_{\tau}}$ gauge.

Lepton		$\left(\ell_{e} \ell_{\mu} \ell_{\tau}\right)$		$(e_R \ \mu_R \ au_R)$	$(N_e N_\mu N_\tau)$
$\mathrm{U}(1)_{L_{\mu}-L_{ au}}$ charge		(0 +1 -1)		(0 +1 -1)	(0 +1 -1)
Scalar	Φ_{+1} SU(2) doublet		SU	Φ_{-1} (2) doublet	σ SU(2) singlet
charge		+1		-1	+1

Results for Analysis of Neutrino Mass Matrix Structure

- Model independent result set by neutrino mass matrix.
- Each models have their own mass matrix structure.

Our work (previous work[Phys. Rev. D 99 (2019) 05502])

Model	Normal ordering	Inverted ordering
$SM + N_i + \sigma_{+1}$	Viable in 2σ (Viable at 3σ)	Excluded (Excluded)
$SM + N_i + \Phi_{+1}$	Excluded (Excluded)	Viable at 3σ (Excluded)
$SM + N_i + \Phi_{-1}$	Excluded (Excluded)	Excluded (Excluded)

 \rightarrow Are there any other constraints on the viable model?

Z-Z' Mixing

• The additional U(1) $_{L_{\mu}-L_{\tau}}$ gauge symmetry induces Z-Z' mixing.

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{1}{2} \frac{\varepsilon}{\cos \theta_W} B_{\mu\nu} Z'^{\mu\nu}$$
$$\mathcal{L}_{\varepsilon_Z} = \frac{1}{2} \begin{pmatrix} Z_{\mu} & Z'_{\mu} \end{pmatrix} \begin{pmatrix} 1 & -\varepsilon_Z \\ -\varepsilon_Z & m_{Z'}^2 / m_Z^2 \end{pmatrix} \begin{pmatrix} Z^{\mu} \\ Z'^{\mu} \end{pmatrix}$$
$$\varepsilon_Z \equiv \frac{m_{Z'}}{m_Z} \delta$$

$$\mathcal{L} \supset Z'_{\mu} (g_{Z'} J^{\mu}_{L_{\mu} - L_{\tau}} + \varepsilon e J^{\mu}_{\mathrm{em}} + \varepsilon_{Z} g_{Z} J^{\mu}_{\mathrm{NC}})$$

 $\rightarrow G_F$ and $\sin^2 \theta_W$ are changed.

(Now we ignore the kinetic mixing $\varepsilon \sim g_{Z'}/70$ which is much smaller than ε_Z in our interest parameter space.) 5

Atomic Parity Violation (APV)

The weak charge of Cs is given by the measurements of APV;

$$Q_{\rm W}^{\rm exp}(^{133}_{55}{\rm Cs}) = -72.94(43)$$

 The weak charge of Cs based on SM is changed by Z-Z' mixing;

$$Q_W(^{133}_{55}\text{Cs}) \simeq Q_W^{\text{SM}}(^{133}_{55}\text{Cs}) (1 + \delta^2)$$

$$\longrightarrow$$
 $|\delta|^2 \lesssim 5.7 imes 10^{-3}$ (90% CL)

Flavor Changing Meson Decay

- Flavor changing meson decays provide a good probe of a light Z' boson.
- Branching ratio of $K^+ \rightarrow \pi^+ Z'$ is written by;

Br
$$(K^+ \to \pi^+ Z') \simeq 1.6 \times 10^{-4} |\delta|^2$$

 $\rightarrow |\delta| \lesssim 2.5 \times 10^{-4} \sqrt{\frac{\text{Br}(K^+ \to \pi^+ Z')_{\text{exp}}}{1 \times 10^{-11}}}$

Constraint on Model with Φ_{+1}

In this model
$$\delta = \frac{1}{v} \frac{m_{Z'}}{g_{Z'}}$$
.
Cs APV:
 $g_{Z'} \gtrsim 5.4 \times 10^{-4} \left(\frac{m_{Z'}}{10 \text{ MeV}}\right)$
 $K^+ \to \pi^+ Z':$
 $g_{Z'} \gtrsim 1.6 \times 10^{-1} \sqrt{\frac{1 \times 10^{-11}}{\text{Br}(K^+ \to \pi^+ Z')_{exp}}} \left(\frac{m_{Z'}}{10 \text{ MeV}}\right)$

- The gray shaded region are excluded by the well-known constraints (from BABAR, NA64µ, white dwarf cooling, and effective number of neutrinos).
- The red region gives the proper correction to muon g-2.
- There is no region which gives proper correction to muon g-2.

Constraint on Model with Φ_{+1} and a SU(2) singlet scalar σ_{+1}

In this model, $\delta = \frac{\operatorname{sign}(Q_{\Phi})}{1 + \tan^2 \theta} \frac{1}{v} \frac{m_{Z'}}{g_{Z'}}$. $\int tan \theta \equiv \frac{v_{\sigma}}{v_{\Phi}} \quad (v_{\Phi(\sigma)} \text{ means VEV of } \Phi(\sigma)).$ Cs APV : much smaller than the flavor changing meson decay. $g_{Z'} \gtrsim \frac{5.4 \times 10^{-4}}{1 + \tan^2 \theta} \left(\frac{m_{Z'}}{10 \text{ MeV}}\right)$ $K^+ \to \pi^+ Z'$:

$$g_{Z'} \gtrsim \frac{1.6 \times 10^{-1}}{1 + \tan^2 \theta} \sqrt{\frac{1 \times 10^{-11}}{\text{Br}(K^+ \to \pi^+ Z')_{\text{exp}}}} \left(\frac{m_{Z'}}{10 \,\text{MeV}}\right)$$

• Model gives proper correction to the muon g-2 discrepancy when $\tan\theta \equiv \frac{v_{\sigma}}{v_2} \gtrsim 10.$

Conclusion

- We revisited the minimal $U(1)_{L_{\mu}-L_{\tau}}$ gauge model based on the latest NuFITv5.2 data. As the results, the model with SU(2) doublet scalar Φ_{+1} was viable at 3σ in case of Inverted ordering while the model was excluded in the previous work.
- Considering the constraints from Z-Z' mixing (APV and flavor changing meson decay process), the model with Φ_{+1} is completely excluded in the region which give the explanation to muon g-2.
- The model with Φ and σ is viable when $\tan \theta \equiv \frac{v_{\sigma}}{v_2} \gtrsim 10$.

BACKUP

NuFITv4.0

		Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 9.3)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
with SK atmospheric data	$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$
	$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$
	$\sin^2 \theta_{23}$	$0.582\substack{+0.015\\-0.019}$	$0.428 \rightarrow 0.624$	$0.582\substack{+0.015\\-0.018}$	$0.433 \rightarrow 0.623$
	$\theta_{23}/^{\circ}$	$49.7^{+0.9}_{-1.1}$	$40.9 \rightarrow 52.2$	$49.7^{+0.9}_{-1.0}$	$41.2 \rightarrow 52.1$
	$\sin^2 \theta_{13}$	$0.02240\substack{+0.00065\\-0.00066}$	$0.02044 \rightarrow 0.02437$	$0.02263\substack{+0.00065\\-0.00066}$	$0.02067 \to 0.02461$
	$\theta_{13}/^{\circ}$	$8.61_{-0.13}^{+0.12}$	$8.22 \rightarrow 8.98$	$8.65_{-0.13}^{+0.12}$	$8.27 \rightarrow 9.03$
	$\delta_{ m CP}/^{\circ}$	217^{+40}_{-28}	$135 \to 366$	280^{+25}_{-28}	$196 \to 351$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.525^{+0.033}_{-0.031}$	$+2.431 \rightarrow +2.622$	$-2.512\substack{+0.034\\-0.031}$	$-2.606 \rightarrow -2.413$

From http://www.nu-fit.org/?q=node/177

Neutrino Mass Matrix

• In general,

 $\mathcal{M}_{\nu_L} = U_{\text{PMNS}} \operatorname{diag}(m_1 \ m_2 \ m_3) \ U_{\text{PMNS}}^T \equiv \mathcal{M}_{\nu_L}^{\text{gen}}.$

$$U_{\rm PMNS} \equiv \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} 1 & & & \\ & e^{\frac{i\alpha_2}{2}} & & \\ & & & e^{\frac{i\alpha_3}{2}} \end{pmatrix}.$$

 m_i :light neutrino mass α_i :Majorana phase V_{ij} :matrix component including mixing angles and CP phase

• Through the seesaw mechanism

$$\mathcal{M}_{\nu_L} \simeq -\mathcal{M}_D \ \mathcal{M}_R^{-1} \mathcal{M}_D^T.$$

 \rightarrow Some equations arise by comparing these.

Two Zero Texture (Minor) Structure Mass Matrix

Classification of structures;

$$\mathbf{B}_{3}:\begin{pmatrix} * & 0 & * \\ 0 & 0 & * \\ * & * & * \end{pmatrix}, \mathbf{B}_{4}:\begin{pmatrix} * & * & 0 \\ * & * & * \\ 0 & * & 0 \end{pmatrix}, \mathbf{C}:\begin{pmatrix} * & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

- Thorough the seesaw mechanism, the neutrino mass matrix (or its inverted one) often has such structure.
 - Two components of \mathcal{M}_{ν_L} are zero \rightarrow Two zero texture Two components of $\mathcal{M}_{\nu_I}^{-1}$ are zero \rightarrow Two zero minor

<u>The mass matrix with such structures</u> give us two equations. \rightarrow <u>Predictions</u>

Light Neutrino Mass

$$\begin{split} m_3 &= \sqrt{\frac{\Delta m_{31}^2}{1 - \frac{1}{|R_3(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP})|^2}}} \\ m_1 &= \sqrt{m_3^2 - \Delta m_{31}^2} \\ m_2 &= \sqrt{m_1^2 + \Delta m_{21}^2} = \sqrt{m_3^2 + \Delta m_{21}^2 - \Delta m_{31}^2} \end{split}$$

• These masses can be described in terms of θ_{23} .

 $(\theta_{12}, \theta_{13}, \Delta m^2_{21}, \Delta m^2_{31})$ are fixed as best fit value of NuFITv5.2)

Analysis of SM+ N_i + Φ_{+1} Model

• **B**₃ texture :
$$(\mathcal{M}_{\nu_L})_{[1,2],[2,2]} = 0$$

$$\left(\mathcal{M}_{\nu}^{\text{gen}} \right)_{12} = m_1 V_{11} V_{21} + m_2 e^{i\alpha_2} V_{12} V_{22} + m_3 e^{i\alpha_3} V_{13} V_{23} = 0 \left(= \left(\mathcal{M}_{\nu} \right)_{12} \right) .$$

$$\left(\mathcal{M}_{\nu}^{\text{gen}} \right)_{22} = m_1 V_{21}^2 + m_2 e^{i\alpha_2} V_{22}^2 + m_3 e^{i\alpha_3} V_{23}^2 = 0 \left(= \left(\mathcal{M}_{\nu} \right)_{22} \right) .$$

$$e^{i\alpha_{2}} \equiv \frac{m_{1}}{m_{2}} R_{2}(\theta_{12}, \theta_{13}, \theta_{23}, \delta) \equiv \frac{R_{2}}{|R_{2}|}$$
$$e^{i\alpha_{3}} \equiv \frac{m_{1}}{m_{3}} R_{3}(\theta_{12}, \theta_{13}, \theta_{23}, \delta) \equiv \frac{R_{3}}{|R_{3}|}$$

 V_{ij} : components of PMNS matrix , θ_{ij} : mixing angle, δ : CP phase, α : Majorana phase

• To rewrite mass-squared difference in case of Normal ordering(NO)

By fixing $\theta_{12}, \theta_{13}, \Delta m^2_{21}, \Delta m^2_{31}$ as the best-fit value of NuFITv5.2, θ_{23} -dependence of δ are found.

 \rightarrow 1.5 f_{S} 1.0 0.5 0.5 0.0

Neutrino mass and Majorana phase can be written by θ_{23} !

Result of Analysis (B₃ Texture)

- B_3 -type mass matrix in Inverted ordering is revived.
- The range of θ_{23} shift to left in the latest NuFITv5.2.
- The mass sum constraint is relaxed because of being had considered mass ordering in the analysis.

- The range of θ_{23} shift to left in the latest NuFITv5.2.
- The mass sum constraint are relaxed by considering mass ordering.

C Minor (NO)

B4 Texture (NO)

B4 Texture (IO)

Result of analysis 2

