

Sommerfeld Effect and Bound State Formation of colored mediators in dark matter studies

Martin Napetschnig

Technical University of Munich

Based on a work in preparation with Mathias Becker, Emanuele Copello and Julia Harz (JGU Mainz)

PLANCK 2024 Instituto Superior Técnico Thursday, June 6th, 2024

Uhrenturm der TVM

SFB 1258 Neutrinos Dark Matter Messengers

Outline

Simplified dark matter models and long-range effects

Sommerfeld effect and bound state formation for colored mediators

Showcases of our computational framework

Classical WIMP evades detection so far.

SFB 1258 Neutrinos Dark Matter Messengers

Classical WIMP evades detection so far.

Classical WIMP evades detection so far.

103 10-14

[PDG "Dark Matter" (2024)]

 10^{-27}

 10^{1}

Neutrino coherent scattering

101

WIMP Mass [GeV/c²]

102

100

10-5

--- 6 year dSph 95% UL

..... gNFW GC 95% UL --- NFW GC 95% UL

 $m_{\chi} (\text{GeV})$

 10^{3}

 10^{4}

 10^{2}

Classical WIMP evades detection so far.

Axial-vector mediator (Dirac DM) 0 e, µ 1 - 4 i36.1 1.55 TeV Yes Nothing either... MO Colored scalar mediator (Dirac DM) 0 e, µ 36.1 1 - 4jYes 1.67 TeV mmed VV XX EFT (Dirac DM) 0 e. µ 1 J, ≤ 1 j м, 700 GeV Yes 3.2 Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac DM) 1 b. 0-1 J ma 0-1 e, µ Yes 36.1 3.4 TeV Cf. P. C. Muino' s talk: AS limits on DM

Classical WIMP evades detection so far

reason.

PLANCK 2024 | Martin Napetschnig | SE & BSF in t-channel DM models

104

Pheno toolbox

Experiment needs **minimal models** (few parameters) - *Theory* needs precise and reliable **tools**!

Pheno toolbox

Experiment needs **minimal models** (few parameters) - *Theory* needs precise and reliable **tools**!

SFB 1258 Neu Dar

Dark sector particle charged under a gauge group is subject to nonpertubative effects.

Dark sector particle charged under a gauge group is subject to nonpertubative effects. 1) Sommerfeld effect for DM annihilation

[A. Sommerfeld (1931)] [A. D. Sakharov (1948)] [S. El Hedri et al. (2027)]

Dark sector particle charged under a gauge group is subject to nonpertubative effects.

1) Sommerfeld effect for DM annihilation

[A. Sommerfeld (1931)] [A. D. Sakharov (1948)] [S. El Hedri et al. (2027)]

2) Radiative bound state formation

[K. Petraki et al. (2015)] [A. Mitridate et al. (2017)] [J. Harz and K. Petraki (2018)]

Dark sector particle charged under a gauge group is subject to nonpertubative effects.

1) Sommerfeld effect for DM annihilation

Neutrino Dark Matter Messengers

SFB 1258

 10^{-22}

[A. Sommerfeld (1931)] [A. D. Sakharov (1948)]

[S. El Hedri et al. (2027)]

 10^{-23} $m_X = 1 \text{ TeV}$ $\langle \sigma_{\rm ann} v_{\rm rel} \rangle$ $\langle \sigma_{\rm RSF}^{[8] \rightarrow [1]} v_{\rm rel} \rangle$ $\cdots \langle \sigma_{\text{RSF}}^{[8] \rightarrow [1]} v_{\text{rel}} \rangle_{\text{eff}}$ 10^{-25} $m_X = 5 \text{ TeV}$ $\langle \sigma_{\rm XX^{\dagger}} v_{\rm rel} \rangle_{\rm eff}$ 10^{-26} 10^{-27} 10 10^{2} 10^{3} 10^{4}

 m_X/T

2) Radiative bound state formation

Dark sector particle charged under a gauge group is subject to nonpertubative effects.

1) Sommerfeld effect for DM annihilation

Neutrinos Dark Matter Messengers

SFB 1258

[A. Sommerfeld (1931)] [A. D. Sakharov (1948)]

JGU

[S. El Hedri et al. (2027)]

Long-range effects **ATAL____** can relax experimental bounds

Pert. vs non-pert.

[M. Becker et al. (2022)]

Long-range effects **ATAL___** can relax experimental bounds

Pert. vs non-pert.

[M. Becker et al. (2022)]

Previously: Effects need to be added by hand to the relic density calculation. \rightarrow Inhibition threshold for non-experts.

Long-range effects **ATAL** can relax experimental bounds

Pert. vs non-pert.

[M. Becker et al. (2022)]

Previously: Effects need to be added by hand to the relic density calculation. \rightarrow Inhibition threshold for non-experts.

We incorporate long-range effects into micrOMEGAs!

General class of simplified models, studied vastly in the literature. In t-channel models \rightarrow mediators are colored.

A phenomenological toolbox exists (DMSimpt).

[Arina et al. (2021)] [Giacchino,Ibarra et al. (2016)] [Becker et al. (2022)] [Garny et al. (2020)]

[Arina et al. (2020)]

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \mathcal{L}_F(\chi) + \mathcal{L}_F(\tilde{\chi}) + \mathcal{L}_S(S) + \mathcal{L}_S(\tilde{S}) + \mathcal{L}_V(V) + \mathcal{L}_V(\tilde{V}) \mathcal{L}_F(X) = \left[\lambda_{\mathbf{q}}\bar{X}Q\varphi_Q^{\dagger} + \lambda_{\mathbf{u}}\bar{X}u\varphi_u^{\dagger} + \lambda_{\mathbf{d}}\bar{X}d\varphi_d^{\dagger} + \text{h.c.}\right] \mathcal{L}_S(X) = \left[\hat{\lambda}_{\mathbf{q}}\bar{\psi}_Q QX + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_u uX + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_d dX + \text{h.c.}\right] \mathcal{L}_V(X) = \left[\hat{\lambda}_{\mathbf{q}}\bar{\psi}_Q X + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_u X + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_d X + \text{h.c.}\right]$$

General class of simplified models, studied vastly in the literature. In t-channel models \rightarrow mediators are colored.

A phenomenological toolbox exists (DMSimpt).

See talk by Antonio Onofre (ATLAS).

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_F(\chi) + \mathcal{L}_F(\tilde{\chi}) + \mathcal{L}_S(S) + \mathcal{L}_S(\tilde{S}) + \mathcal{L}_V(V) + \mathcal{L}_V(\tilde{V})$$

 $\mathcal{L}_{F}(X) = \left[\lambda_{\mathbf{Q}}\bar{X}Q\varphi_{Q}^{\dagger} + \lambda_{\mathbf{u}}\bar{X}u\varphi_{u}^{\dagger} + \lambda_{\mathbf{d}}\bar{X}d\varphi_{d}^{\dagger} + \text{h.c.}\right]$ $\mathcal{L}_{S}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}QX + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}uX + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}dX + \text{h.c.}\right]$ $\mathcal{L}_{V}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}\not{X}Q + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}\not{X}u + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}\not{X}d + \text{h.c.}\right]$

[Arina et al. (2021)] [Giacchino,Ibarra et al. (2016)] [Becker et al. (2022)] [Garny et al. (2020)]

[Arina et al. (2020)]

General class of simplified models, studied vastly in the literature. In t-channel models \rightarrow mediators are colored.

A phenomenological toolbox exists (DMSimpt).

[Arina et al. (2021)] [Giacchino,Ibarra et al. (2016)] [Becker et al. (2022)] [Garny et al. (2020)]

See talk by Antonio Onofre (ATLAS).

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_F(\chi) + \mathcal{L}_F(\tilde{\chi}) + \mathcal{L}_S(S) + \mathcal{L}_S(\tilde{S}) + \mathcal{L}_V(V) + \mathcal{L}_V(\tilde{V})$$

 $\mathcal{L}_{F}(X) = \left[\lambda_{\mathbf{Q}}\bar{X}Q\varphi_{Q}^{\dagger} + \lambda_{\mathbf{u}}\bar{X}u\varphi_{u}^{\dagger} + \lambda_{\mathbf{d}}\bar{X}d\varphi_{d}^{\dagger} + \text{h.c.}\right]$ $\mathcal{L}_{S}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}QX + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}uX + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}dX + \text{h.c.}\right]$ $\mathcal{L}_{V}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}XQ + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}Xu + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}Xd + \text{h.c.}\right]$

General class of simplified models, studied vastly in the literature. In t-channel models \rightarrow mediators are colored.

A phenomenological toolbox exists (DMSimpt).

See talk by Antonio Onofre (ATLAS).

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_F(\chi) + \mathcal{L}_F(\tilde{\chi}) + \mathcal{L}_S(S) + \mathcal{L}_S(\tilde{S}) + \mathcal{L}_V(V) + \mathcal{L}_V(\tilde{V})$$

$$\mathcal{L}_{F}(X) = \left[\lambda_{\mathbf{Q}}\bar{X}Q\varphi_{Q}^{\dagger} + \lambda_{\mathbf{u}}\bar{X}u\varphi_{u}^{\dagger} + \lambda_{\mathbf{d}}\bar{X}d\varphi_{d}^{\dagger} + \text{h.c.}\right]$$
$$\mathcal{L}_{S}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}QX + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}uX + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}dX + \text{h.c.}\right]$$
$$\mathcal{L}_{V}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}XQ + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}Xu + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}Xd + \text{h.c.}\right]$$

Tools for relic density calculation with perturbative cross sections exist abundantly.

\rightarrow Need for an automated framework for the inclusion of non-perturbative effects.

We provide such a framework for the relic density calculation for colored particles.

_	Name	DM	Mediators	Parameters
_	S3M_uni	$\tilde{\chi}$	100 10 101	
	S3D_uni	X	$\varphi_{Q_f}, \varphi_{u_f}, \varphi_{d_f}$	
	S3M_3rd	$\tilde{\chi}$		Μ., Μ., λ
-	S3D_3rd	<u></u>	$\varphi_{Q_3}, \varphi_{u_3}, \varphi_{d_3}$	$m_{\varphi}, m_{\chi}, \pi_{\varphi}$
	S3M_uR	$ ilde{\chi}$	(D	
	S3D_uR	χ	γu_1	
	F3S_uni	$ ilde{S}$	also also also	
	F3C_uni	S	$\varphi Q_f, \varphi u_f, \varphi a_f$	
	F3S_3rd	$ ilde{S}$	$a/t_{\odot} = a/t_{\odot} = a/t_{\odot}$	$M_{\alpha} = M_{\beta} = \hat{\lambda}_{\beta}$
-	F3C_3rd	S	$\varphi_{Q_3}, \varphi_{u_3}, \varphi_{a_3}$	$m_S, m_{\psi}, \pi_{\psi}$
	F3S_uR	$ ilde{S}$	2/2	
_	F3C_uR	S	ψu_1	
	F3V_uni	$ ilde{V}_{\mu}$	ale ale ale	
	F3W_uni	V_{μ}	$\varphi Q_f, \varphi u_f, \varphi a_f$	
	F3V_3rd	$ ilde{V}_{\mu}$	alto alto alto	$M_{12} = M_{12} = \hat{\lambda}$
	F3W_3rd	V_{μ}	$\varphi Q_3, \varphi u_3, \varphi d_3$	$w_V, w_\psi, \lambda_\psi$
-	F3V_uR	\tilde{V}_{μ}		
	F3W_uR	V_{μ}	ψ_{u_1}	ψ_{u_1}

Tools for relic density calculation with perturbative cross sections exist abundantly.

\rightarrow Need for an automated framework for the inclusion of non-perturbative effects.

We provide such a framework for the relic density calculation for colored particles.

This talk: Two representative examples

	Name	DM	Mediators	Parameters
	S3M_uni	$\tilde{\chi}$	$\varphi_{Q_f},\varphi_{u_f},\varphi_{d_f}$	$M_{\varphi}, M_{\chi}, \lambda_{\varphi}$
	S3D_uni	χ		
	S3M_3rd	$\tilde{\chi}$	$\varphi_{Q_3}, \varphi_{u_3}, \varphi_{d_3}$	
	S3D_3rd	<u>x</u>		
	S3M_uR	$\tilde{\chi}$	φ_{u_1}	
	S3D_uR	χ		
	F3S_uni	$ ilde{S}$	al_{10} al_{1} al_{1}	$M_S, M_\psi, \hat{\lambda}_\psi$
1	F3C_uni	S	$\varphi_{Q_f}, \varphi_{u_f}, \varphi_{d_f}$	
1	F3S_3rd	\tilde{S}		
1	F3C_3rd	S	$\varphi_{Q_3}, \varphi_{u_3}, \varphi_{d_3}$	
	F3S_uR	\tilde{S}	ψ_{u_1}	
∕	F3C_uR	S		
	F3V_uni	$ ilde{V}_{\mu}$	$\psi_{Q_f},\psi_{u_f},\psi_{d_f}$	$M_V,\ M_\psi,\ \hat\lambda_\psi$
1	F3W_uni	V_{μ}		
	F3V_3rd	\tilde{V}_{μ}		
	F3W_3rd	V_{μ}	$\psi_{Q_3},\psi_{u_3},\psi_{d_3}$	
	F3V_uR	\tilde{V}_{μ}	ψ_{u_1}	
	F3W_uR	V_{μ}		

SFB 1258 Neutrinos Dark Matter Messengers

Outline

Simplified dark matter models and long-range effects

Sommerfeld effect and bound state formation for colored mediators

Showcases of our computational framework

 $<\sigma v>_{\rm total} = <S\sigma v>_{\rm eff} + <\sigma_{\rm BSF} v>_{\rm eff}$

All perturbative (co-)annihilations automatically calculated by micrOMEGAs

 $<\sigma v>_{\rm total} = <\mathcal{S}\sigma v>_{\rm eff} + <\sigma_{\rm BSF}v>_{\rm eff}$

All perturbative (co-)annihilations automatically calculated by micrOMEGAs

$$<\sigma v>_{\rm total} = < S\sigma v>_{\rm eff} + < \sigma_{\rm BSF} v>_{\rm eff}$$

Sommerfeld enhancement / for s- and p-wave annihilations with the color structure

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\to\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad \stackrel{[\mathsf{EI Hedri et}}{\text{al. (2017)}}$$

 \sim

We use explicitly

$$\mathcal{S}\sigma = \sum_{l=0}^{1} \left[c_{l,[\mathbf{1}]} S_l \left(\frac{4}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{8}]} S_l \left(-\frac{1}{6} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{\bar{3}}]} S_l \left(\frac{2}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{6}]} S_l \left(-\frac{1}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) \right] \sigma_l + \dots$$

with
$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = rac{rac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1-e^{-rac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\to\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad \stackrel{[\mathsf{EI Hedri et}}{\text{al. (2017)}}$$

 $\eta - \epsilon$

We use explicitly

$$S\sigma = \sum_{l=0}^{1} \left[c_{l,[\mathbf{1}]} S_l \left(\frac{4}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{8}]} S_l \left(-\frac{1}{6} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{3}]} S_l \left(\frac{2}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{6}]} S_l \left(-\frac{1}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) \right] \sigma_l + \dots$$

Only s- and p-wave

with

$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = \frac{\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1 - e^{-\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\to\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad \stackrel{[\mathsf{EI Hedri\,et}}{\text{al. (2017)}}$$

We use explicitly

$$\mathcal{S}\sigma = \sum_{l=0}^{1} \left[c_{l,[\mathbf{1}]} S_l \left(\frac{4}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{8}]} S_l \left(-\frac{1}{6} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{\overline{3}}]} S_l \left(\frac{2}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{6}]} S_l \left(-\frac{1}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) \right] \sigma_l + \dots$$

Only s- and p-wave

8 coefficients needed

 $\Omega - \alpha$

with

$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = \frac{\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1 - e^{-\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\to\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad \stackrel{[\mathsf{El Hedri et}}{_{\mathsf{al. (2017)}}}$$

We use explicitly

Extracted numerically

$$\mathcal{S}\sigma = \sum_{l=0}^{1} \left[c_{l,[\mathbf{1}]} S_l \left(\frac{4}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{8}]} S_l \left(-\frac{1}{6} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{3}]} S_l \left(\frac{2}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{6}]} S_l \left(-\frac{1}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) \right] \sigma_l + \dots$$

Only s- and p-wave

8 coefficients needed

0

with

$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = \frac{\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1 - e^{-\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\to\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad \stackrel{[\mathsf{EI} \; \mathsf{Hedri} \; \mathsf{et}}{\mathsf{al.} \; (2017)]}$$

We use explicitly

Extracted numerically

$$\mathcal{S}\sigma = \sum_{l=0}^{1} \left[c_{l,[\mathbf{1}]} S_l \left(\frac{4}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{8}]} S_l \left(-\frac{1}{6} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{3}]} S_l \left(\frac{2}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) + c_{l,[\mathbf{6}]} S_l \left(-\frac{1}{3} \frac{\alpha_s}{v_{\text{rel}}} \right) \right] \sigma_l + \dots$$

Only s- and p-wave

8 coefficients needed

0

d-wave

with

$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = \frac{\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1 - e^{-\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Sommerfeld implementation (caveats)

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

[Giacchino, Ibarra et al. (2016)] [El Hedri et al. (2017)]

Sommerfeld implementation (caveats)

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

1) If final state particles are identical, CP symmetry enforces selection rules that make the c_1 dependent on spin and angular momentum. [Giacchino, Ibarra et al. (2016)] [El Hedri et al. (2017)]

Sommerfeld implementation (caveats)

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

[Giacchino, Ibarra et al. (2016)] [El Hedri et al. (2017)]

1) If final state particles are identical, CP symmetry enforces selection rules that make the c_i dependent on spin and angular momentum.

Sommerfeld implementation (caveats)

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

1) If final state particles are identical, CP symmetry enforces selection rules that make the c_i dependent on spin and angular momentum.

2) t-channel interactions lead to interferences to c_l that depend on parameters of the model (m_{X_i}, m_q, m_{DM_i} , $g_{DM}, \alpha_{QCD_i}, \alpha_{QED}$).

[Giacchino, Ibarra et al. (2016)] [El Hedri et al. (2017)]

SFB 1258 Neutrinos Dark Matter Messengers

Sommerfeld implementation (caveats)

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

1) If final state particles are identical, CP symmetry enforces selection rules that make the c_1 dependent on spin and angular momentum. [Giacchino, Ibarra et al. (2016)] [El Hedri et al. (2017)]

2) t-channel interactions lead to interferences to c_l that depend on parameters of the model ($m_{X_i} m_q$, m_{DM_i} , g_{DM} , $\alpha_{QCD_i} \alpha_{QED}$).

Network of Boltzmann equations for excited states can be simplified to one and an effective bound state formation cross section can be obtained.

[Garny & Heisig (2022)] [Binder, Petraki et al. (2022)] Binder, Garny et al. (2023)]

Network of Boltzmann equations for excited states can be simplified to one and an effective bound state formation cross section can be obtained.

[Garny & Heisig (2022)] [Binder, Petraki et al. (2022)] Binder, Garny et al. (2023)]

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \sum_{i} \langle \sigma_{\text{BSF,i}} v \rangle \left(1 - (M)_{ij}^{-1} \frac{\langle \Gamma_{\text{ion}}^{j} \rangle}{\langle \Gamma^{j} \rangle} \right)$$

Network of Boltzmann equations for excited states can be simplified to one and an effective bound state formation cross section can be obtained.

[Garny & Heisig (2022)] [Binder, Petraki et al. (2022)] Binder, Garny et al. (2023)]

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \sum_{i} \langle \sigma_{\text{BSF},i} v \rangle \left(1 - (M)_{ij}^{-1} \frac{\langle \Gamma_{\text{ion}}^{j} \rangle}{\langle \Gamma^{j} \rangle} \right)$$

$$M_{ij} = \delta_{ij} - \frac{\langle \Gamma_{\text{trans}}^{i \to j} \rangle}{\langle \Gamma^{i} \rangle} \qquad \Gamma^{i} = \langle \Gamma_{\text{dec}}^{i} \rangle + \langle \Gamma_{\text{ion}}^{i} \rangle + \sum_{j \neq i} \langle \Gamma_{\text{trans}}^{i \to j} \rangle$$

with

Network of Boltzmann equations for excited states can be simplified to one and an effective bound state formation cross section can be obtained.

[Garny & Heisig (2022)] [Binder, Petraki et al. (2022)] Binder, Garny et al. (2023)]

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \sum_{i} \langle \sigma_{\text{BSF},i} v \rangle \left(1 - (M)_{ij}^{-1} \frac{\langle \Gamma_{\text{ion}}^{j} \rangle}{\langle \Gamma^{j} \rangle} \right)$$

$$M_{ij} = \delta_{ij} - \frac{\langle \Gamma_{\text{trans}}^{i \to j} \rangle}{\langle \Gamma^{i} \rangle} \qquad \Gamma^{i} = \langle \Gamma_{\text{dec}}^{i} \rangle + \langle \Gamma_{\text{ion}}^{i} \rangle + \sum_{j \neq i} \langle \Gamma_{\text{trans}}^{i \to j} \rangle$$

In the coannihilation regime, including only the ground state is usually sufficient.

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \langle \sigma_{BSF,n=1} v \rangle \frac{\langle \Gamma_{\text{dec}}^{n=1} \rangle}{\langle \Gamma_{\text{ion}}^{n=1} \rangle + \langle \Gamma_{\text{dec}}^{n=1} \rangle}$$
$$v_{\text{rel}} \frac{d\sigma_{\mathbf{k} \to \{100\}}}{d\Omega} = \frac{|\mathbf{P}_g|}{64\pi^2 M^2 \mu} \left(|\mathcal{M}_{\mathbf{k} \to \{100\}}|^2 - |\hat{\mathbf{P}}_g \cdot \mathcal{M}_{\mathbf{k} \to \{100\}}|^2 \right)$$

Bound state formation cross section **never freezes-out** for colored DM candidates (but they do for coannihilation).

[Binder et al. (2023)]

Bound state formation cross section **never freezes-out** for colored DM candidates (but they do for coannihilation).

[Binder et al. (2023)]

Dominant contribution during freeze-out comes from the **ground state (n = 1)**

$$\langle \sigma_{
m eff} v_{
m rel}
angle = \sum_{ij} \langle \sigma_{ij} v_{
m rel}
angle rac{Y_i^{
m eq} Y_j^{
m eq}}{ ilde{Y}_{
m eq}^2} \propto e^{-2\delta x}$$

SFB 1258 Neutrinos Dark Matter Messengers

Outline

Simplified dark matter models and long-range effects

Sommerfeld effect and bound state formation for colored mediators

Showcases of our computational framework

PLANCK 2024 | Martin Napetschnig | SE & BSF in t-channel DM models

PLANCK 2024 | Martin Napetschnig | SE & BSF in t-channel DM models

Impact for two types of mediators: SE + BSF_{n=6}

Allowed bands for $\Omega_{DM} = 0.1200 \pm 0.0050 (5\sigma)$

First scan for scalar mediators: SE + BSF_{n=6}

Upper limit on g_{DM} for $\Omega_{DM} = 0.1200 \pm 0.0050$ (5 σ)

First scan for scalar mediators: SE + BSF_{n=6}

Upper limit on g_{DM} for $\Omega_{DM} = 0.1200 \pm 0.0050$ (5 σ)

First scan for scalar mediators: SE + BSF_{n=6}

Upper limit on g_{DM} for $\Omega_{DM} = 0.1200 \pm 0.0050$ (5 σ)

PLANCK 2024 | Martin Napetschnig | SE & BSF in t-channel DM models

Conclusions

Non-perturbative long range effects have a sizeable impact on the predicted relic abundance.

Simplified dark matter models allow for a universal treatment of these effects, which can be **efficiently incorporated by our framework**.

Impact of Sommerfeld enhancement depends on the dominant annihilation channels and **spin** of the mediator.

The inclusion of bound state formation lifts the predicted DM mass and (re-)opens parameter space.

In the coannihilation regime, excited bound states amount to a correction of (at most) 20%.

Conclusions

Non-perturbative long range effects have a sizeable impact on the predicted relic abundance.

Simplified dark matter models allow for a universal treatment of these effects, which can be **efficiently incorporated by our framework**.

Impact of Sommerfeld enhancement depends on the dominant annihilation channels and **spin** of the mediator.

The inclusion of bound state formation lifts the predicted DM mass and (re-)opens parameter space.

In the coannihilation regime, excited bound states amount to a correction of (at most) 20%.

Our code will be publicly available soon!

Thank you for your attention! Obrigado pela sua atenção!

try: coffee.drink() assert = isempty(mug) == False

except AssertionError: print{"I can't code, I'm out of coffee."]

ТШП

Backup

PLANCK 2024 | Martin Napetschnig | SE & BSF in t-channel DM models

Running coupling at different scales

Vertices	$lpha_s$	$lpha_g$	$egin{array}{c} { m Average} \ { m momentum} \ { m transfer} \ Q \end{array}$
Wavefunction (ladder diagrams) of scattering state in colour rep. $\hat{\mathbf{R}}$	$lpha_s^s$	$\alpha_{g,[\hat{\mathbf{R}}]}^{S} = (\alpha_{s}^{S}/2) \times \\ \times \left[C_{2}(\mathbf{R_{1}}) + C_{2}(\mathbf{R_{2}}) - C_{2}(\hat{\mathbf{R}}) \right]$	$k \equiv \mu v_{\rm rel}$
Wavefunction (ladder diagrams) of bound state in colour rep. $\hat{\mathbf{R}}$	$\alpha^{\scriptscriptstyle B}_{s,[\hat{\mathbf{R}}]}$	$\alpha_{g,[\hat{\mathbf{R}}]}^{B} = (\alpha_{s,[\hat{\mathbf{R}}]}^{B}/2) \times \\ \times \left[C_{2}(\mathbf{R_{1}}) + C_{2}(\mathbf{R_{2}}) - C_{2}(\hat{\mathbf{R}}) \right]$	$\kappa_{\hat{\mathbf{R}}} \equiv \mu \alpha_{g,[\hat{\mathbf{R}}]}^{\scriptscriptstyle B}$
Formation of bound states of colour rep. $\hat{\mathbf{R}}$: gluon emission	$lpha_{s,[\hat{\mathbf{R}}]}^{\mathrm{BSF}}$		$\begin{aligned} \mathcal{E}_{\mathbf{k}} - \mathcal{E}_{n\ell} &= \\ \frac{\mu}{2} \left[v_{\text{rel}}^2 + (\alpha_{g,[\hat{\mathbf{R}}]}^B/n)^2 \right] \end{aligned}$
$gX_i^{\dagger}X_i$ vertices in non-Abelian diagram for capture in colour rep. $\hat{\mathbf{R}}$	$lpha_{s,[\hat{\mathbf{R}}]}^{\mathrm{NA}}$		$\mu \sqrt{v_{\rm rel}^2 + {\alpha_{g,[\hat{\mathbf{R}}]}^B}^2}$

[J. Harz and K. Petraki (2018)]

Cross sections for fermionic mediators

Cross sections for fermionic mediators

Triplet contributions negligible as expected → Only relevant at very **late times**

Cross sections for fermionic mediators

Limiting scenarios for excited bound states

1) At early times: **lonization** equilibrium:

$$\Gamma_{\rm ion}^i >> \Gamma_{\rm dec}^i, \Gamma_{\rm trans}^{ij}$$

[Garny & Heisig (2022)]

$$<\sigma_{BSF}v>_{\text{eff}}=\sum_{i}\frac{g_{\mathcal{B}_{i}}}{g_{X}^{2}}\left(\frac{2\pi m_{\mathcal{B}_{i}}}{Tm_{X}^{2}}\right)^{3/2}e^{E_{\mathcal{B}_{i}}/T}\Gamma_{\text{dec}}^{i}$$

2) Efficient transition limit: $\Gamma_{\text{trans}}^{ij} >> \Gamma_{\text{dec}}^{i}, \Gamma_{\text{ion}}^{i}$

 $<\sigma_{BSF}v>_{\rm eff} = <\sigma_{BSF}v>_{\rm sum} \frac{\Gamma_{\rm dec}^{\rm eff}}{\Gamma_{\rm ion}^{\rm eff} + \Gamma_{\rm dec}^{\rm eff}} \qquad \qquad \Gamma_{\rm ion/dec}^{\rm eff} = \frac{\sum_{i}\Gamma_{\rm ion/dec}^{i}Y_{\mathcal{B}_{i}}^{\rm eq}}{Y_{\mathcal{B}}^{\rm eq}}$

3) No transition limit:

$$\Gamma^i_{
m dec} >> \Gamma^i_{
m ion}, \Gamma^{ij}_{
m trans}$$

$$<\sigma_{BSF}v>_{\text{eff}}=\sum_{i}<\sigma_{BSF,i}v>\frac{\Gamma_{\text{dec}}^{i}}{\Gamma_{\text{ion}}^{i}+\Gamma_{\text{dec}}^{i}}$$

PLANCK 2024 | Martin Napetschnig | SE & BSF in t-channel DM models

Bandscans on a logarithmic scale

Preliminary!

Perturbative results for S3MuR

Relative impact of non-perturbative effects for S3MuR

PLANCK 2024 | Martin Napetschnig | SE & BSF in t-channel DM models