Electron Trap as a Dark Matter Detector

Samuel Wong June 6, 2024 PLANCK2024

2208.06519 and 2406.XXXXX:

Xing Fan, Gerald Gabrielse, Peter W. Graham, Roni Harnik, Thomas G. Myers, Harikrishnan Ramani, Benedict A. D. Sukra, Samuel S. Y. Wong, and Yawen Xiao

Electron Trap as a Dark Matter Detector

Samuel Wong June 6, 2024 PLANCK2024

2208.06519 and 2406.XXXXX:

Xing Fan, Gerald Gabrielse, Peter W. Graham, Roni Harnik, Thomas G. Myers, Harikrishnan Ramani, Benedict A. D. Sukra, Samuel S. Y. Wong, and Yawen Xiao

Electron Trap as a Dark Matter Detector

Samuel Wong June 6, 2024 PLANCK2024

2208.06519 and 2406.XXXXX:

Xing Fan, Gerald Gabrielse, Peter W. Graham, Roni Harnik, Thomas G. Myers, Harikrishnan Ramani, Benedict A. D. Sukra, Samuel S. Y. Wong, and Yawen Xiao

Wavelike Dark Matter

- Local density $ho_{DM}=0.3\,rac{\mathrm{GeV}}{\mathrm{cm}^3}$, but mass unknown
- If $m \ll 1 \text{ eV}$: bosonic, non-relativistic, classical wave
- Axion:
 - Pseudo-scalar
 - QCD axion strong CP

$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} m_a a^2$$

- Dark Photon:
 - Dark U(1), simplest extension of SM

$$\mathcal{L} \supset -\frac{1}{4} \left(F'_{\mu\nu} F'^{\mu\nu} - 2\epsilon F_{\mu\nu} F'^{\mu\nu} \right) + \frac{1}{2} m_{A'} A'_{\mu} A'^{\mu}$$

Wavelike Dark Matter

- Local density $ho_{DM}=0.3\,rac{{
 m GeV}}{{
 m cm}^3}$, but mass unknown
- If $m \ll 1 \text{ eV}$: bosonic, non-relativistic, classical wave
- Axion:

• Pseudo-scalar
• QCD axion – strong CP
• Dark Photon:

$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{2}m_aa^2$$

ultimate target

• Dark U(1), simplest extension of SM

$$\mathcal{L} \supset -\frac{1}{4} \left(F'_{\mu\nu} F'^{\mu\nu} - 2\epsilon F_{\mu\nu} F'^{\mu\nu} \right) + \frac{1}{2} m_{A'} A'_{\mu} A'^{\mu}$$

Phenomenology

• Dark photon generates weak, harmonic electric fields

$$E \sim \epsilon \sqrt{2\rho_{DM}} \cos(m_{A'}t)$$

$$\uparrow$$

$$m_{A'} + \frac{1}{2}m_{A'}v^2 + \dots$$

• Axion needs a background magnetic field

$$\vec{E} \sim g_{a\gamma\gamma} \frac{\sqrt{2\rho_{DM}}}{m_a} \vec{B}_{ext} \cos(m_a t)$$

Axion Parameter Space

Axion Parameter Space

$$n_{c}=2\frac{\uparrow}{\uparrow}$$

$$n_{c}=1\frac{\downarrow}{\uparrow}$$

$$m_{c}=0\frac{\downarrow}{\downarrow}$$

.

 $\omega_z \to \omega_z + n_c \delta$

proof-of-principle measurement: background-free over 7.4 days !

Resonant Detection of Dark Photon

Resonant Detection of Dark Photon

Resonant Detection of Dark Photon

- Only dark photon so far.
- For axion, scanning hurts magnetic field: $\omega_c = \frac{\omega_c}{m_e}$

eВ

- Only dark photon so far.
- For axion, scanning hurts magnetic field: $\omega_c =$
- Cyclotron transition rate:

$$\Gamma_c \propto \kappa^2 (n_c + 1) \epsilon^2 \rho_{DM}$$

2. effects of cavity 1. excited states

eB

 $\overline{m_e}$

- Only dark photon so far.
- For axion, scanning hurts magnetic field: ω_c
- Cyclotron transition rate:

$$\Gamma_c \propto \kappa^2 (n_c + 1) \epsilon^2 \rho_{DM}$$
2. effects of cavity
1. excited states

$$=\frac{eB}{m_e}$$

 $\sim D$

Cyclotron lifetime:

$$\tau_c \approx \frac{1}{n_c} 3 s$$

$$n_c = 2$$

$$n_c = 1$$

$$u_c$$

$$n_c = 0$$

• Cyclotron lifetime:

$$\tau_c \approx \frac{1}{n_c} 3 s$$

- Averaging time needed for detection must be less than τ_c
- "State of the arts":

$$t_{ave} \approx 2 s$$

• Cyclotron lifetime:

$$\tau_c \approx \frac{1}{n_c} 3 s$$

- Averaging time needed for detection must be less than τ_c
- "State of the arts":

$$t_{ave} \approx 2 s$$

$$t_{ave} \approx 3 \times 10^{-5} s$$

$$\implies n_c \approx 10^5$$

- Only dark photon so far.
- For axion, scanning hurts magnetic field: $\omega_c = \frac{1}{m_e}$
- Cyclotron transition rate:

$$\Gamma_c \propto \kappa^2 (n_c + 1) \epsilon^2 \rho_{DM}$$

2. effects of cavity 1. excited states

- Only dark photon so far.
- For axion, scanning hurts magnetic field: $\omega_c =$
- Cyclotron transition rate:

$$\Gamma_c \propto \kappa^2 (n_c + 1) \epsilon^2 \rho_{DM}$$
2. effects of cavity
1. excited states

- Only dark photon so far.
- For axion, scanning hurts magnetic field: $\omega_c = \frac{1}{m_e}$
- Cyclotron transition rate:

$$\Gamma_c \propto \kappa^2 (n_c + 1) \epsilon^2 \rho_{DM}$$
2. effects of cavity
1. excited states

$$\kappa^2 = \left(\frac{E_{cavity}}{E_{free}}\right)^2$$

waveguide

Axion Projection

1000 days per decade

Dark Photon Projection

1000 days per decade

Thank You

Back Up Slides

Hamiltonian

•
$$H_0 = \omega_c \left(n_c + \frac{1}{2}\right) + \omega_z \left(n_z + \frac{1}{2}\right)$$

• $H' = \delta \left(n_c + \frac{1}{2}\right) \left(n_z + \frac{1}{2}\right)$
• $[H_0, H'] = 0$

Effects of Cavity

Effects of Cavity

Effects of Cavity

- Only dark photon so far.
- For axion, scanning hurts magnetic field: $\omega_c = \frac{1}{m_e}$
- Cyclotron transition rate:

$$\Gamma_{c} \propto \kappa^{2} (n_{c}+1)\epsilon^{2}\rho_{DM} \times N_{l}^{2}$$
2. effects of cavity
1. excited states
enhancement in detection
$$3. \text{ dielectric conversion enhancement}$$

Dielectric Conversion Enhancement

• So far, only a thin layer of metal is converting axion

converting metal

Dielectric Conversion Enhancement

- So far, only a thin layer of metal is converting axion
- What if the entire volume is filled with converting material?
- Needs to be transparent to photons: dielectric!

Dielectric Conversion Enhancement

- So far, only a thin layer of metal is converting axion
- What if the entire volume is filled with converting material?
- Needs to be transparent to photons: dielectric!
- Layers of dielectrics of alternating indices of refraction
- Resonance conversion to axion if thickness ≈ axion wavelength
- Limited by size of cavity and how often we switch dielectrics to scan frequency (once a month)

R = 1 meter