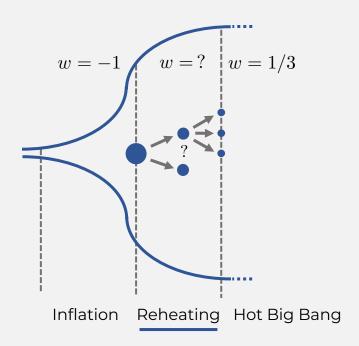
Energy distribution and equation of state during and after tachyonic resonance

Kenneth Marschall

IFIC

(with S. Antusch, F. Torrentí)

The Reheating Epoch



Why should we study the phase of (p)reheating?

- Energy Transfer
- Expansion History
 - Number of e-folds N_k of inflation $(N_k = 55 \pm 5)$
 - → Accurate predictions for CMB observables
 n_s and r

Reheating Model: Motivation

$$V(\phi, X) = \frac{1}{2} \Lambda^4 \tanh^2 \left(\frac{\phi}{M}\right) + \frac{1}{2} h^2 \phi X^2 + \frac{1}{4} \lambda X^4$$

Reheating Model: Motivation

$$V(\phi,X) = \frac{1}{2}\Lambda^4 \tanh^2\left(\frac{\phi}{M}\right) + \frac{1}{2}h^2\phi X^2 + \frac{1}{4}\lambda X^4$$
 'inflation' '(p)reheating'

- Inflaton ϕ , scalar preheat field X
- Mass scales Λ and M
 - \rightarrow inflaton mass: $m_{\phi}^2 = \Lambda^4/M^2$
- Couplings h^2 and λ
 - \rightarrow potential bounded form below when: $\lambda > h^4/2m_\phi^2$

Reheating Model: Motivation

$$V(\phi,X) = \frac{1}{2}\Lambda^4 \tanh^2\left(\frac{\phi}{M}\right) + \frac{1}{2}h^2\phi X^2 + \frac{1}{4}\lambda X^4$$
 'inflation' '(p)reheating'

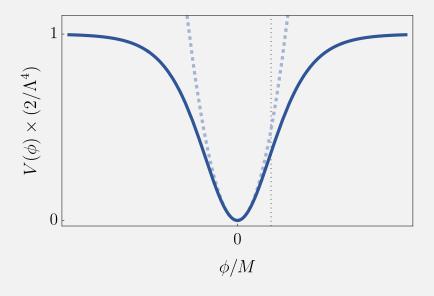
- For interactions of the type $\sim \phi^2 X^2$ we have seen that [1]:
 - → inflaton does <u>not</u> decay completely during the process of parametric resonance
 - → the system does <u>not</u> become radiation dominated
- What happens in case of ϕX^2 -interactions?
 - → tachyonic resonance [2]
 - perturbative decay channel

Inflaton Potential

$$V(\phi,X) = \frac{1}{2}\Lambda^4 \tanh^2\left(\frac{\phi}{M}\right) + \dots$$
 'inflation'

$$V(\phi) \sim \left\{ egin{array}{ccc} \Lambda^4 & |\phi| \gg M \\ \phi^2 & |\phi| \ll M \end{array} \right.$$

• separated by $\phi_i = M \operatorname{arcsinh}(1/\sqrt{2})$



plateau is fixed by

$$\Lambda^4 = 6\pi^2 A_s M^2 m_{\rm pl}^2 N_k^{-2} f(M, N_k)$$

inflation ends at

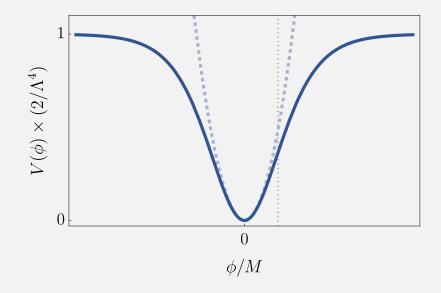
$$\phi_* = M \operatorname{arcsinh}(\sqrt{8}m_{\rm pl}/M)/2$$

Inflaton Potential

$$V(\phi,X) = \frac{1}{2}\Lambda^4 \tanh^2\left(\frac{\phi}{M}\right) + \dots$$
 'inflation'

$$V(\phi) \sim \begin{cases} \Lambda^4 & |\phi| \gg M \\ \phi^2 & |\phi| \ll M \end{cases}$$

- ightharpoonup separated by $\phi_{\rm i} = M {\rm arcsinh}(1/\sqrt{2})$
- We fix $M=5m_{\rm pl}$ for the following!
 - $V(\phi)$ can be well approximated by a monomial during reheating



plateau is fixed by

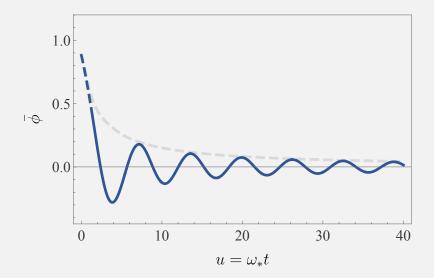
$$\Lambda^4 = 6\pi^2 A_s M^2 m_{\rm pl}^2 N_k^{-2} f(M, N_k)$$

inflation ends at

$$\phi_* = M \operatorname{arcsinh}(\sqrt{8}m_{\rm pl}/M)/2$$

Preheating: Homogeneous Phase

$$V(\phi,X) = \frac{1}{2}\Lambda^4 \tanh^2\left(\frac{\phi}{M}\right) + \dots$$



Evolution of the homogeneous inflaton field is determined by:

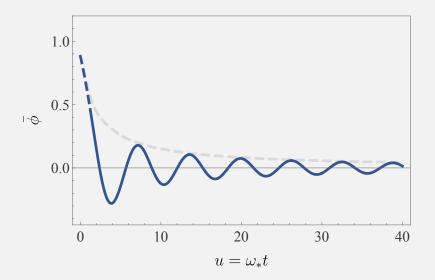
$$\vec{\phi} + 3H\dot{\phi} + \partial_{\bar{\phi}}V = 0$$

$$H^2 = \frac{1}{3m_{\rm pl}^2} \left(\frac{1}{2}\dot{\phi}^2 + V\right)$$

- decaying amplitude: $\Phi \sim a^{-\frac{3}{2}}$
- oscillation frequency: $\omega_* = m_\phi$
- effective equation of state : $\bar{w}=0$

Preheating: Homogeneous Phase

$$V(\phi,X) = \frac{1}{2}\Lambda^4 \tanh^2\left(\frac{\phi}{M}\right) + \dots$$



Evolution of the homogeneous inflaton field is determined by:

$$\vec{\phi} + 3H\dot{\phi} + \partial_{\vec{\phi}}V = 0$$

$$H^2 = \frac{1}{3m_{\rm pl}^2} \left(\frac{1}{2}\dot{\phi}^2 + V\right)$$

- decaying amplitude: $\Phi \sim a^{-\frac{3}{2}}$
- oscillation frequency: $\omega_* = m_\phi$
- effective equation of state : $\bar{w}=0$

Natural variables:

$$\begin{cases}
\varphi \equiv (\phi/\phi_*)a^{3/2} \\
\chi \equiv (X/\phi_*)a^{3/2}
\end{cases}
\qquad
\begin{cases}
u \equiv \omega_* t \\
\vec{y} \equiv \omega_* \vec{x}
\end{cases}$$

Natural Variables

The equation of motion in natural variables are then given by:

$$\varphi'' - a^{-2}\nabla_{\vec{y}}^2 \varphi + \varphi + F(\varphi) + \tilde{q}^{(h)}\chi^2 = 0$$
$$\chi'' - a^{-2}\nabla_{\vec{y}}^2 \chi + \tilde{q}^{(h)}\varphi\chi + \tilde{q}^{(\lambda)}\chi^3 = 0$$

With the effective coupling parameters:

$$\tilde{q}^{(h)} = q_*^{(h)} a^{-3/2}$$
 , $q_*^{(h)} \equiv h^2 \phi_* / \omega_*^2$
$$\tilde{q}^{(\lambda)} = q_*^{(\lambda)} a^{-3}$$
 , $q_*^{(\lambda)} \equiv \lambda \phi_*^2 / \omega_*^2$

• Potential is bounded from below when: $(q_*^{(h)})^2 > 2q_*^{(\lambda)}$

Preheating: Tachyonic Resonance

The equation of motion in natural variables are then given by:

$$\varphi'' - a^{-2}\nabla_{\vec{y}}^2 \varphi + \varphi + F(\varphi) + \tilde{q}^{(h)}\chi^2 = 0$$
$$\chi'' - a^{-2}\nabla_{\vec{y}}^2 \chi + \tilde{q}^{(h)}\varphi\chi + \tilde{q}^{(\lambda)}\chi^3 = 0$$

With the effective coupling parameters:

$$\begin{split} \tilde{q}^{(h)} &= q_*^{(h)} a^{-3/2} \quad , \qquad q_*^{(h)} \equiv h^2 \phi_* / \omega_*^2 \\ \tilde{q}^{(\lambda)} &= q_*^{(\lambda)} a^{-3} \quad , \qquad q_*^{(\lambda)} \equiv \lambda \phi_*^2 / \omega_*^2 \end{split}$$

• Potential is bounded from below when: $(q_*^{(h)})^2 > 2q_*^{(\lambda)}$

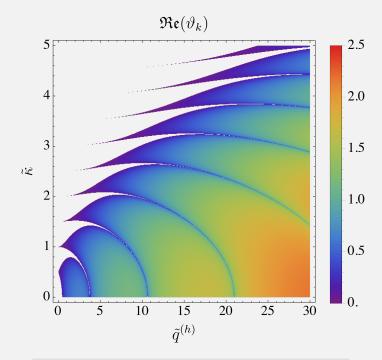
Preheating: Tachyonic Resonance

• Linearised mode equation of χ :

$$\delta \chi_k'' + \left(\tilde{\kappa}^2 + \tilde{q}^{(h)}\bar{\varphi}\right)\delta \chi_k \simeq 0$$
with $\tilde{\kappa} = k/(\omega_* a)$

$$\bar{\varphi}'' + \bar{\varphi} \simeq 0$$

Preheating: Tachyonic Resonance



 $\tilde{q}^{(h)} \gtrsim 0.5$: broad resonance

 $\tilde{q}^{(h)} \lesssim 0.5$: narrow resonance

Preheating: Tachyonic Resonance

• Linearised mode equation of χ :

$$\delta \chi_k'' + \left(\tilde{\kappa}^2 + \tilde{q}^{(h)}\bar{\varphi}\right)\delta \chi_k \simeq 0$$
with $\tilde{\kappa} = k/(\omega_* a)$

$$\bar{\varphi}'' + \bar{\varphi} \simeq 0$$

• Inflaton induces a tachyonic mass term each time when $\bar{\varphi} < 0$; modes for which $\tilde{\kappa}^2 < \tilde{q}^{(h)} \varphi$ grow exponentially:

$$|\delta \chi_k|^2 \sim e^{2\vartheta_k u}$$

• Tachyonic resonance is always stronger than parametric resonance ($\sim \phi^2 X^2$)

Preheating: Lattice Simulations

CosmoLattice [3]:

 Simulations have been performed for the T-model:

$$V = \frac{1}{2}\Lambda^4 \tanh^2\left(\frac{\phi}{M}\right) + \frac{1}{2}h^2\phi X^2 + \frac{1}{4}\lambda X^4$$

with mass scale $M=5m_{\rm pl}$ and $N_k=55$, initialised the simulations at ϕ_*

- Details on simulations:
 - For N = 128 512 grid points
 - Performed in (2+1) dimensions
 - → results almost identical to the ones in (3 + 1) dimensions!

Preheating: Lattice Simulations

CosmoLattice [3]:

 Simulations have been performed for the T-model:

$$V = \frac{1}{2}\Lambda^4 \tanh^2\left(\frac{\phi}{M}\right) + \frac{1}{2}h^2\phi X^2 + \frac{1}{4}\lambda X^4$$

with mass scale $M=5m_{\rm pl}$ and $N_k=55$, initialised the simulations at ϕ_*

- Details on simulations:
 - For N = 128 512 grid points
 - Performed in (2+1) dimensions
 - → results almost identical to the ones in (3+1) dimensions!

 Energy density ratios:

$$\varepsilon_i \equiv \frac{E_i}{E_{\rm tot}}$$

Total energy density:

$$E_{\rm tot} = \sum_f^{\varphi,\chi} \left(E_{\rm k}^f + E_{\rm g}^f + E_{\rm p}^f \right) + E_{\rm i}$$
 kinetic gradient potential interaction

Energy density components:

$$E_{k}^{f} = \frac{1}{2}(f')^{2} \qquad E_{p}^{\varphi} = \frac{1}{2}\varphi^{2} + [...] \qquad E_{i} = \frac{1}{2}\tilde{q}^{(h)}\varphi\chi^{2}$$

$$E_{g}^{f} = \frac{1}{2a^{2}}(\nabla_{\vec{y}}f)^{2} \qquad E_{p}^{\chi} = \frac{1}{4}\tilde{q}^{(\lambda)}\chi^{4}$$

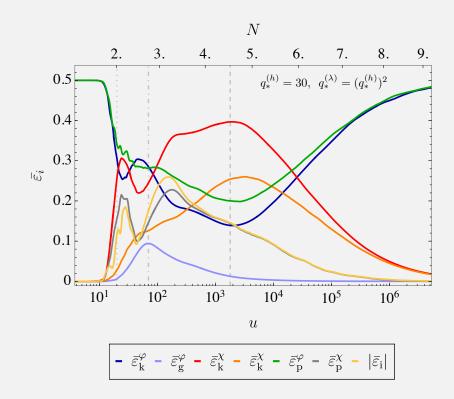
Equation $w=\varepsilon_{\mathbf{k}}-\frac{1}{3}\varepsilon_{\mathbf{g}}-\varepsilon_{\mathbf{p}}$ of state:

Lattice Simulations: Effective Energy Ratios

Equations of motion:

$$\varphi'' - a^{-2}\nabla_{\vec{y}}^2 \varphi + \varphi + F(\varphi) + \tilde{q}^{(h)}\chi^2 = 0$$
$$\chi'' - a^{-2}\nabla_{\vec{y}}^2 \chi + \tilde{q}^{(h)}\varphi\chi + \tilde{q}^{(\lambda)}\chi^3 = 0$$

- Homogeneous phase: $ar{arepsilon}_{\mathbf{k}}^{arphi} \simeq ar{arepsilon}_{\mathbf{p}}^{arphi} \simeq 0.5$
- System starts to become non-linear at $u_{
 m br} pprox 20$
- Backreaction process terminates when $\tilde{q}^{(h)} < 0.5$ at $u \approx 70$
- Self-resonance process continues until $u \approx 1800$
- Eventually: $\bar{\varepsilon}_{\mathbf{k}}^{\varphi} \simeq \bar{\varepsilon}_{\mathbf{p}}^{\varphi} \to 0.5$

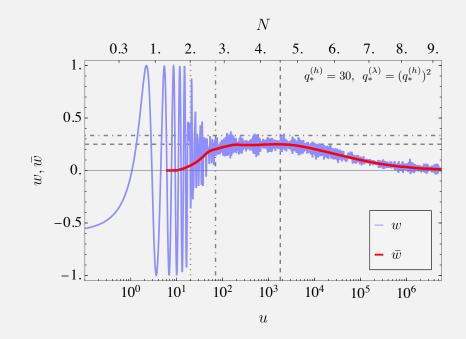


Lattice Simulations: Effective Energy Ratios

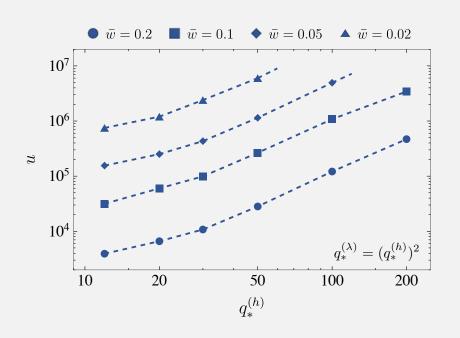
Equations of motion:

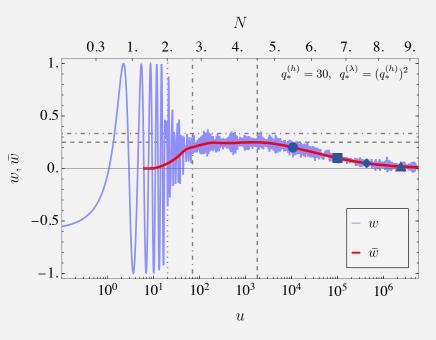
$$\varphi'' - a^{-2}\nabla_{\vec{y}}^2 \varphi + \varphi + F(\varphi) + \tilde{q}^{(h)}\chi^2 = 0$$
$$\chi'' - a^{-2}\nabla_{\vec{y}}^2 \chi + \tilde{q}^{(h)}\varphi\chi + \tilde{q}^{(\lambda)}\chi^3 = 0$$

- Homogeneous phase: $\bar{w} \simeq 0$
- System starts to become non-linear and equation of state grows
- Backreaction process terminates and $\bar{w}
 ightarrow 0.25$
- Self-resonance process continues and equation of state stays at $\,\bar{w} \simeq 0.25\,$
- Eventually: $\bar{w} \to 0$



Lattice Simulations: Effective Energy Ratios





Lattice Simulations: Number of e-folds of Reheating

The trilinear interaction $\sim \phi X^2$ provides a perturbative decay channel, with decay rate:

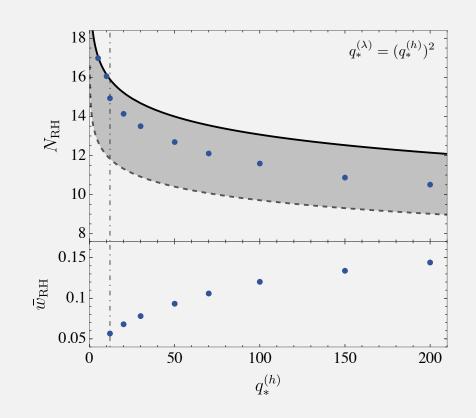
$$\Gamma_{\phi} = \frac{h^4}{32\pi m_{\phi}}$$

Thus reheating may be completed by the decay process $\phi \to XX$, when $H_{\rm RH} \sim \Gamma_{\phi}$.

We can then determine:

•
$$N_{\mathrm{RH}} = \frac{1}{3(1+\bar{w}_{\mathrm{RH}})} \ln \frac{\rho_{\mathrm{end}}}{\rho_{\mathrm{RH}}}$$

•
$$\bar{w}_{\mathrm{RH}} = \frac{1}{\Delta N} \int_{N_{\mathrm{end}}}^{N_{\mathrm{RH}}} w(N) dN$$



Lattice Simulations: Number of e-folds of Reheating

The trilinear interaction $\sim \phi X^2$ provides a perturbative decay channel, with decay rate:

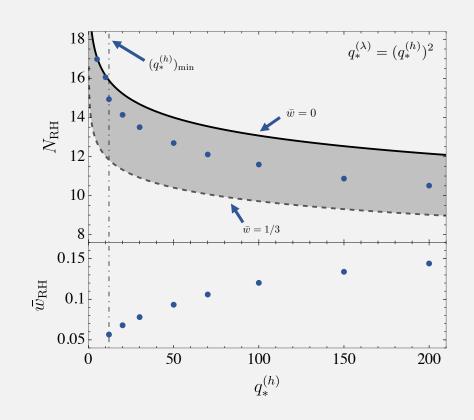
$$\Gamma_{\phi} = \frac{h^4}{32\pi m_{\phi}}$$

Thus reheating may be completed by the decay process $\phi \to XX$, when $H_{\rm RH} \sim \Gamma_{\phi}$.

We can then determine:

•
$$N_{\mathrm{RH}} = \frac{1}{3(1+\bar{w}_{\mathrm{RH}})} \ln \frac{\rho_{\mathrm{end}}}{\rho_{\mathrm{RH}}}$$

•
$$\bar{w}_{\mathrm{RH}} = \frac{1}{\Delta N} \int_{N_{\mathrm{end}}}^{N_{\mathrm{RH}}} w(N) dN$$



Lattice Simulations: Number of e-folds of Inflation

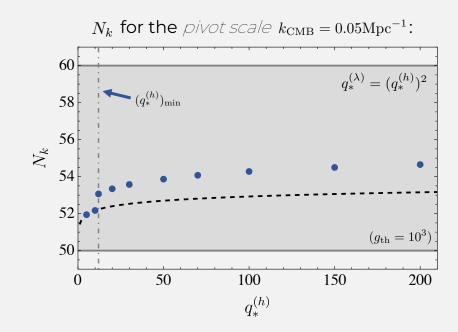
The number of e-folds of inflation are given by:

$$N_k \simeq 67 - \ln \frac{k_{\rm \tiny CMB}}{a_0 H_0} - \frac{1}{12} \ln g_{\rm th} + \dots$$

 $\dots + \frac{1}{4} \ln \frac{V_k^2}{m_{\rm pl}^4 \rho_{\rm end}} + \frac{1 - 3\bar{w}_{\rm RH}}{12(1 + \bar{w}_{\rm RH})} \ln \frac{\rho_{\rm RH}}{\rho_{\rm end}}$

Assuming the system stays in RD until BBN, followed by the standard expansion history of the universe (RD \rightarrow MD \rightarrow Λ D)

- lacktriangle with $N_{
 m RH}$ and $ar{w}_{
 m RH}$ we can determine N_k
- ightharpoonup since V_k depends on N_k we use an iterative scheme



Concluding Remarks

- Equation of state eventually returns to $\bar{w} \to 0$ and the total energy is distributed as $\bar{\varepsilon}_{\bf k}^{\varphi} \simeq \bar{\varepsilon}_{\bf p}^{\varphi} \simeq 0.5$
- Thus, the reheating process is <u>not</u> completed after the initial preheating phase.
- The inflaton decays at latest perturbatively via the trilinear interaction. This allows us to determine the maximal possible number of e-folds and $N_{\rm RH}$, as well as the according n_s and r.

References

- [1]: References on quadratic-quadratic interactions
 - Energy distribution and equation of state of the early Universe: matching the end of inflation and the onset of radiation domination (2005.07563)
 - Characterizing the post-inflationary reheating history, Part I: single daughter field with quadratic-quadratic interaction (2112.11280)
 - Characterizing the post-inflationary reheating history, Part II: Multiple interacting daughter fields (2206.06319)
- [2]: References on tri-linear interactions:
 - Preheating with trilinear interactions: Tachyonic resonance (0602144)
 - Gravitational wave production from preheating with trilinear interactions (2206.1472)
 - ..
- [3]: CosmoLattice:
- CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe (2102.01031)

