

Unitarity constraints on large multiplets of arbitrary gauge groups

André Milagre (CFTP/IST) In collaboration with Luís Lavoura (CFTP/IST) Nucl. Phys. B 1004 (2024) 116542 [2403.12914]

PLANCK2024, Lisbon

6th of June, 2024

Preamble

Q: Can the dimension and number of scalar & fermionic multiplets be arbitrarily large?

Intro

- S-matrix of UV complete QFT must be unitary
- Historically: upper bound on m_H by Lee, Quigg, and Thacker [arXiv:9303263]
- Logan and collaborators constrained quantum numbers of EW scalar multiplets
- We generalize their work:

Partial Wave Unitarity Bounds

• Decompose scattering amplitude into partial waves:

• Optical Theorem: scattering amplitudes cannot be arbitrarily large

$$|a_J| \le 1$$

$$0 \leq \operatorname{Im}\left\{a_{J}\right\} \leq 1$$

 $\left|\operatorname{Re}\left\{a_J\right\}\right| \le \frac{1}{2}$

$$= 16\pi \sum_{J=0}^{\infty} a_J (2J+1) P_J(\cos\theta)$$

$$|\operatorname{Re}\left\{a_{0}\right\}| \leq \frac{1}{2}$$

- Consider theory symmetric under one gauge group G
- Contain **one** fermionic OR scalar multiplet of dimension \boldsymbol{n}
- Work in unmixed basis and high-energy limit

- Consider theory symmetric under one gauge group G
- Contain **one** fermionic OR scalar multiplet of dimension \boldsymbol{n}
- Work in unmixed basis and high-energy limit

- Consider theory symmetric under one gauge group G
- Contain **one** fermionic OR scalar multiplet of dimension n
- Work in unmixed basis and high-energy limit

- Consider theory symmetric under one gauge group G
- Contain **one** fermionic OR scalar multiplet of dimension n

- quantum numbers!

$$\left\langle V^a V^b \left| a_0 \right| \psi_i \overline{\psi}_j \right\rangle \le \frac{1}{2} \qquad \qquad \sum_{ijab} k_{ijab} \left\langle V^a V^b \left| a_0 \right| \psi_i \overline{\psi}_j \right\rangle \le \frac{1}{2}$$

• There are many states (with same quantum numbers) scattering into $|VV\rangle$

• Partial unitarity bounds must also apply to superpositions of states with same

- There are many states (with same quantum numbers) scattering into $|VV\rangle$
- Partial unitarity bounds must also apply to superpositions of states with same quantum numbers!

$$\left\langle V^a V^b \left| a_0 \right| \psi_i \overline{\psi}_j \right\rangle \le \frac{1}{2}$$

• Largest a_0 arise from symmetrical (*i.e.* group invariant) superposition of states

$$ig|oldsymbol{n}_{\psi}oldsymbol{n}_{\mathrm{sym}}\equivrac{1}{\sqrt{n}}\sum_{i}|\psi_{oldsymbol{i}}\overline{\psi}_{oldsymbol{i}}
angle ig|ig|oldsymbol{n}_{arphi}oldsymbol{n}_{arphi}
angle ig|ig|oldsymbol{n}_{arphi}oldsymbol{v}_{arphi}
angle$$

Initial States

$$\sum_{ijab} k_{ijab} \left\langle V^a V^b \left| a_0 \right| \psi_i \overline{\psi}_j \right\rangle \le \frac{1}{2}$$

Final State

- \bullet Symmetric states provide the strongest constraints on g and n
- Symmetric states allow for simplifications using group theory identities:

Fermion Multiplet:
$$|a_0^{\psi}| = \frac{g^2}{16} \sqrt{\frac{7}{\tilde{r}}}$$

Scalar Multiplet: $|a_0^{\varphi}| = \frac{g^2}{8\pi} \sqrt{\frac{7}{\tilde{r}}}$

- \bullet Symmetric states provide the strongest constraints on g and n
- Symmetric states allow for simplifications using group theory identities:

Fermion Multiplet:
$$|a_0^{\psi}| = \frac{g^2}{16} \sqrt{\frac{7}{\tilde{r}}}$$

Scalar Multiplet: $|a_0^{\varphi}| = \frac{g^2}{8\pi} \sqrt{\frac{7}{\tilde{r}}}$

Multiple multiplets & multiple gauge groups

- Now consider theory with:
 - N_F fermionic multiplets with dimension n_{Fi}
 - N_S scalar multiplets with dimension n_{Si}
 - Symmetric under $G_1 \times G_2 \times G_3 \times \ldots$
- Using coupled channel analysis, largest a_0 is the largest eigenvalue of:

$$\begin{pmatrix} |a_0^{F_1}|_{G_1} & |a_0^{F_2}|_{G_1} & \cdots & |a_0^{S_1}|_{G_1} & |a_0^{S_2}|_{G_1} & \cdots \\ |a_0^{F_1}|_{G_2} & |a_0^{F_2}|_{G_2} & \cdots & |a_0^{S_1}|_{G_2} & |a_0^{S_2}|_{G_2} & \cdots \\ |a_0^{F_1}|_{G_3} & |a_0^{F_2}|_{G_3} & \cdots & |a_0^{S_1}|_{G_3} & |a_0^{S_2}|_{G_3} & \cdots \\ \vdots & \vdots & & \ddots \end{pmatrix}$$

Multiple multiplets & multiple gauge groups

- Now consider theory with:
 - N_F fermionic multiplets with dimension n_{Fi}
 - N_S scalar multiplets with dimension n_{Si}
 - Symmetric under $G_1 \times G_2 \times G_3 \times \ldots$
- Using coupled channel analysis, largest a_0 is the largest eigenvalue of:

$$\begin{pmatrix} |a_{0}^{F_{1}}|_{G_{1}} & |a_{0}^{F_{2}}|_{G_{1}} & \cdots & |a_{0}^{S_{1}}|_{G_{1}} & |a_{0}^{S_{2}}|_{G_{1}} & \cdots \\ |a_{0}^{F_{1}}|_{G_{2}} & |a_{0}^{F_{2}}|_{G_{2}} & \cdots & |a_{0}^{S_{1}}|_{G_{2}} & |a_{0}^{S_{2}}|_{G_{2}} & \cdots \\ |a_{0}^{F_{1}}|_{G_{3}} & |a_{0}^{F_{2}}|_{G_{3}} & \cdots & |a_{0}^{S_{1}}|_{G_{3}} & |a_{0}^{S_{2}}|_{G_{3}} & \cdots \\ \vdots & \vdots & & \ddots \end{pmatrix} \xrightarrow{\text{Single Gauge}}_{\text{Group}} |a_{0}| = \sqrt{\sum_{i=1}^{N_{F}} \left[a_{0}^{F_{i}}\right]^{2} + \sum_{i=1}^{N_{S}} \left[a_{0}^{S_{0}}\right]^{2}}_{\frac{g^{2}}{16}\sqrt{\frac{n}{\tilde{n}}}C(n_{F_{i}})} \xrightarrow{\frac{g^{2}}{8\pi}\sqrt{\frac{n}{\tilde{n}}}}_{\frac{g^{2}}{8\pi}\sqrt{\frac{n}{\tilde{n}}}} \right]^{2}}$$

Constraints on SM extension

• SM particle content is well compatible with unitarity: $|a_0| \approx 0.27$

Constraints on SM extension

• SM particle content is well compatible with unitarity: $|a_0|\approx 0.27$

$$\psi \sim \left(\boldsymbol{n}_{\psi}^{SU(3)}, \, \boldsymbol{n}_{\psi}^{SU(2)}, \, Y_{\psi} \right)$$

		$oldsymbol{n}_\psi^{SU(3)}$					
	$ Y_\psi ^{ m max}$	1	3	6	8		
$oldsymbol{n}_{\psi}^{SU(2)}$	1	7.91	5.96	4.41	4.04		
	2	6.65	4.96	2.65	2.13		
	3	6.00	4.39				
	4	5.52	3.87				
	5	5.05	2.95				
	6	4.37					
	7	2.13					

Constraints on SM extension

• SM particle content is well compatible with unitarity: $|a_0|\approx 0.27$

$$\psi \sim \left(\boldsymbol{n}_{\psi}^{SU(3)}, \, \boldsymbol{n}_{\psi}^{SU(2)}, \, Y_{\psi} \right)$$

		$oldsymbol{n}_\psi^{SU(3)}$					
	$ Y_\psi ^{ m max}$	1	3	6	8		
$oldsymbol{n}_{\psi}^{SU(2)}$	1	7.91	5.96	4.41	4.04		
	2	6.65	4.96	2.65	2.13		
	3	6.00	4.39				
	4	5.52	3.87				
	5	5.05	2.95				
	6	4.37					
	7	2.13					

 $\varphi \sim \left(\boldsymbol{n}_{\varphi}^{SU(3)}, \, \boldsymbol{n}_{\varphi}^{SU(2)}, \, Y_{\varphi} \right)$

		$oldsymbol{n}_arphi^{SU(3)}$					
	$ Y_{\varphi} ^{\max}$	1	3	6	8	10	
$oldsymbol{n}^{SU(2)}_{arphi}$	1	9.92	7.51	6.04	5.60	3.03	
	2	8.34	6.29	4.78	4.40		
	3	7.53	5.64	3.94	3.56		
	4	6.97	5.15	2.86	2.10		
	5	6.51	4.62				
	6	6.03	3.74				
	7	5.38					
	8	4.08					

Grand Unified Theory SO(10)

- Fermions are in three families of 16 dimensional multiplets
- Various symmetry breaking scenarios $SO(10) \rightarrow SM$
- Examined 60+ models and calculated corresponding $|a_0|$

[M. Pernow, 2019]

Grand Unified Theory SO(10)

- Fermions are in three families of 16 dimensional multiplets
- Various symmetry breaking scenarios $SO(10) \rightarrow SM$
- Examined 60+ models and calculated corresponding $|a_0|$

[M. Pernow, 2019]

Advocate reexamination of validity of perturbation theory!

 $(10 \text{ or higher}) \oplus 210 \oplus 210;$ $(\mathbf{45} \text{ or higher}) \oplus \overline{\mathbf{126}} \oplus \mathbf{210};$ $(10 \text{ or higher}) \oplus 120 \oplus 126 \oplus \overline{126}.$

Grand Unified Theory E_6

- Fermions are in three families of 27 dimensional multiplets
- Correct fermion mass hierarchy is only achieved with a **351**' scalar multiplet
- Using conservative estimate for g at GUT scale \Rightarrow Violation of unitarity
- More scalar multiplets are needed to break $E_6 \rightarrow SM$

Grand Unified Theory E_6

- Fermions are in three families of 27 dimensional multiplets
- Correct fermion mass hierarchy is only achieved with a **351**' scalar multiplet
- Using conservative estimate for g at GUT scale \Rightarrow Violation of unitarity
- More scalar multiplets are needed to break $E_6 \rightarrow SM$

Raise questions about viability of any perturbative E_6 GUT!

Final Remarks

- Scattering of pairs of fermions/scalars into gauge bosons to calculate $|a_0|$
- Imposed Partial Wave Unitarity Bounds on the largest $|a_0|$
 - \Rightarrow Dimension of multiplets cannot be arbitrarily large
 - \Rightarrow Number of multiplets cannot be arbitrarily large
- Simple formulas to quickly check validity of perturbation theory
- Constrained SM extensions
- Found SO(10) scenarios that violate perturbative unitarity
- All E_6 scenarios violate perturbative unitarity
- SUSY GUTs are even more prone to violate perturbative unitarity