"Precision Calculations of Effective Potentials and Electroweak Phase Transitions in the Early Universe"

Thomas Biekötter, Andrii Dashko, Maximilian Löschner, Georg Weiglein

PLANCK2024, Lisboa, 06.06.2024

"Precision Calculations of Effective Potentials and Electroweak Phase Transitions in the Early Universe"

Motivation: First Order Phase Transition in the Early Universe

- Mechanism to satisfy Sakharov's conditions for generation matterantimatter asymmetry
- Naturally occurring in most of extensions of Higgs sectors
- Perfect candidate for gravitation wave detection in close future experiments (LISA, etc)

Motivation: uncertainties

Motivation: uncertainties

[White, 2024]

Effective action/potential

$$\begin{split} \Gamma[\phi] &= W[J] - \int d^4 x \, J(x) \phi(x), \\ V_{eff}[\phi] &= \frac{\Gamma[\phi]}{(vol)} \end{split}$$

$$\bigvee_{\substack{I=0}\\I-loop}^{eff} = \bigvee_{\substack{tree}} + \bigvee_{\substack{I-loop}} + \bigvee_{\substack{2-loop}} + \cdots$$

$$\bigvee_{\substack{I-loop}}^{T=0} = -\frac{i}{2} \int \frac{d^{4}k}{(2\pi)^{4}} ln\left(k^{2} - M_{i}^{2}\right) = \sum_{\substack{P}} \frac{N_{i} \cdot M_{i}^{2}}{64\pi^{2}} \left(log\left(\frac{M_{i}^{2}}{\mu^{2}}\right) - C_{i}\right)$$

$$\bigvee_{\substack{I=0\\I-1}\\I-1}^{T=0} = (---) + (\sum_{\substack{I=0\\I-1}\\I-1}) + \underbrace{\xi---}_{I-1}^{I-1} + \cdots$$

$$\times full 2-loop result in arbitrary pourse is known$$

Renormalization scale & Daisy resummation

• Thermal loop corrections, which are dominant during the phase transition, introduce large renormalization scale dependence.

 The presence of hierarchy between hard (~T) and soft (~gT) scales requires resummation of the hard modes, which messes up with the loop order

Gauge dependency

- The effective action itself is an <u>intrinsically gauge dependent quantity</u>, as it's defined for the non-zero source term, and the system has a non-dynamical background change.
- <u>But</u>, it's gauge dependent according to Nielsen identity:

$$rac{\partial V_{eff}}{\partial \xi} = C_i(\phi,\xi) rac{\partial V_{eff}}{\partial \phi_i},$$

• V_{eff} is gauge invariant at stationary point (extremums)

• Gauge invariant results can be obtained by systematic \hbar -expansion [Nielsen, 1975]

Separating logarithms

- Large μ dependence & need for resummations indicate large separation of scales
- Relevant scales:
 hard mode ~ πT
 soft ~ gT~mp
 ultrasoft ~ g²T
- Basically, we have too many logarithms:

$$\log(\frac{\pi T}{\mu}), \log(\frac{gT}{\mu}), \log(\frac{gT}{\mu})$$

High-T EFT

High-T EFT lives in 3D:

- Simpler integrals
- Superrenormalizable theory

Automated matching tool: DRalgo [Ekstedt, et.al. 2022]

Physical observables $(T_c, T_n, \Omega_{GW}, ...)$

Temperature is integrated out

- Use T = 0 QFT framework
- Resummations are already included
- Gauge invariance is straightforward

Lagrange parameters determination

Another possible source of uncertainties

Physical inputs $(M_h, M_W, M_Z, G_F, \ldots)$ 4*d* eff n-loop \overline{MS} relations OS-like renormalization $M_h = m_h + \Pi_h (p^2 = M_h^2)$ $\partial_h V_{tree} = \partial_h V_{eff} + \partial_h V_{c.t.}$ • Only scalar potential couplings $\partial_h^2 V_{tree} = \partial_h^2 V_{eff} + \partial_h^2 V_{c.t.}$ $(\sim \Pi_h(p^2=0))$ Physical observables $(\mu, \lambda, g, ...)$

- Missing momentum contribution
- Gauge dependent
- Taking derivatives must be handled carefully*
- are renormalised

11

Thermodynamics of the Phase Transition

Benchmark model: cxSM

$$\mathscr{L}_{cxSM} \supset \partial^{\mu} H^{\dagger} \partial^{\mu} H + \mu_{h}^{2} H^{\dagger} H + \lambda_{h} (H^{\dagger} H)^{2} + \frac{1}{2} |\partial^{\mu} S|^{2} + \frac{1}{2} b_{2} |S|^{2} + d_{2} |S|^{4} + \frac{1}{2} \delta_{2} |S|^{2} H^{\dagger} H$$

$$m_{H_2} = m_A = 62.5 \text{ GeV},$$

 $d_2 = 0.5, \delta_2 = 0.55.$

Results: µ scale dependence

Results: gauge (in)variance

Results: EFT loop convergence

Results: EFT validity

Conclusions.

- Thermally driven phase transitions come with uncertainties, which are essential to be accounted for.
- Large scale separations and related resummations can be rigorously taken into account with the help of EFT techniques.
- Phenomenological studies of phase transitions have to go together with the systematic studies of uncertainties, which could shine light on our understanding on physics behind it.

