Astrophysical Phenomenology of Light Colored Higgs Triplet

Anna Jankowsky

in collaboration with Gia Dvali & Manuel Ettengruber

PLANCK2024, 4th June

Astrophysical Phenomenology of Light Colored Higgs Triplet

- Introduction
- Mass Range of the Light Triplet
- Cosmological Production
 - Abundance
 - T-Mesons and DM candidates
 - Td-Mesons as heavy Neutrons
- Conclusions

Introduction: Who is T and why is it interesting

Triplet
$$(3, 1)_{+\frac{1}{3}}$$

GUTs:

$$SM: SU(3) \times SU(2) \times U(1) \subset SU(5) \left\langle \int_{\subset SU6}^{\subset SO10} \ldots \right\rangle$$

Doublet Triplet Splitting Problem:

$$\begin{pmatrix} T^{1} \\ T^{2} \\ T^{3} \\ H^{-} \\ H^{0} \end{pmatrix}$$
 colored \Rightarrow $T - - - \begin{pmatrix} q, q \\ q \end{pmatrix}$ mediates proton decay \Rightarrow Yukawas \oint

Anna Jankowsky (in collaboration with Gia DAstrophysical Phenomenology of Light Colore PLANCK2024, 4th June 3/15

Introduction: Who is T and why is it interesting

Solutions:

• Standard approach:

$$\Rightarrow m_H$$
 light and $m_T = \mathcal{O}(M_{GUT})$

• Decoupled T: m_H and m_T light, $\Gamma \sim m_T (\frac{m_{3/2}}{M_{GUT}})^2$

 $\Rightarrow \tau > {\rm seconds:}$ Potentially interesting phenomenology ${\rm Dvali}$ 1992

 $H_u Q u^c + H_d Q d^c$

by GUT-breaking couplings vanish

JuQL+Jddcue

Mass Range of the Light Triplet

 $m_T \sim [0.3, 7]$ TeV

Mass calculated in $MSSM_T$: T included in MSSM \Rightarrow modified RGEs

$$\mu rac{\partial}{\partial \mu} g = -rac{g^3}{(4\pi)^2} b_{\mu}$$

with adjusted coefficients b_i :

$$b_i^{MSSM_T} = b_i^{MSSM} - T_F(\mathsf{Triplet})$$

Reminder:

$$b_{i}^{MSSM} = \left(\frac{11}{3} - \frac{2}{3}\right)T_{G} - \left(\frac{2}{3} + \frac{1}{3}\right)T_{F} - \left(\frac{1}{3} + \frac{2}{3}\right)T_{S}$$

with $T_{G} = \begin{cases} 0 \text{ for } U(1) \\ N \text{ for } SU(N) \end{cases}$ and $T_{S,F} = \begin{cases} \frac{3}{5}Y_{\Phi_{i}}^{2} \text{ for } U(1) \\ \frac{1}{2} & \text{ for } SU(N) \end{cases}$

Cosmological Production - Abundance

Thermal production with freeze-out at $(T_* = T_{QCD})$:

$$\begin{aligned} x_* &= \frac{m_T}{T_*} \sim [10^3, 10^4] \\ \Omega_T &= \frac{\tilde{g}_*^{\frac{1}{2}}}{g_* h_{75}^2} x_*^{\frac{3}{2}} \left(\frac{3 \times 10^{-38} cm^2}{\sigma_*} \right) \sim [10^{-7}, 10^{-6}] \end{aligned}$$

•
$$\sigma_* = 10^{-26} cm^2$$

• $\tilde{g}_* = 19.5$ and $g_* = 3$ are the total number of effectively massless d.o.f. for all particles and for the relic respectively

• $h_{75} \sim \mathcal{O}(1)$

Too small to constitute 100% of DM.. BUT...

SUSY: consider also boundstates with $ilde{\mathcal{T}}^{c}$ antiparticle of its superpartner

Cosmological Production - T-Mesons

<u>T-Meson</u>: boundstate of Triplet with another colored particle: Td, $T\tilde{T}^{c}$

At $T \sim T_{QCD}$:

T and \tilde{T} confine by picking up a d-quark ($\Omega_{Td} \sim 1$) or with each other (small abundance $\Omega_{\tau \tilde{\tau}c} \sim 10^{-14}$).

Later, at
$$T \lesssim T_{QCD}$$
:

another process is taking place, yielding a much higher abundance of $T \tilde{T}^c \ (\Omega_{T\tilde{T}^c} \sim 10^{-1} = \Omega_{DM}):$ $Td + \tilde{T}^c d^c \longrightarrow T \tilde{T}^c + dd^c$

• $T\tilde{T}^c$ -decay:

 $T \tilde{T}^{c} \longrightarrow TT^{c} + \tilde{\Phi}$ with $\tilde{\Phi}$: LSP (Lightest SUSY Particle)

Cosmological Production - T-Mesons

 $\sigma_{T\tilde{T}^c} \sim R_{Bohr}^2 ? R_{Bohr} \sim \frac{1}{\alpha_{QCD}m_T}$ cf. Redi et al. 2018 here: both constituents charged \longrightarrow el. dipole moment $\mathcal{D} = \frac{e}{m_T}$ $\Rightarrow \sigma \sim 6.4 \times 10^{-32} Z^2 (\mathcal{D} \times 10^{17})^2 cm^2$ Sigurdson et al. 2004 equating this with the extrapolated linear $\sigma(m)$ -function of:

Fig.: Direct detection bounds on dark matter cross sections. Billard et al. 2022

Cosmological Production - T-Mesons

- bound on Triplet-Mass: $m_T > 10^8 \text{ GeV} \ll 10^{16} \text{ GeV}$
- Larger than calculated in $MSSM_T$: We don't have to stick to the minimal case mass is a free parameter
- \implies Appropriate DM-candidate!

Cosmological Production - DM-candidate:

- not yet excluded by experimental bounds
- Iong-lived
- $T\tilde{T}^c$ stable?
 - **no** if $m_T \neq m_{\tilde{T}}$,

i.e model-dependent LSP (e.g. Neutralino),

 ${\cal T}$ and ${\tilde {\cal T}}$ are Next-to-LSP and NNLSP: LSP-DM

- yes for $m_T = m_{\tilde{T}}$: $T\tilde{T}^c$ -DM if $m_T > 10^8$ GeV
- Td stable?
 - ► *T*: yes (assumption in our project)
 - ► d: could decay via weak i.a.: $Td \longrightarrow Tu + e^- + \nu_e$ lifetime: $\tau_T \sim 15 \min \sim 10^3 sec$

No DM but interesting collider phenomenology (another project..)

Td-Mesons as heavy Neutrons

Td-Meson: same quantennumbers as neutron but

 $rac{10^2 {
m GeV}}{1 {
m GeV}} \lesssim rac{m_{Td}}{m_{neutron}} \lesssim rac{10^{16} {
m GeV}}{1 {
m GeV}}$

Td is a BBN-particle cf. Kusakabe et al. 2009

 \longrightarrow if it exists around us - can it be inside the atoms? Or will it be stuck inside center of the stars/planets

Conclusions

- Colored Higgs Triplet is universally predicted by Grand Unification
- This particle can be long-lived and therefore has an interesting phenomenology and cosmology

cf. Dvali 1992; Dvali 1995; Dvali, Shifman 1997; Dvali, AJ 2020

- Colored Higgs Triplet is not yet excluded by experimental bounds lead to serious Dark Matter candidates (T-Meson or LSP-DM)
- Open questions: Td-Meson is BBN particle. Can the Td-Meson hide inside our daily life matter? Or accumulate inside the core of our planet?

- 31

Anna Jankowsky (in collaboration with Gia DAstrophysical Phenomenology of Light Colore

BackUp: Abundance of Td- vs. $T\tilde{T}^c$ -Meson

Fig.: Cosmological evolution of the abundances of Q states and of QQ DM states for MQ = 12.5 TeV. The uncertain phase at $T \ge \Lambda_{QCD}$ negligibly affects the final relic abundances: the dashed curves assume non-perturbative effects before confinement estimated as $\sigma = \sigma_{QCD} \frac{\Lambda_{QCD}}{T}$; the solid curves neglect such effects. The mass abundance on the right axis is computed assuming QQ particles with mass 2MQ. Redi et al. 2018

BackUp: SO(10)-example for Decoupled Triplet Dvali 1992

To generate quark and lepton masses:

- standard version of SO(10): $g10 \otimes 16 \otimes 16$ 4
- pair of hypothetical heavy supermultiplets $144 + \overline{144}$ which couple to 45, 10 and 16:

$$W = g 16\gamma_i \overline{144}_k \otimes 45_{ik} + M_{144} \overline{144}_k \otimes 144_k + g' 16 \otimes 144_k \otimes 10_k$$
with $M_{144} \sim M_{GUT}$

Effective operator for energies below M_{GUT} :

 $\frac{gg'}{M_{144}}$ 45_{*ik*}10_{*k*} \otimes 16 γ_i 16 \Rightarrow Yukawa with Higgs Triplet suppressed

