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r < 0.032 (95 % CL)
ns = 0.9649 ± 0.0042 (68 % CL)

As = 2.099+0.296
−0.292 ⋅ 10−9 (68 % CL)
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Preheating 
- Direct couplings 
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Non-minimal coupling to 
gravity 

Geometric Reheating
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Ford ‘87
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Inflaton oscillations
Oscillations of the Ricci Scalar 

Lets consider the metric 
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Briefly description of Geometric (p)reheating
1
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ξχ2R
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Effective mass of   becomes 

tachyonic

R < 0
χ

Adapted from Figueroa, Florio, Opferkuch, Stefanek  ’23
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Inflaton oscillations
We can relate Ricci oscillations 
to the Equation of State (EoS) 

w

For potentials of the kind  ∼ ϕp

wosc ≡
pϕ

ρϕ
≃

p − 2
p + 2

Ricci scalar normalized by 
Hubble square is 

R
H2

= 3(1 − 3wosc) ≃ 6
(4 − p)
(p + 2)



Inflaton oscillations

We can relate Ricci oscillations to 
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For potential -attractors 
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Inflaton fragmentation

V(ϕ)

ϕ

··δϕk + [κ2 + (p − 1) |ϕ |p−2 ] δϕk = 0

Inflaton inhomogeneous 
perturbations  couple to 

the background 
δϕ(x, t)

Lozanov, Amin ‘17

Antusch, Figueroa, Marschall, Torrenti  ’20


 

··δϕk + [κ2 +
∂2V(ϕ)

∂ϕ2
ϕend

] δϕk = 0

Fragmentation ⟹ w = 1/3

Efficient effect 
Fragmentation time scale very 

short Nfrag ∼ 𝒪(10−2)

Inefficient effect 
Fragmentation time scale very 

long Nfrag ∼ 𝒪(1 − 10)
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Non-minimal coupled field EoM in -time 

 

In the linear regime we can focus on the  modes 
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Whenever  modes grow exponentially 

 

 is a treshold momenta

χ̃′ ′ k + ω2
k χ̃k = 0 , with ω2

k ≡ k2 + a2(ξ −
1
6 )R
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< 6ξ − 1
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Geometric (p)reheating: Non-linear regime

In linear regime  modes grow unboundedχk

Let us go back to the action 

 

and the NMC-field EoM  

 

can we get the effect of the  growth on  dynamics? 

S = ∫ d4x −g ( 1
2

m2
pR −

1
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ξRχ2 −
1
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gμν∂μχ∂ν χ −
1
2

gμν∂μϕ∂νϕ − V(ϕ, χ))
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Let us write trace of  for the NMC sector 

  

 

using trace part of Einstein’s equations  

 

where we have used 

Tμν

Tχ
μν = ∂μχ∂ν χ − gμν( 1

2
gρσ∂ρχ∂σ χ + VNMC) + ξ(Gμν + gμνgαβ ∇α ∇β − ∇μ ∇ν)χ2

Tχ ≡ gμνTχ
μν = (6ξ − 1)(∂μχ∂μχ + ξRχ2) + 6ξχ∂χVNMC − 4VNMC(χ)

m2
pR = − T
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(1 − 6ξ)⟨∂μχ∂μχ⟩ + 4⟨V⟩ − 6ξ⟨χV,χ⟩ + ⟨∂μϕ∂μϕ⟩

m2
p + (6ξ − 1)ξ⟨χ2⟩

Tϕ = ∂μϕ∂μϕ − 4Vinf(ϕ)

Geometric (p)reheating: Non-linear regime



We have now a full system of equations that characterize the 
system 
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Figueroa, Florio, Opferkuch, Stefanek ’23
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1

2a2 ⟨(∇ϕ)2⟩ + ⟨Vinf(ϕ)⟩

Eχ =
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2a2α ⟨χ′ 2⟩ +
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3ξ
a2α
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Geometric (p)reheating: Non-linear regime
We have now a full system of equations that characterize the system 

 

 

 

with 

χ′ ′ + (3 − α)( a′ 

a ) χ′ − a−2(1−α) ∇2χ = − a2α (ξRχ + V,χ)
ϕ′ ′ + (3 − α)( a′ 

a ) ϕ′ − a−2(1−α) ∇2ϕ = − a2αV,ϕ

a′ ′ 

a
+ (1 − α)( a′ 

a )
2

=
a2α

6
R

R =
[(6ξ − 1)( ⟨χ′ 2⟩

a2α − ⟨(∇χ)2⟩
a2 ) − 6ξ ⟨χV,χ⟩ + 4 ⟨V⟩ − ⟨ϕ′ 2⟩

a2α + ⟨(∇ϕ)2⟩
a2 ]

m2
p + (6ξ − 1)ξ⟨χ2⟩

With the Hubble rate given by  

  

where 

 

ℋ2 ≡ ( a′ 

a )
2

=
a2α

3m2
p

[Eϕ + Eχ]

Eϕ =
1

2a2α ⟨ϕ′ 2⟩ +
1

2a2 ⟨(∇ϕ)2⟩ + ⟨Vinf(ϕ)⟩

Eχ =
1

2a2α ⟨χ′ 2⟩ +
1

2a2 ⟨(∇χ)2⟩ + ⟨VNMC(χ)⟩ +
3ξ
a2α

ℋ2 ⟨χ2⟩ +
6ξ
a2α

ℋ ⟨χχ′ ⟩

Figueroa, Florio, Torrenti, Valkenburg ’21, ’23
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Geometric (p)reheating:
Let us have a common language

Preheating: 

Any non-perturbative 
transfer of energy 

from inflaton to any 
other sector

Reheating: 

All energy is stored in 
the daughter fields, 

and Radiation 
Domination has been 

achieved
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Geometric (p)reheating: Lattice results =2p

We anticipated already p=2 is 
inefficient.  

Lattice results confirm it
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For high M scale and largest  ξ
Eχ < Eϕ



Geometric (p)reheating: Lattice results =2p

For low M scale and largest  
 

 dilutes faster (as radiation) than  
(as matter)

ξ
Eχ ≪ Eϕ

χ ϕ
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Geometric (p)reheating: Lattice results =4p

Low NMC coupling excitation is 
stopped by expansion of the universe

Both energy densities are diluted at 
same rate. Both behave as radiation. 



Geometric (p)reheating: Lattice results =4p

Large  

 

Exponencial growth regularized by R 
decreasing as grows

ξ

R =
[(6ξ − 1)( ⟨χ′ 2⟩

a2α − ⟨(∇χ)2⟩
a2 ) − 6ξ ⟨χV,χ⟩ + 4 ⟨V⟩ − ⟨ϕ′ 2⟩

a2α + ⟨(∇ϕ)2⟩
a2 ]

m2
p + (6ξ − 1)ξ⟨χ2⟩

⟨χ2⟩

Both energy densities are diluted at 
same rate. Both behave as radiation. 
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 is dominated by homogeneous 
background.  

w



Geometric (p)reheating: Lattice results =4p

  1/3    as     w → R → 0



Geometric (p)reheating: Lattice results =4p

As we decrease  preheating 
becomes less efficient.

M



Geometric (p)reheating: Lattice results =4p

Once growth is blocked both energy 
densities scale equally (as radiation)
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Geometric (p)reheating: Lattice results =4p

As we decrease  preheating 
becomes less efficient.

M When   EoS restores to 
homogeneous oscillations.  

Eχ < Eϕ



Geometric (p)reheating: Lattice results =4p
As we decrease  preheating 

becomes less efficient.
M
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Reheating is achieved for any value of  

For any  eventually <0

M

M R̄
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For any  eventually  

Reheating is achieved in any case.

M Eχ > Eϕ



Geometric (p)reheating: Lattice results =6p



Geometric (p)reheating: Lattice results =6p

For any  eventually  

Reheating is achieved in any case.

M w → 1/3



Geometric (p)reheating: Lattice results =6p
 when  (EoS) envelope falls bellow 90% its Max 

value 
NBR ≡ w



Geometric (p)reheating: Lattice results =6p

 moment when NRH ≡ Eχ = Eϕ



Geometric (p)reheating: Lattice results =6p

We summarize  and  for allowed casesNRH TRH



Geometric (p)reheating: Lattice results =6 and p

V(χ) ≡
1
4

λχ4

We have  

Tachyonic excitation ends for  

mχ = 3λ⟨χ⟩2 + ξR

mχ = 0

χbr ≡ ⟨χ2⟩
m2

tot=0
≃

ξ
3λ

R



Geometric (p)reheating: Lattice results =6 and p

V(χ) ≡
1
4

λχ4



Geometric (p)reheating: Lattice results =6 and p

V(χ) ≡
1
4

λχ4

 moment when NRH ≡ Eχ = Eϕ
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Conclusions
-attractor models allow for low energy inflation description.α

Inflaton oscillations are deeply affected by low  scenarios 
- Oscillations are potential dominated  

- Enhances Fragmentation 

M
R̄ > 0

- p=2 does not reheat the universe 
- p=4 partially reheats the universe for large   
- Fails for low  
- p=6 reheats for any  but inflaton fragmentation kills 

homogeneous oscillations for low  
-  - self interaction prevents preheating for almost any  and  

M
M

M
M

χ λ M



Inflaton fragmentation
V(ϕ)

ϕ

··δϕk + [κ2 + (p − 1) |ϕ |p−2 ] δϕk = 0

Inflaton inhomogeneous 
perturbations  couple to 

the background 
δϕ(x, t)

Lozanov, Amin ‘17

Antusch, Figueroa, Marschall, Torrenti  ’20
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··δϕk + [κ2 + (p − 1) |ϕ |p−2 ] δϕk = 0

Inflaton inhomogeneous 
perturbations  couple to 

the background 
δϕ(x, t)

For  
Inhomogeneities grow due to 

parametric resonance 

M ≳ mp

Leading to the fragmentation 
of the homogeneous 

background 
Fragmentation ⟹ w = 1/3



Inflaton fragmentation
V(ϕ)

ϕ

Inflaton inhomogeneous 
perturbations  couple to 

the background 
δϕ(x, t)

Fragmentation ⟹ w = 1/3

For  
Inhomogeneities grow due to 

parametric resonance 

M ≳ mp

Inefficient effect 
Fragmentation time scale very 

long Nfrag ∼ 𝒪(1 − 10)

··δϕk + [κ2 + (p − 1) |ϕ |p−2 ] δϕk = 0



Inflaton fragmentation
V(ϕ)

ϕ

··δϕk + [κ2 +
∂2V(ϕ)

∂ϕ2
ϕend

] δϕk = 0

Inflaton inhomogeneous 
perturbations  couple to 

the background 
δϕ(x, t)

For  initial effective mass 
of modes is negative 

M ≪ mp

∂2V(ϕ)
∂ϕ2

ϕend

< 0

Fragmentation ⟹ w = 1/3



Inflaton fragmentation
V(ϕ)

ϕ

Inflaton inhomogeneous 
perturbations  couple to 

the background 
δϕ(x, t)

A very large range of modes  
 

grow exponentially (tachyonic 
excitation)

κ ≲ (M/mp)−1

··δϕk + [κ2 +
∂2V(ϕ)

∂ϕ2
ϕend

] δϕk = 0

Fragmentation ⟹ w = 1/3

Efficient effect 
Fragmentation time scale very 

short Nfrag ∼ 𝒪(10−2)
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Inflaton fragmentation

0 2 4 6
N

°0.25

0.00

0.25

0.50

w̄ M = 10°3mp

M = 10°2mp

M = 2 £ 10°2mp

M = 2.5 £ 10°2mp

M = 3.5 £ 10°2mp

M = 5 £ 10°2mp

M = 6 £ 10°2mp

M = 8 £ 10°2mp

M = 10°1mp

Lattice simulations for p = 6

For  competition 
between tachyonic and 
parametric resonance 

Long 

M ≳ 10−2mp

Nfrag

For  dominated 
tachyonic resonance 

Short 

M ≲ 10−2mp

Nfrag

Fragmentation kills homogeneous 
oscillations! 

Frustrates geometric geometric 
(p)reheating


