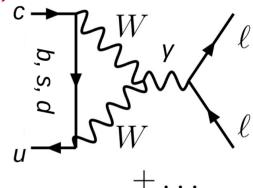


Luiz VALE SILVA

In collaboration with Svjetlana Fajfer (IJS) and Eleftheria Solomonidi (IFIC, UV – CSIC) based on PRD109 (2024) 3 (2312.07501)

04/06/2024 - PLANCK (IST, Lisbon)



Rare charm decays

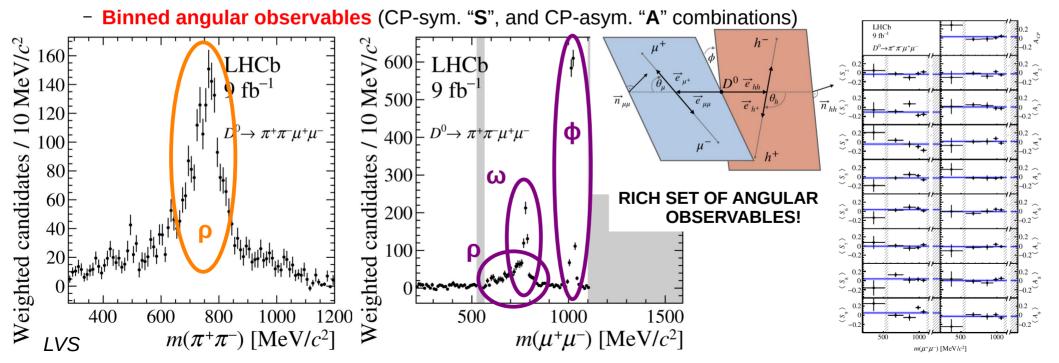
- Flavour physics of the up-type: complementary, but less well known than down-type strange (χPT₃) and bottom (HQET) sectors
- More effective GIM mechanism, CKM almost diagonal texture: non-perturbative effects play a very important role; QCD @ intermediate regime

[Fajfer, Prelovsek '06; Cappiello, Cata, D'Ambrosio '13; Feldmann, Muller, Seidel '17; De Boer, Hiller '18; Bharucha, Boito, Meaux '20...]

Large data set available, allowing for a closer look into the SM

[various charm-meson decays: LHCb, BESIII, CLEO, BaBar, etc.]

 Having control over the SM, move to observables measuring SM–NP interference: analysis of a rich set of angular observables

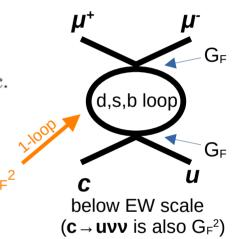

Large available dataset

Much more is known about the muonic rare decay mode

LHCb: $D^0 \rightarrow \mu^+\mu^-$ (1305.5059; 2212.11203); $D^+ \rightarrow \pi^+\mu^+\mu^-$ (1304.6365; 2011.00217);

 $D^0 \rightarrow h^+h^-\mu^+\mu^-$ (1310.2535; 1707.08377; 1806.10793; 2111.03327 - 9/fb @ 7, 8, 13 TeV); etc.

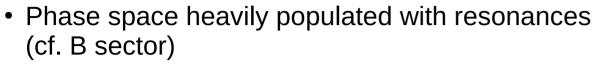
- **Differential BRs**: clear resonant peaks in $m(\pi\pi)$ and $m(\mu\mu)$

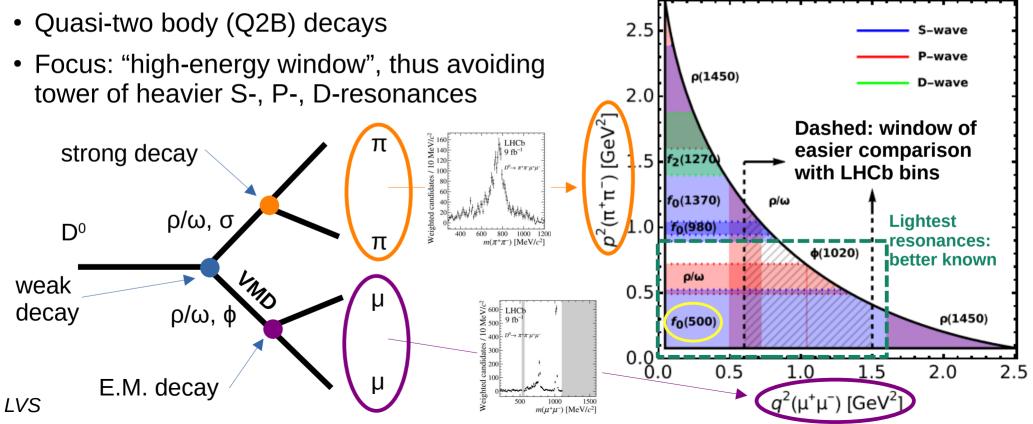

Testing Short-Distance (SD) physics

The SM effective weak interactions for c → uℓ⁺ℓ⁻ @ μ~m_c are:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{i=1}^2 C_i(\mu) \left(\lambda_d Q_i^d + \lambda_s Q_i^s \right) - \lambda_b \left(C_7(\mu) Q_7 + C_9(\mu) Q_9 + C_{10}(\mu) Q_{10} \right) \right] + \text{h.c.}$$

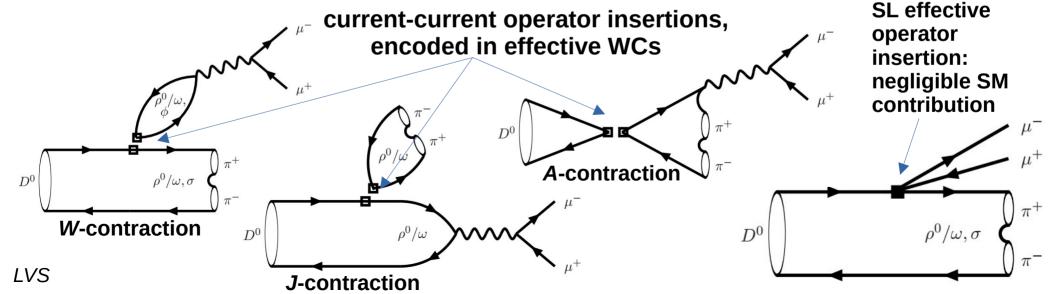
current-current (4-quark) operators: encoded in C₇eff, C₉eff


GIM & CKM: small contributions; **long-distance** contribution, $ightharpoonup C_{10}$: higher order in EW interactions G_{F^2} $Q_{10} = \frac{\alpha_{em}}{2\pi} (\overline{u}\gamma_{\mu}(\mathbf{1} - \gamma_5)c)(\overline{\ell}\gamma^{\mu}\gamma_5\ell)$

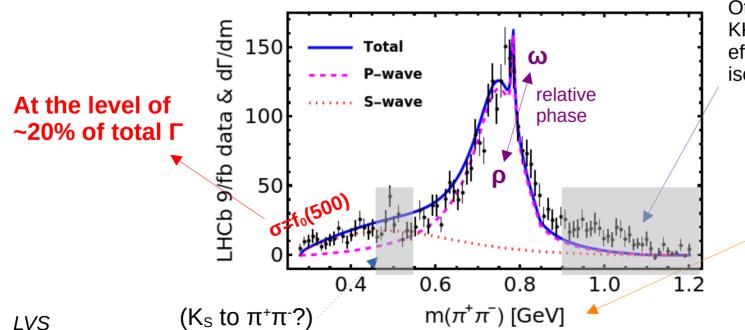


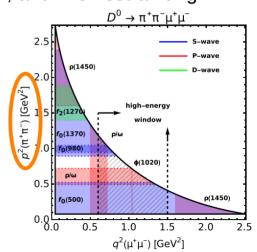
- **SM null tests**, e.g., NP in C₁₀: interference with SM Long-Distance (LD) enhances sensitivity to NP, i.e., $(C_9^{eff})^* \times C_{10}^{NP}$
- Tests of SD require good enough description of the LD part

Available phase space


 $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$

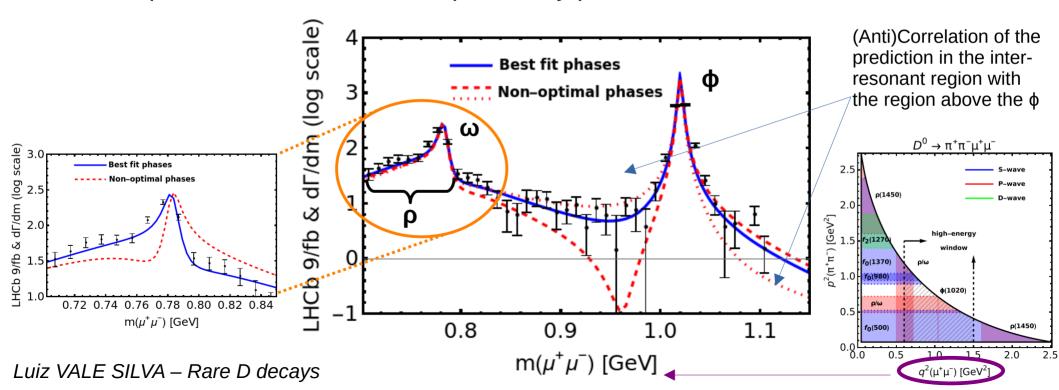
Factorization model


- Required non-perturbative inputs: **decay constants** (from ρ^0 , ω , $\phi \rightarrow e^+e^-$), **form factors** (BESIII SL D⁺ $\rightarrow \pi^+\pi^-e^+\nu_e$), **line-shapes** ($\rho^0/\omega \rightarrow \pi^+\pi^-$: <u>Gounaris-Sakurai</u>; ϕ , $\omega \rightarrow \mu^+\mu^-$: <u>Breit-Wigner</u>; σ : <u>Bugg</u>)
- Beyond naive factorization: <u>free O(1) normalization coefs, constant complex phases</u> <u>among intermediate resonances</u> (<u>no clear need for dynamics in these parameters</u>)
- We fit these free parameters from LHCb data



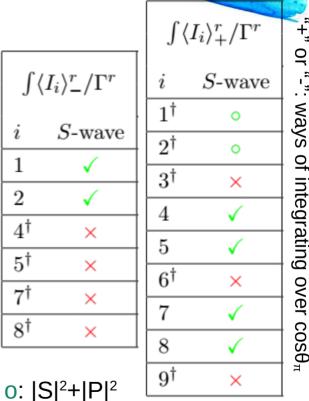
• S-wave: f₀(500) is clearly seen in present data, despite not interfering with the dominant P-wave in the BR

• Consistent with BESIII SL decay: D^+ to $\pi^+\pi^ \ell^+\nu_\ell$



Other scalar contributions $[\pi\pi \rightarrow KK \rightarrow \pi\pi$ (in)elastic rescattering effect], and P- and D-waves; also, isospin-2, and Bremsstrahlung

Fits to differential BRs

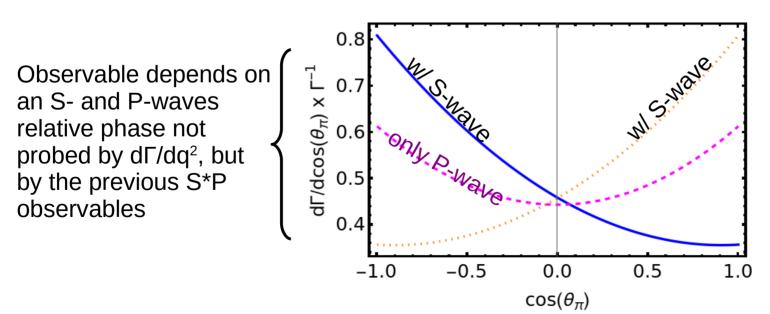

- 7
- Relative strong-phases among resonances: important impact on differential BR
- Such phase differences can be probed by present data

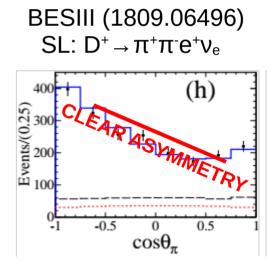
Angular observables

$$\langle I_i \rangle_- \equiv \left[\int_0^{+1} d\cos\theta_\pi - \int_{-1}^0 d\cos\theta_\pi \right] I_i , \qquad \langle I_i \rangle_+ \equiv \int_{-1}^{+1} d\cos\theta_\pi I_i$$

- LHCb measured |S|²+|P|² (i.e., o) & P-wave only (i.e., x);
 straightforward to extend their analysis to include
 S- and P-waves interference (i.e., √)
- <u>SM predictions</u>, use previous strong-phase differences ("**S**" stands for CP-symmetric, I[†]_i ≡ **S**_i, i=1, ..., 9):
 - S_2 , S_3 , $S_4 \sim$ -10% (S_1 is related to Γ and S_2)
 - S_5 , S_6 , S_7 = 0 (null tests of the SM)
 - S_7 , S_8 , $S_9 \sim 0$ (imaginary part among P-wave contributions)
- exp vs. theo: similar pattern seen in LHCb data, but large exp and theo uncertainties of O(few)% prevent better tests of the SM

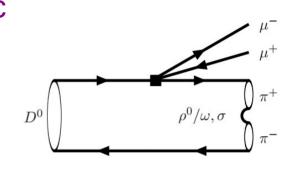
√: S*P interference


†: LHCb 2111.03327


x: only P-wave

Angular observables

 Probe S- and P-waves interference also with distinct differential quantities



Also, BaBar (1012.1810) SL: $D^+ \rightarrow K^-\pi^+e^+\nu_e$

Null tests: SM-NP interference

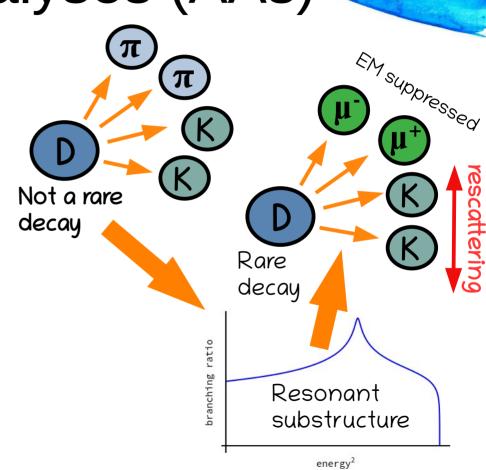

10

NP can introduce contributions to semi-leptonic contact interactions, e.g.: |V_{ub} V_{cb}* C₁₀^{NP}|<0.43
 @ 95% CL (from D⁰ → μ⁺μ⁻ LHCb, 2212.11203)
 [similar bound from pp → μ⁺μ⁻, Fuentes-M., Greljo, Camalich, Ruiz-A. '20]

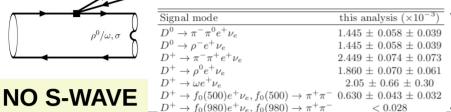
- P-wave only: **S**₅, **S**₆ can reach **O(few)**%
- Claiming NP requires exhaustive tests; similar O(few)% reach in analogous S- and P-waves interference observables
- Not possible to conclude yet about novel bounds on NP, given bounds from other decay processes & presence of extra strongphases in the theo prediction & experimental precision

Conclusions

- <u>Long-distance is dominant in rare SM modes</u>: must consider resonances for a meaningful phenomenological description
- D⁰ → π⁺π⁻μ⁺μ⁻: impact of present data (new LHCb binned analysis) on the charm sector
- Improved SM description: first quantitative assessment of the S-wave
 - Significant ingredient of the non-perturbative dynamics
 - Straightforward LHCb measurements will further probe the S-wave
 - S-wave provides novel null tests of the SM


Thanks!

BACK UP


Cover painting: **Joaquín Sorolla**, *María en la playa de Zarautz*

Amplitude Analyses (AAs)

- $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ (CLEO 1703.08505; BESIII 2312.02524), $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ (LHCb 1811.08304)
- $D^0 \rightarrow f_0(500)\rho(770)^0$ distinguished
- $D^0 \rightarrow f_0(500)\phi(1020)$ suppressed
- Cascade topologies $D^0 \rightarrow \pi^- a_1(1260)^+$, $D^0 \rightarrow K^- K_1(1270)^+$ ($\mu^+ \mu^-$ -peak at $\phi(1020)$ or $\rho(770)^0$) may give relevant contributions
- At the moment, only a qualitative use is made of AAs in the present analysis
- D to hhll 5-dimensional AA: extraction of possible NP contamination?

BESIII: D to $\pi^{-}\pi e^{+}\nu_{e}$ [1809.06496]

S-wave at the level of 25%!

Also, BESIII SL decays: D^+ to $\pi^+\pi^-\mu^+\nu_\mu$ [2401.13225]

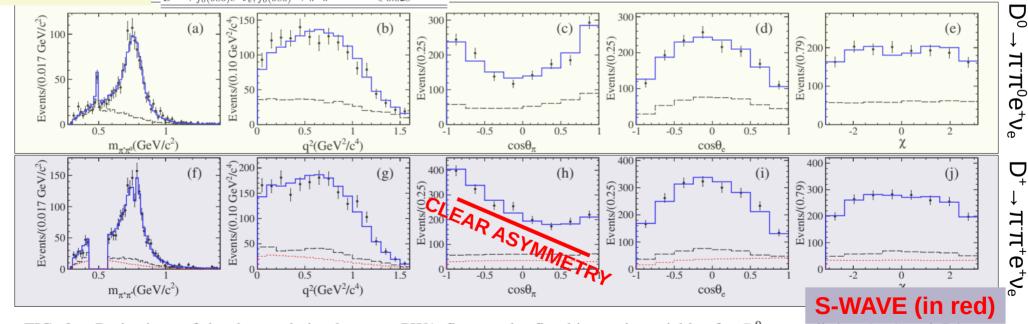
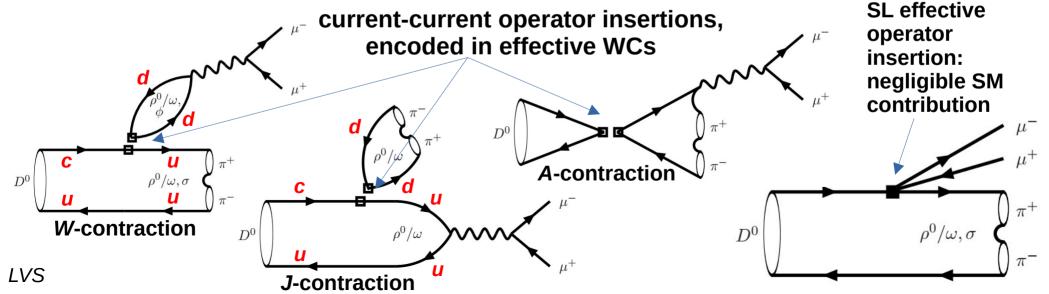



FIG. 2. Projections of the data and simultaneous PWA fit onto the five kinematic variables for $D^0 \to \pi^- \pi^0 e^+ \nu_e$ (top) and $D^+ \to \pi^- \pi^+ e^+ \nu_e$ (bottom) channels. The dots with error bars are data, the solid lines are the fits, the dashed lines show the MC simulated backgrounds, and the short-dashed lines in (f)–(j) show the component of $D^+ \to f_0(500)e^+\nu_e$

Factorization model

- More crude than QCD factorization (1/m_c, α_s), but allows a good phenomenological description of the binned data
- Distinct contributions: W-, J- and A-contractions; SM short-distance negligible
 - A-contraction: suppressed in naive factorization by light quark masses [Bauer, Stech, Wirbel '87]
 - *J*-contraction in B⁺ to $K(*)^+\ell^+\ell^-$: light flavours are CKM suppressed $V_{ub}^*V_{us}/(V_{cb}^*V_{cs})$
 - Cappiello, Cata, D'Ambrosio '13: Bremsstrahlung, @ low-m(μ⁺μ⁻)

P-wave suppressions in S_{2,3}

q^2 -bin r	Γ^r (SM)	$\frac{\Gamma_{\sigma}^{r}}{\Gamma^{r}}$ [%]	$\int \langle I_2 \rangle_+^r \times 100$	$\frac{\int \langle I_2 \rangle_{+,\sigma}^r}{\int \langle I_2 \rangle_{+}^r} [\%]$	$\int \langle I_3 \rangle_+^r \times 100$	$\int \langle I_4 \rangle^r \times 100$
$r^{(\rho: \text{sup})}$	[0.64, 0.87]	[23, 43]	[-16, -8.5]	[59, 78]	[-7.2, -4.7]	[8.3, 13]
$r^{(\phi : \inf)}$	[1.6, 1.9]	[0.3, 8]	[-11, -6.2]	[3, 45]	[-30, -26]	[36, 41]
$r^{(\phi: \text{sup})}$	[1.2, 1.3]	[0.8, 10]	[-8.7, -4.3]	[8, 53]	[-22, -19]	[26, 29]

 $+\frac{2}{3}(|\mathcal{F}_{P}|^{2}-|\mathcal{F}_{\parallel}|^{2}-|\mathcal{F}_{\perp}|^{2})|C_{9}^{\text{eff}:P}|^{2}$

$$\langle I_{1}\rangle_{+} = \frac{1}{8} \left[2|\mathcal{F}_{S}|^{2} \rho_{1,S}^{-} + \frac{2}{3} |\mathcal{F}_{P}|^{2} \rho_{1,P}^{-} + 2|\mathcal{F}_{\perp}|^{2} \rho_{1,P}^{+} \right]$$

$$+ 2|\mathcal{F}_{\parallel}|^{2} \rho_{1,P}^{-} + 2|\mathcal{F}_{\perp}|^{2} \rho_{1,P}^{+} \right]$$

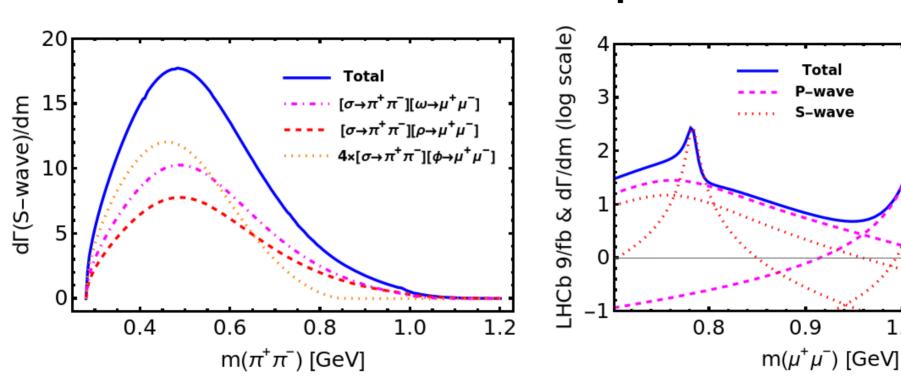
$$\xrightarrow{SM} + \frac{1}{8} \left\{ 2|\mathcal{F}_{S}|^{2} |C_{9}^{\text{eff}:S}|^{2} + \left[\frac{2}{3} |\mathcal{F}_{P}|^{2} + 2(|\mathcal{F}_{\parallel}|^{2} + |\mathcal{F}_{\perp}|^{2}) \right] |Q_{9}^{\text{eff}:P}|^{2} \right\}, \quad (64)$$

P-wave unsuppressed

$$d^{2}\Gamma/dq^{2}dp^{2} = 2\langle I_{1}\rangle_{+} - \frac{2}{3}\langle I_{2}\rangle_{+}$$

$$\langle I_{2}\rangle_{+} = -\frac{1}{8} \left[2|\mathcal{F}_{S}|^{2}\rho_{1,S}^{-} - |\mathcal{F}_{\parallel}|^{2}\rho_{1,P}^{-} - |\mathcal{F}_{\perp}|^{2}\rho_{1,P}^{+} - |\mathcal{F}_{\parallel}|^{2}\rho_{1,P}^{-}| \right]$$

$$+ \frac{2}{3} \left\{ |\mathcal{F}_{P}|^{2}\rho_{1,P}^{-} - |\mathcal{F}_{\parallel}|^{2}\rho_{1,P}^{-} - |\mathcal{F}_{\perp}|^{2}\rho_{1,P}^{+} \right\}$$


$$\xrightarrow{\text{SM}} -\frac{1}{8} \left\{ 2|\mathcal{F}_{S}|^{2}|C_{9}^{\text{eff}:S}|^{2} \right\}$$

$$(6)$$

$$\xrightarrow{\text{SM}} -\frac{1}{8} \left\{ 2|\mathcal{F}_{S}|^{2}|C_{9}^{\text{eff}:S}|^{2} \right\}$$

P-wave suppression!

Resonant components

 ϕ from S-wave: distinct m($\pi^+\pi^-$) dependence (see 2D plot displaying resonances); it helps in constraining its size

Naive factorization: ω from P-wave suppressed (simpler (BW) description of ρ (from P-wave) and ω (from S-wave))

1.0

1.1

Parameters extracted from the fit

- 6 norm. parameters (B's, a_{ω} , $a_{s}(0)$),
 - 3 strong phase differences (ϕ_{ω} , $\Delta_{1,4}$)
- Overall normalization from LHCb BR [1707.08377]
- Expected from factorization
- Suppression also seen in the hadronic decay mode $D^0 \to K^+K^-\pi^+\pi^-$
- In the ballpark of BESIII SL
- Large impact in q² distribution

 $(A_1(0): FF normalization)$

$$0.8 \lesssim A_1(0) B_{\rho^0} \lesssim 1.2$$

$$0.8 \lesssim B_{\phi}/B_{\rho^0} \lesssim 0.9$$
,

$$0.9 \lesssim B_{\omega}^{(S)}/B_{\rho^0}^{(S)} \lesssim 1.1$$
,

$$0.05 \lesssim B_{\phi}^{(S)}/B_{\rho^0}^{(S)} \lesssim 0.27$$
.

$$0.001 \lesssim a_{\omega} \lesssim 0.005$$
,

$$1.1 \pi \lesssim \phi_{\omega} \lesssim 1.7 \pi$$
,

$$39 \text{ GeV} \lesssim \frac{a_S(0)}{A_1(0)} \lesssim 62 \text{ GeV}$$

$$0.5\,\pi \lesssim \Delta_1 \lesssim 0.9\,\pi$$

$$0.2\,\pi \lesssim \Delta_4 \lesssim 0.5\,\pi$$

Angular observables

The angular distribution of $D^0 \to h^+h^-\mu^+\mu^ (h=\pi,K)$ decays can be written as [8]

$$\frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} = \frac{1}{2\pi} \left[\sum_{i=1}^{9} c_{i}(\theta_{\mu}, \phi) I_{i}(q^{2}, p^{2}, \cos \theta_{h}) \right], \tag{5}$$

with the angular basis, c_i , defined as

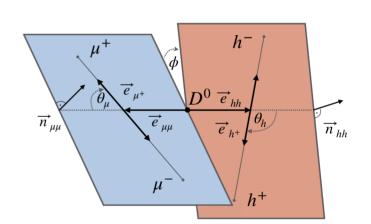
$$c_{1} = 1, c_{2} = \cos 2\theta_{\mu}, c_{3} = \sin^{2}\theta_{\mu}\cos 2\phi, c_{4} = \sin 2\theta_{\mu}\cos\phi, c_{5} = \sin\theta_{\mu}\cos\phi,$$

$$c_{6} = \cos\theta_{\mu}, c_{7} = \sin\theta_{\mu}\sin\phi, c_{8} = \sin 2\theta_{\mu}\sin\phi, c_{9} = \sin^{2}\theta_{\mu}\sin 2\phi.$$
(6)

The normalised and integrated observables $\langle I_i \rangle$ are defined as

$$\langle I_{2,3,6,9} \rangle = \frac{1}{\Gamma} \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \int_{p_{\min}^2}^{p_{\max}^2} dp^2 \int_{-1}^{+1} d\cos\theta_h I_{2,3,6,9}$$

$$\langle I_{4,5,7,8} \rangle = \frac{1}{\Gamma} \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \int_{p_{\min}^2}^{p_{\max}^2} dp^2 \left[\int_0^{+1} d\cos\theta_h - \int_{-1}^0 d\cos\theta_h \right] I_{4,5,7,8}$$
(10)

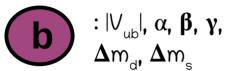

The observables reported in the Letter are the CP averages, $\langle S_i \rangle$, and asymmetries, $\langle A_i \rangle$, defined as

$$\langle S_{i} \rangle = \frac{1}{2} \left[\langle I_{i} \rangle + (-) \langle \overline{I}_{i} \rangle \right] ,$$

$$\langle A_{i} \rangle = \frac{1}{2} \left[\langle I_{i} \rangle - (+) \langle \overline{I}_{i} \rangle \right] ,$$
(11)

for the *CP*-even (*CP*-odd) coefficients $\langle I_{2,3,4,7} \rangle$ ($\langle I_{5,6,8,9} \rangle$).

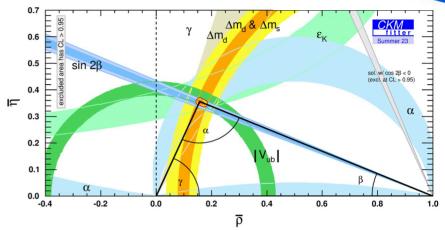
See LHCb (2111.03327); De Boer, Hiller '18



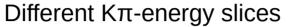
$$\cos \theta_{\mu} = \vec{e}_{\mu\mu} \cdot \vec{e}_{\mu^{+}},$$
$$\cos \theta_{h} = \vec{e}_{hh} \cdot \vec{e}_{h^{+}}.$$

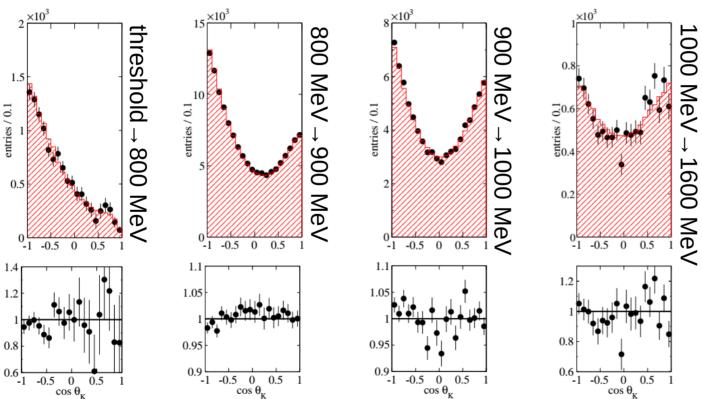
$$\cos \phi = \vec{n}_{\mu\mu} \cdot \vec{n}_{hh},$$

$$\sin \phi = [\vec{n}_{\mu\mu} \times \vec{n}_{hh}] \cdot \vec{e}_{hh},$$


CP violation in the charm sector

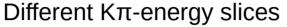
 CKM: a <u>single</u> CP-odd phase must be responsible for CPV phenomena in all quark flavour sectors of the SM

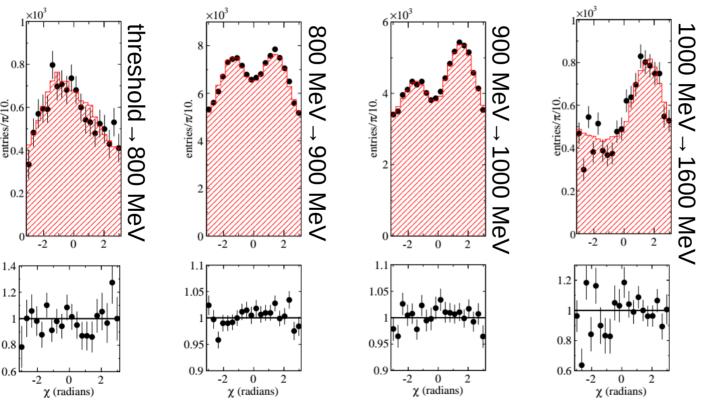



[CKMfitter Collaboration: Charles, Deschamps, Descotes-G., Monteil, Orloff, Qian, Tisserand, Trabelsi, Urquijo, LVS]

- Direct CP violation discovered by LHCb (2019) in D⁰ → h⁺h⁻
- Unclear yet whether this can be explained within the SM [Khodjamirian, Petrov '17; Li, Lu, Yu '19; Soni '19; Cheng, Chiang '19; Pich, Solomonidi, LVS '23; Lenz, Piscopo, Rusov '23; ...]
- Rare charm-meson decays consistent with no CP violation:
 - A₁, ..., A₂ ~ 0 (small CP violation)

BaBar SL decays: D⁺ to K⁻ π ⁺ e⁺ ν _e [1012.1810]

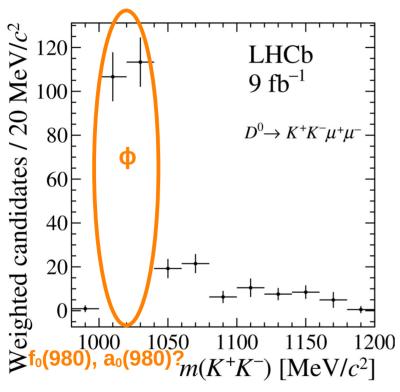




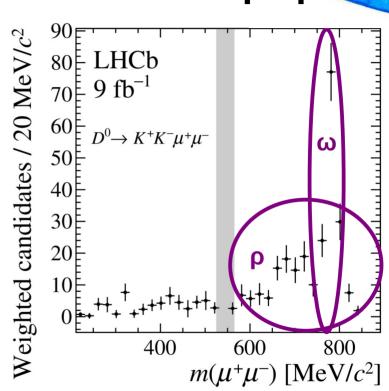
S- and P-waves interference produces $cos(\theta_K)$ term; "P-wave only" gives a $cos^2(\theta_K)$ term

S-wave from $K_0*(800)=\kappa$ and $K_0*(1430)$

BaBar SL decays: D⁺ to $K^-\pi^+$ e⁺ ν_e [1012.1810]



S- and P-waves interference produces $\sin(\chi)$ term, and also $\cos(\chi)$ term; "P-wave only" gives a $\cos(2\chi)$ term


S-wave from $K_0*(800)=\kappa$ and $K_0*(1430)$

Related channel: D⁰ → K⁺K⁻µ⁺µ⁻

Luiz VALE SILVA – Rare D decays

Dedicated analysis still needed; having $f_0(980)$, $a_0(980)$ and ϕ close may produce an interesting S- and P-waves interference effect

Outlook

- SL (hadronic) modes: quantitative (qualitative) information
- Currently only looking at a fraction of the allowed phase space
- Long-term goal (dreaming out loud): more intensive data-driven approach
 - (i) data on semi-leptonic decay modes
 - D to ππℓν_ℓ
 - (ii) data on alternative rare decay modes, including radiative ones
 - D to KK\(\ell\), D to hhy, etc.
 - (iii) data on purely hadronic decay modes
 - D to ππππ, D to ππΚΚ, etc.
 - (iv) data on rescattering of final states
 - ππ to KK