Black Hole Quadratic Quasi-Normal Modes

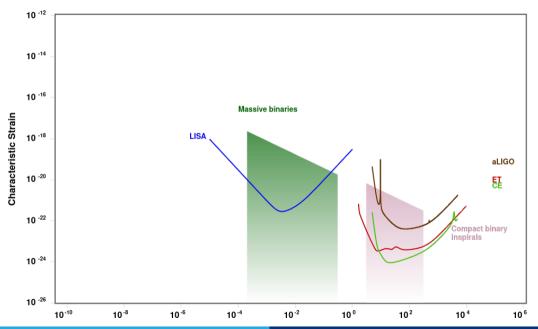
Their Frequencies and Amplitudes

Bruno Bucciotti¹

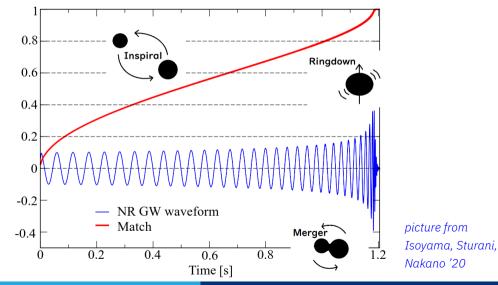
Scuola Normale Superiore, Pisa

¹with Leonardo Juliano, Adrien Kuntz and Enrico Trincherini

Bruno Bucciotti



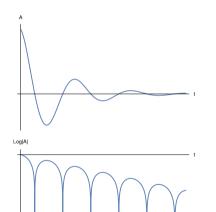
Inspire-Merger-Ringdown



Quasi-Normal Modes

at Linear Order

ℓ	п	Frequency
2	0	0.37367 + 0.08896 <i>i</i>
	1	0.34671 + 0.27391 <i>i</i>
	2	0.30105 + 0.47828 <i>i</i>
	3	0.25150 + 0.70515i
3	0	0.59944 + 0.09270 <i>i</i>
	1	0.58264 + 0.28130 <i>i</i>
	2	0.55168 + 0.47909 <i>i</i>
	3	0.51196 + 0.69034i
4	0	0.80918 + 0.09416 <i>i</i>
	1	0.79663 + 0.28433 <i>i</i>
	2	0.77271 + 0.47991 <i>i</i>
	3	0.73984 + 0.68392 <i>i</i>



Black Hole Perturbation Theory

Metric Ansatz and Einstein Equations

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \epsilon h_{\mu\nu}^{(1)} + \epsilon^2 h_{\mu\nu}^{(2)}$$

$$h^{(1)} \qquad \qquad h_{\mu\nu} = \begin{pmatrix} h_{tt} & h_{tr} & [& -] \\ & h_{rr} & [& -] \\ & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h_{rr} & h_{rr} & h_{rr} \\ & & & h$$

Einstein Equations in vacuum

In Regge-Wheeler gauge

$$G^{(\texttt{l})}_{\mu
u}ig[\epsilon\,h^{(\texttt{l})}ig]=0$$

$$h_{t+} = h_{r+} = h_{+} = h_{-} = 0 \qquad \qquad G^{(1)}_{\mu\nu} \left[\epsilon^2 \, h^{(2)} \right] = -G^{(2)}_{\mu\nu} \left[\epsilon \, h^{(1)}, \epsilon \, h^{(1)} \right] \equiv \epsilon^2 S_{\mu\nu} \left[h^{(1)}, h^{(1)} \right]$$

Can take eigenstates of angular momentum, frequency, and parity.

for Quadratic Order Modes

Before doing any computation, let's exploit symmetry.

Couple two linear modes of given frequencies $\omega_{1,2}$, angular momenta $(\ell_{1,2}, m_{1,2})$, parity $P_{1,2} = 0, 1$

• $\cos \omega_1 t e^{-\gamma_1 t} \cos \omega_2 t e^{-\gamma_2 t} \propto (\cos(\omega_1 + \omega_2)t + \cos(\omega_1 - \omega_2)t)e^{-(\gamma_1 + \gamma_2)t}$

•
$$\ell = |\ell_1 - \ell_2|, \dots, \ell_1 + \ell_2; \quad m_1 + m_2 = m_1$$

•
$$(-1)^{\ell_1+P_1}(-1)^{\ell_2+P_2} = (-1)^{\ell+P_2}$$

But what are the **amplitudes** of the quadratic modes?

Black Hole PT

Master Scalars, Linear Order

The two physical d.o.f. of the graviton are captured by master scalars

$$\psi_{+} = \frac{2r}{\lambda_{1}^{2}} \left[r^{-2}\tilde{h}_{\circ} + \frac{2}{\Lambda(r)} \left(f^{2}\tilde{h}_{rr} - rf(r^{-2}\tilde{h}_{\circ})' \right) \right]$$

$$\psi_{-} = \frac{2r}{\mu^{2}} \left[\partial_{r}\tilde{h}_{t-} + \frac{M}{r^{2}f(r)} (\tilde{h}_{t-} - \tilde{h}_{r-}) - \partial_{t}\tilde{h}_{r-} - \frac{2}{r}\tilde{h}_{t-} \right]$$

which obey the Regge-Wheeler and Zerilli equations

$$\frac{\mathrm{d}\psi_{\pm}}{\mathrm{d}r_*^2} + \omega^2\psi_{\pm} - V_{\pm}(r)\psi_{\pm} = \mathbf{0}, \quad r_* = r + \ln(1 - 2M/r)$$

These equations are solved numerically with QNM b.c. $\psi \sim Ae^{\pm i\omega r_*}$ Knowing ψ_{\pm} , we can reconstruct the metric $h_{\mu\nu} \longleftrightarrow \psi_{\pm}$

Black Hole PT

Master Scalars, Quadratic Order

Putting together the master scalars $\psi^{(2)}_{\pm}$ using $h^{(2)}_{\mu\nu}$, they now obey

$$\frac{\mathrm{d}\psi_{\pm}^{(2)}}{\mathrm{d}r_{*}^{2}} + \omega^{2}\psi_{\pm}^{(2)} - V_{\pm}(r)\psi_{\pm}^{(2)} = S[\psi_{\pm}^{(1)}, \psi_{\pm}^{(1)}] \leftarrow \text{ Source term}$$

[Hui et Al. '22; Spiers,Pound,Wardell '23]

But $\psi^{(2)}_{\pm}$ diverge at large r as $\psi^{(2)}_{\pm} \sim r^2 \, e^{i\omega r}$, so for them

- ► QNM b.c. cannot be imposed
- \blacktriangleright Cannot extract a finite amplitude \mathcal{A}

We expect these divergences to be due to a *poor choice* of master scalars. [Ioka, Nakano '07; Brizuela et Al. '09]

Resolution

The Good Master Scalars

We perform a master scalar redefinition where $\Delta(r)$ is a function to be determined

$$\Psi = \psi^{(2)} + \Delta(r)\psi^{(1)}\psi^{(1)}, \quad \Delta(r) = c_2r^2 + c_1r$$

The RWZ equation for Ψ gets a modified source \mathfrak{S}

$$\frac{\mathrm{d}\Psi_{\pm}}{\mathrm{d}r_{*}^{2}} + \omega^{2}\Psi_{\pm} - V_{\pm}(r)\Psi_{\pm} = \mathfrak{S} = \mathcal{S}[\psi_{\pm}^{(1)}, \psi_{\pm}^{(1)}] + \left(\frac{\mathrm{d}}{\mathrm{d}r_{*}^{2}} + \omega^{2} - V_{\pm}(r)\right) \left(\Delta(r)\psi^{(1)}\psi^{(1)}\right)$$

and we design $\Delta(r)$ so that $\Psi_{\pm} \sim \mathcal{A}_{\pm}^{(2)} e^{i\omega r}$ at large r.

Now we can impose QNM b.c. and extract $\mathcal{A}^{(2)}$ by numerically integrating.

Physical Waveform

We can now reconstruct the metric $h_{\mu\nu}^{(2)}$.

Here is one component when $\mathsf{Even}\times\mathsf{Odd}\to\mathsf{Odd}$

$$h_{r-}^{(2)} \stackrel{r \to \infty}{\sim} \left(-\frac{i\omega}{2} r \mathcal{M} \mathcal{A}_{-}^{(2)} e^{i\omega r_{*}} + ir \omega \frac{\Delta_{+-;-}(r)\psi_{+}^{(1)}(r)\psi_{-}^{(1)}(r)}{2f(r)} \right) + \frac{2r^{2}}{\mu_{\ell}^{2}} S_{r-}$$

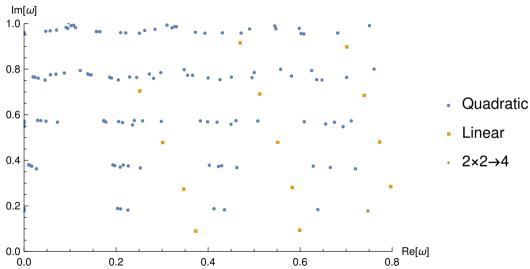
To extract the physical waveform, we go to asymptotically flat gauge. For the $+, \times$ polarizations

$$\mathfrak{h}^{(2)}_{+} - i\mathfrak{h}^{(2)}_{\times} = \frac{M}{r} \sum \mathcal{R}_{\ell m \mathcal{N}} e^{-i\omega_{\ell \mathcal{N}}(r_{*}-t)} - 2Y^{\ell m}(\theta,\phi)$$

and $\mathcal{R}_{\ell m \mathcal{N}}$ is computed.

Conclusions

Quadratic Frequencies



Conclusions

Quadratic Amplitudes



Conclusions

- ▶ We confirmed \mathcal{R} of 2, 2 × 2, 2 → 4, 4 and 2, 2 × 3, 3 → 5, 5 against existing NR simulations
- Trusting GR, we offer a more detailed model of ringdown for the same number of free parameters (the linear amplitudes)
- ► Detection prospects of Quadratic QNMs (see 2403.09767): ground detectors should see O(10)/y, LISA O(10²)/y

Thank you