FROM DARK MATTER TO NEUTRINO MASSES

via a recent phase transition

Maya Hager Max-Planck-Institut für Kernphysik, Heidelberg, Germany maya.hager@mpi-hd.mpg.de

In collaboration with Florian Goertz, Giorgio Laverda & Javier Rubio Based on 2306.XXXX

> June 4, 2024 **Planck Conference, Lisboa**

Content...

... of the talk:

- Motivation
- Model \bullet
- Neutrino Spectrum
- Revised Parameter Space
- Phase Transition
- **Conclusion & Outlook**

Planck24, Lisboa

... of the Standard Model:

Open Questions of SM

Why are neutrinos massive?

Seesaw Mechanism (via heavy ν_R)

Planck24, Lisboa

What is the nature of dark matter?

Sterile Neutrinos (keV masses)

+ many more ideas...

can they be one and the same?

Active Sterile Mixing

 $(\nu_L)_{\alpha} = U_{\alpha i} \nu_i + U_{\alpha I} N_I^c$ where active-sterile mixing $U_{\alpha I} \approx \frac{m_D}{m_I}$

- neutrino masses constrained by oscillation measurements
 → lower bound on mixing
- radiative decay $N \rightarrow \nu \gamma$ constrained by X-ray observations \rightarrow upper bound on mixing

Planck24, Lisboa

add heavier seesaw neutrinos

 \rightarrow lowers allowed mixing

 \rightarrow increases allowed mixing

Active Sterile Mixing

 $(\nu_L)_{\alpha} = U_{\alpha i} \nu_i + U_{\alpha I} N_I^c \text{ where active-sterile mixing } U_{\alpha I} \approx \frac{v \epsilon Y_{\alpha I}}{m_I}$

- neutrino masses constrained by oscillation measurements \rightarrow lower bound on mixing
- today • radiative decay $N \rightarrow \nu \gamma$ constrained by X-ray observations \rightarrow upper bound on mixing

 e^{\mp}

 U_{e4}

N

 $\sim \gamma$

 u_e

 W^{\pm}

Planck24, Lisboa

add time dependence!

 $\epsilon(t)$

keep keV sterile neutrinos as DM candidate & as seesaw neutrinos

from DM dense objects (10⁴ to 10¹⁰ ly away)

• In the recent universe, the potential of the spectator scalar field becomes tachyonic \Rightarrow field starts rolling \Rightarrow expectation value $\langle S \rangle (t > t_{SB}) \neq 0$

6

 Active neutrino masses are induced via dim5-operator + seesaw type I $\hat{M} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}$

 $\frac{J}{\Lambda} \bar{L}_{\alpha} \tilde{H} \nu_{R1}$ $y_{\alpha 1} \overline{\Lambda}_{S}$ $y_{\alpha 2} \frac{S}{\Lambda_{S}} \bar{L}_{\alpha} \tilde{H} \nu_{R2}$

- Majorana mass matrix: $M_R = \begin{pmatrix} \epsilon^2 I \\ M \end{pmatrix}$
- $m_{DM} = M_{12} = O(\text{keV})$ mass effectively unchanged once $\langle S \rangle \neq 0$
- production mechanism: not specified
- lifetime requires $\Lambda_S \gtrsim$ a few $\times 10^4$ GeV $y \sim \frac{v_{EW}}{\Lambda}$ and $\Gamma \sim \frac{1}{16} - \frac{1}{16} \left(\frac{v_{EW}}{\Lambda}\right)$ $16\pi m_{DM}$ Λ_S ' Λ_S

Dark Matter

$$\begin{array}{cc} M_{11} & M_{12} \\ M_{12} & \epsilon^2 M_{22} \end{array} \end{array} \quad \text{with} \quad \epsilon = \frac{\langle S \rangle}{\Lambda_S} \lll 1 \quad \text{and} \quad \begin{array}{c} Q_N(\nu_{R1}) = - \\ Q_N(\nu_{R2}) = - \end{array}$$

Maya Hager

hep-ph/0103065, hep-ph/0511136

• Yukawa couplings $\mathcal{O}(10^{-2} - 10) \Longrightarrow$ correct spectrum for $\epsilon \sim 10^{-10} \leftarrow \frac{\langle S \rangle}{\Lambda_S}$ $y_{eff} = y \epsilon$

Neutrino Spectrum

Casas-Ibarra parametrisation with best-fit values & $m_s \in [0.4, 50]$ keV

NuFIT 5.3 (2024)

		Normal Ord	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.3)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
without SK atmospheric data	$\sin^2 heta_{12}$	$0.307\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.344$	$0.307\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.344$
	$ heta_{12}/^{\circ}$	$33.66\substack{+0.73 \\ -0.70}$	$31.60 \rightarrow 35.94$	$33.67\substack{+0.73 \\ -0.71}$	$31.61 \rightarrow 35.94$
	$\sin^2 heta_{23}$	$0.572\substack{+0.018\\-0.023}$	$0.407 \rightarrow 0.620$	$0.578\substack{+0.016\\-0.021}$	0.412 ightarrow 0.623
	$ heta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$
	$\sin^2 heta_{13}$	$0.02203\substack{+0.00056\\-0.00058}$	$0.02029 \to 0.02391$	$0.02219\substack{+0.00059\\-0.00057}$	$0.02047 \rightarrow 0.02396$
	$ heta_{13}/^{\circ}$	$8.54_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.90$
	$\delta_{ m CP}/^{\circ}$	197^{+41}_{-25}	$108 \rightarrow 404$	286^{+27}_{-32}	$192 \rightarrow 360$
	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.41_{-0.20}^{+0.21}$	6.81 ightarrow 8.03	$7.41^{+0.21}_{-0.20}$	$6.81 \rightarrow 8.03$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.511^{+0.027}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498^{+0.032}_{-0.024}$	$-2.581 \rightarrow -2.409$

Parameter Space

Planck24, Lisboa

- NO: blue
- IO: green
- SC: standard case
- lifetime: $N \rightarrow 3\nu$ $N \rightarrow 3\nu$
- X-ray: $N \rightarrow \gamma \nu$
- TRISTAN: KATRIN upgrade • arXiv:1810.06711

TRISTAN regime excluded!

Planck24, Lisboa

no problem with DM overproduction: $U_{eN} = 0$ in early universe

- NO: blue
- IO: green
- SC: standard case
- lifetime: $N \rightarrow 3\nu$ $^{N \rightarrow \Im \nu}$
- X-ray: $N \rightarrow \gamma \nu$
- TRISTAN: KATRIN upgrade arXiv:1810.06711

BM1: $10^{-4}H_0$ ago : $V(S) \propto -\mu^2 S^2$ with $\mu = 5 \times 10^5 H_0$ **BM2**: $10^{-5}H_0$ ago : $V(S) \propto -\mu^2 S^2$ with $\mu = 10^7 H_0$

Planck24, Lisboa

Phase Transition

$$H_0 \sim 10^{6}$$

BM1: ~ 10⁶ yea
BM2: ~ 10⁵ yea

$$\frac{1}{2}\mu^2(t)S^2 + V_{\rm HO}(S)$$

 $higher order operators$

• from $t \ge t_{SB}$: $V(S) \propto -\mu_{SB}^2 S^2$ \Rightarrow field evolves as $S(t) \propto \exp(t)$

• $\log_{10} \frac{\langle S \rangle}{H_0} \in [36, 50] \Rightarrow \text{correct}$ neutrino spectrum possible 🗸

possible incarnation

- prototypical cosmological phase transition \rightarrow see talk by Javier Rubio on Thursday
- *R* tracks Hubble parameter and acts as "cosmological clock"
- maximal value for μ_{SB}^2 to remain stable during radiation domination \rightarrow **BM1**
- open question: small scale effects?

Conclusion & Outlook

- SM + 2 RH neutrinos + spectator scalar field to explain \Rightarrow keV sterile neutrino DM \checkmark \Rightarrow origin of neutrino masses \checkmark
- cosmologically massless neutrinos, gain time-dependent mass recently
- probable @ KATRIN/TRISTAN experiment 10-12 & not in conflict with X-ray bounds
- future: diffuse supernova neutrino background (far) future: will observe DM decay

de Gouvêa et al. (2022)

Back-Up Slides

Expectation Value of S

Planck24, Lisboa

Variation of Constants + 5th Forces

singlet:
$$\frac{S}{\Lambda_S} \frac{S^c}{\Lambda_S}$$
 can be added

$$\Rightarrow \begin{cases} m_f \to m_f \left(1 \pm \epsilon(t)^2\right) \\ m_V^2 \to m_V^2 \left(1 \pm \epsilon(t)^2\right) \\ \alpha \to \frac{\alpha}{1 \mp \epsilon(t)^2} \\ & \checkmark \\ \neg -\frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} \left(1 \pm \epsilon(t)^2\right) \end{cases}$$

Planck24, Lisboa

 \mathcal{L}

ed to any operator

natural nuclear reactor Oklo constrains $d \ln \alpha / d \ln a \le (2.5 \pm 3.5) \times 10^{-9}$

5th force searches more sensitive to terms linear in $S \Rightarrow$ here no problem

Higgs portal assumed to be negligible \checkmark

We can define

$$d_m^{-1} = \text{diag}(0, 1/m2, 1/m3) \text{ (NO)} / d_m^{-1} = \text{diag}(1/m1, 1/m2)$$

and use that

$$(\sqrt{d_m}\sqrt{d_m^{-1}})^T(\sqrt{d_m}\sqrt{d_m^{-1}}) = \text{diag}(0,1,1) \equiv R_{NO}^T R_{NO}$$
$$(\sqrt{d_m}\sqrt{d_m^{-1}})^T(\sqrt{d_m}\sqrt{d_m^{-1}}) = \text{diag}(1,1,0) \equiv R_{IO}^T R_{IO}$$

to find the Yukawa matrix Y^4

$$Y = \frac{1}{\epsilon v} \left(U_R^* \sqrt{d_M} R \sqrt{d_m} U^\dagger \right)^T$$

in terms of known parameters, where we use the best fit values for masses, mixings, and CP violation from [27]. The matrices R have the form

$$R_{NO} = \begin{pmatrix} 0 & \cos z & \xi \sin z \\ 0 & -\sin z & \xi \cos z \end{pmatrix} \text{ and } R_{IO} = \begin{pmatrix} \cos z & \xi \sin z \\ -\sin z & \xi \cos z \end{pmatrix}$$

where z is complex, and $\xi = \pm 1$.

Planck24, Lisboa

hep-ph/0511136 **Casas-Ibarra Parametrisation**

here: slightly different conventions than original Casas-Ibarra.

(m2, 0) (IO)

 M_R can be diagonalised as

$$d_M = U_R^T M_R U_R \,,$$

which can be inverted to find

$$M_R^{-1} = U_R \, d_M^{-1} \, U_R^T = \left(\sqrt{d_M^{-1}} U_R^T\right)^T \left(\sqrt{d_M^{-1}} U_$$

with

$$U_R = \begin{pmatrix} i\cos\theta & \sin\theta\\ -i\sin\theta & \cos\theta \end{pmatrix}$$

in the case of two RH neutrinos, where $\theta = \pi/4 + \mathcal{O}(\epsilon^2) \approx \pi/4$.

(2.13)

hep-ph/0103065

Possible UV-Completion

- like Froggatt-Nielsen mechanism (only for neutrinos)
- heavy vector-like messenger fermions F
- scale of new physics set by mass of Fand coupling Y:

$$\Lambda_S = \frac{M_F}{Y}$$

Feynman diagram before integrating out VL fermions:

C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B 147 (1979) 277.

Х-	Ray

	Search	Object	Reason
	[53]	Milky Way	$40 \text{ keV} \le m_s$
	[54]	Milky Way	$40 \text{ keV} \le m_s$
	[55]	dwarf Ursa Minor	$d\sim 2.3 \times 10^5 \; { m lyrs}$
	[56]	dwarf Draco	$d\sim 2.6 imes 10^5$ lyrs
	[57]	dwarf satellite galaxies $+$ M31	$d\gtrsim { m a~few} imes 10^5 { m ~lyrs}$
	[58]	dwarf spheroidal galaxies	$d\gtrsim { m a~few} imes 10^5 { m ~lyrs}$
	[59]	galaxy clusters	$d\gtrsim 5~{ imes}10^5~{ m lyrs}$
	[<mark>60</mark>]	M31	$d \sim 2.5 \times 10^6$ lyrs
	[61]	M31	$d \sim 2.5 \times 10^6$ lyrs
	[62]	Coma & Virgo cluster	$d \gtrsim a \text{ few } \times 10^7 \text{ lyrs}$
	[63, 64]	Perseus cluster	$d \sim 2.4 \times 10^8$ lyrs
	[65]	Bullet cluster	$d \sim 3.7 \times 10^9$ lyrs
	[<mark>66</mark>]	XRB	see text
	[67]	XRB	see text
[68]		XRB	see text
	[69]	XRB	see text
	[70]	XRB	see text
	[71]	CXB	see text
	[72]	CXB	see text
	[73]	galactic center	model-dependent

Table 1: X-Ray limits that can be softened by BM1 and BM2.

Search	Object	Where
[74]	galactic center	$m_s = 5 - 16 \text{ keV}$
[75]	Milky Way	$m_s = 6 - 40 \text{ keV}$
[76]	galactic bulge	$m_s = 6 - 40 \text{ keV}$
[77]	galactic bulge	$m_s = 10 - 40 \text{ keV}$
[78]	galactic center & MW halo	$m_s = 20 - 50 \text{ keV}$

Table 2: X-Ray limits that can be softened by BM2, but not by BM1.

- [53] A. Boyarsky, D. Malyshev, A. Neronov and O. Ruchayskiy, Constraining DM properties with SPI, Mon. Not. Roy. Astron. Soc. 387 (2008) 1345 [0710.4922].
- [54] H. Yuksel, J.F. Beacom and C.R. Watson, Strong Upper Limits on Sterile Neutrino Warm Dark Matter, Phys. Rev. Lett. 101 (2008) 121301 [0706.4084].
- [55] M. Loewenstein, A. Kusenko and P.L. Biermann, New Limits on Sterile Neutrinos from Suzaku Observations of the Ursa Minor Dwarf Spheroidal Galaxy, Astrophys. J. 700 (2009) 426 [0812.2710].
- [56] S. Riemer-Sorensen and S.H. Hansen, Decaying dark matter in Draco, Astron. Astrophys. 500 (2009) L37 [0901.2569].
- [57] S. Horiuchi, P.J. Humphrey, J. Onorbe, K.N. Abazajian, M. Kaplinghat and S. Garrison-Kimmel, Sterile neutrino dark matter bounds from galaxies of the Local Group, Phys. Rev. D 89 (2014) 025017 [1311.0282].
- [58] D. Malyshev, A. Neronov and D. Eckert, Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies, Phys. Rev. D 90 (2014) 103506 [1408.3531].
- [59] D. Iakubovskyi, E. Bulbul, A.R. Foster, D. Savchenko and V. Sadova, Testing the origin of ~3.55 keV line in individual galaxy clusters observed with XMM-Newton, 1508.05186.
- [60] K.C.Y. Ng, B.M. Roach, K. Perez, J.F. Beacom, S. Horiuchi, R. Krivonos et al., New Constraints on Sterile Neutrino Dark Matter from NuSTAR M31 Observations, Phys. Rev. D 99 (2019) 083005 [1901.01262]
- [61] C.R. Watson, J.F. Beacom, H. Yuksel and T.P. Walker, Direct X-ray Constraints on Sterile Neutrino Warm Dark Matter, Phys. Rev. D 74 (2006) 033009 [astro-ph/0605424].
- [62] A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters, Phys. Rev. D 74 (2006) 103506 [astro-ph/0603368].
- [63] T. Tamura, R. Iizuka, Y. Maeda, K. Mitsuda and N.Y. Yamasaki, An X-ray Spectroscopic Search for Dark Matter in the Perseus Cluster with Suzaku, Publ. Astron. Soc. Jap. 67 (2015) 23 [1412.1869].
- [64] T. Tamura et al., An X-ray spectroscopic search for dark matter and unidentified line [77] B.M. Roach, K.C.Y. Ng, K. Perez, J.F. Beacom, S. Horiuchi, R. Krivonos et al., signatures in the Perseus cluster with Hitomi, Publ. Astron. Soc. Jap. 71 (2019) NuSTAR Tests of Sterile-Neutrino Dark Matter: New Galactic Bulge Observations Publications of the Astronomical Society of Japan, Volume 71, Issue 3, June 2019, and Combined Impact, Phys. Rev. D 101 (2020) 103011 [1908.09037]. 50, https://doi.org/10.1093/pasj/psz023 [1811.05767]
- [65] S. Riemer-Sørensen et al., Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster, Astrophys. J. 810 (2015) 48 [1507.01378].

Planck24, Lisboa

Bounds

- [66] A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Constraints on sterile neutrino as a dark matter candidate from the diffuse x-ray background, Mon. Not. Roy. Astron. Soc. 370 (2006) 213 [astro-ph/0512509].
- [67] D. McCammon et al., A High spectral resolution observation of the soft x-ray diffuse background with thermal detectors, Astrophys. J. 576 (2002) 188 [astro-ph/0205012].
- [68] N. Sekiya, N.Y. Yamasaki and K. Mitsuda, A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background, 1504.02826.
- [69] A. Boyarsky, J. Nevalainen and O. Ruchayskiy, Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the Milky Way and Ursa Minor, Astron. Astrophys. 471 (2007) 51 [astro-ph/0610961].
- [70] A. Boyarsky, J.W. den Herder, A. Neronov and O. Ruchayskiy, Search for the light dark matter with an X-ray spectrometer, Astropart. Phys. 28 (2007) 303 [astro-ph/0612219].
- [71] K.N. Abazajian, M. Markevitch, S.M. Koushiappas and R.C. Hickox, *Limits on the* Radiative Decay of Sterile Neutrino Dark Matter from the Unresolved Cosmic and Soft X-ray Backgrounds, Phys. Rev. D 75 (2007) 063511 [astro-ph/0611144].
- [72] S. Riemer-Sorensen, K. Pedersen, S.H. Hansen and H. Dahle, Probing the nature of dark matter with Cosmic X-rays: Constraints from Dark blobs and grating spectra of galaxy clusters, Phys. Rev. D 76 (2007) 043524 [astro-ph/0610034].
- [73] S. Riemer-Sørensen, Constraints on the presence of a 3.5 keV dark matter emission line from Chandra observations of the Galactic centre, Astron. Astrophys. 590 (2016) A71 [1405.7943].
- [74] J.W. Foster, M. Kongsore, C. Dessert, Y. Park, N.L. Rodd, K. Cranmer et al., Deep Search for Decaying Dark Matter with XMM-Newton Blank-Sky Observations, Phys. *Rev. Lett.* **127** (2021) 051101 [2102.02207].
- [75] A. Neronov, D. Malyshev and D. Eckert, Decaying dark matter search with NuSTAR deep sky observations, Phys. Rev. D 94 (2016) 123504 [1607.07328].
- [76] K. Perez, K.C.Y. Ng, J.F. Beacom, C. Hersh, S. Horiuchi and R. Krivonos, Almost closing the vMSM sterile neutrino dark matter window with NuSTAR, Phys. Rev. D **95** (2017) 123002 [1609.00667].
- [78] K.C.Y. Ng, S. Horiuchi, J.M. Gaskins, M. Smith and R. Preece, Improved Limits on Sterile Neutrino Dark Matter using Full-Sky Fermi Gamma-Ray Burst Monitor Data, Phys. Rev. D 92 (2015) 043503 [1504.04027].

TRISTAN Detector

FIG. 1. Imprint of a heavy, mostly sterile, neutrino with a mass of $m_s = 10 \,\text{keV}$ and an unphysical large mixing angle of $\sin^2 \Theta = 0.2$ on the tritium β -decay spectrum.

Planck24, Lisboa

- KATRIN Collaboration Mertens et al. (2019)
- tritium-beta decay
- electron-flavor neutrino emitted along with electron
- spectrum related to superposition of mass eigenstates

Neutrinoless Double Beta Decay

Figure 9: Upper limits on the sum of squared active-sterile mixings for three values of the sterile neutrino mass splitting ratio $r_{\Delta} = \frac{\Delta m_N}{m_{N_1}} \ll 1$. We show the limits from ¹³⁶Xe (solid) and ⁷⁶Ge (dashed) experiments with the bands indicating the respective uncertainties. The red curves highlight the limit in which $0\nu\beta\beta$ decay is driven by a single sterile neutrino. The curves sloping down to the lower right indicate the upper bounds by enforcing $|\delta m_{\nu}^{1-\text{loop}}| < \delta m_{\nu}^{1-\text{loop}}|$ $0.1m_{\nu}$. These constraints are compared with the current and future sensitivities of LNC (blue shaded/dotted) and LNV (red shaded/dotted) searches, cf. Figs. 6 and 7.

Planck24, Lisboa

- Bolton, Deppisch, Bhupal Dev (2020)
- interference effects between two sterile neutrinos with small mass splitting

 10^{3}

• \Rightarrow constraints negligible for sterile neutrino masses in our model!

