ALP contribution to the Strong CP problem

Universidad Autónoma

de Madrid

Instituto de Física **Teórica UAM-CSIC**

Work in collaboration with

Belén Gavela, Benjamín Grinstein and Pablo Quílez

arXiv:2403.12133

Víctor Enguita

the Electroweak Scale'

Funded by the Horizon 2020 Framework Programme of the **European Union**

PLANCK2024 26th Conference "From the Planck Scale to

Axion-like particles (ALPs)

Axions and ALPs are:

• pseudo-Goldstone bosons of some new U(1)

• well motivated NP candidates

• targeted by an extensive experimental program

Axion-like particles (ALPs)

Axions and ALPs are:

- pseudo-Goldstone bosons of some new U(1)
 - \implies shift symmetry $a \rightarrow a + \text{const.}$
 - \implies light particle $m_a \ll f_a$
- well motivated NP candidates

• targeted by an extensive experimental program

Axion-like particles (ALPs)

Axions and ALPs are:

- pseudo-Goldstone bosons of some new U
 - shift symmetry $a \rightarrow a + \text{const.}$
 - \implies light particle $m_a \ll f_a$
- well motivated NP candidates

• targeted by an extensive experimental p

		Axion	\mathbf{ALPs}
J(1)	Strong CP problem		
	Dark Matter		
	Cosmic Inflation		
orogram	Baryogenesis		

The ALP Effective Field Theory

ALP couplings to up- and down-type quarks: $\mathcal{L}_a \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_a^2 a^2$ $+(\bar{u}_L M_u u_R + \bar{d}_L M_d d_R)$ $+\frac{\partial_{\mu}a}{f_{\alpha}}\left(\bar{Q}_{L}\gamma^{\mu}\boldsymbol{C}_{\boldsymbol{Q}}Q_{L}+\bar{u}_{R}\gamma^{\mu}\boldsymbol{C}_{\boldsymbol{u}_{R}}u_{R}+\bar{d}_{R}\gamma^{\mu}\boldsymbol{C}_{\boldsymbol{d}_{R}}d_{R}\right)$

[Georgi, Kaplan, Randall, Phys. Lett. B 169 (1986) 73-78] arXiv:2403.12133

$$(R + h.c.) + \theta \frac{\alpha_s}{8\pi} G_{\mu\nu} \widetilde{G}^{\mu\nu}$$

The ALP Effective Field Theory

ALP couplings to up- and down-type quarks: $\mathcal{L}_a \supset \left(\bar{u}_L \boldsymbol{M}_u u_R + \bar{d}_L \boldsymbol{M}_d d_R + \text{h.c.} \right) + \boldsymbol{\theta} \, \frac{\alpha_s}{8\pi} G_{\mu\nu} \widetilde{G}^{\mu\nu}$

related by anomalous $U(1)_{Axial}$ symmetry

Physical combination is

- $\bar{\theta} = \theta + \operatorname{Arg} \det(M_u M_d)$
 - arXiv:2403.12133

ALP couplings to fermions

ALP couplings to up- and down-type quarks:

 $\mathcal{L}_{a} \supset \frac{\partial_{\mu}a}{f_{a}} \left(\bar{Q}_{L} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{Q}} Q_{L} + \bar{u}_{R} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{u}_{R}} u_{R} + \bar{d}_{R} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{d}_{R}} d_{R} \right)$

[Georgi, Kaplan, Randall, *Phys. Lett. B 169 (1986) 73-78*] arXiv:2403.12133

ALP couplings to fermions

ALP couplings to up- and down-type quarks:

 $\mathcal{L}_a \supset \frac{\partial_\mu a}{f_a} \left(\bar{Q}_L \gamma^\mu \mathbf{C}_Q Q_L + \bar{u}_R \gamma^\mu \mathbf{C}_{u_R} u_R + \bar{d}_R \gamma^\mu \mathbf{C}_{d_R} d_R \right)$ **CP-violation in flavor-nondiagonal entries**

[Georgi, Kaplan, Randall, Phys. Lett. B 169 (1986) 73-78] arXiv:2403.12133

ALP couplings to fermions

ALP couplings to up- and down-type quarks:

 $\mathcal{L}_{a} \supset \frac{\partial_{\mu}a}{f_{a}} \left(\bar{Q}_{L} \gamma^{\mu} \mathbf{C}_{Q} Q_{L} + \bar{u}_{R} \gamma^{\mu} \mathbf{C}_{u_{R}} u_{R} + \bar{d}_{R} \gamma^{\mu} \mathbf{C}_{d_{R}} d_{R} \right)$ **CP-violation in flavor-nondiagonal entries**

Will source CP-violating observables e.g. EDMs

The neutron EDM SM prediction extremely suppressed!!! **nEDM** extremely well constrained: $d_n^{\text{exp}} \leq 2.6 \times 10^{-26} \ [e \cdot \text{cm}]$

[Abel et al., 2001.11966] [Pendlebury et al., 2001.11966]

The neutron EDM

SM prediction extremely suppressed!!!

How can C_Q , C_{u_R} , C_{d_R} contribute? **nEDM** sourced by $\left\{ \bullet \text{ Quark EDMs and CEDMs} \right\}$ [Baluni, Phys. Rev. D 19, 2227]

nEDM extremely well constrained: $d_n^{\text{exp}} \leq 2.6 \times 10^{-26} \text{ [e·cm]}$ [Abel et al., 2001.11966] [Pendlebury et al., 2001.11966]

- The θ parameter arXiv:2403.12133

How does $\bar{\theta}$ change under radiative corrections?

$\bar{\theta} = \theta + \operatorname{Arg} \det(M_u M_d)$

[Ellis, Gaillard, Nucl.Phys.B 150 (1979) 141-162]

How does θ change under radiative corrections? $\bar{\theta} = \theta + \operatorname{Arg} \det(M_u M_d)$ $SM \longrightarrow three-loop$ [Ellis, Gaillard, Nucl.Phys.B 150 (1979) 141-162]

How does θ change under radiative corrections? $\bar{\theta} = \theta + \operatorname{Arg} \det(M_u M_d)$ ALP EFT \longrightarrow one-loop $SM \longrightarrow three-loop$ [Ellis, Gaillard, Nucl.Phys.B 150 (1979) 141-162]

How does θ change under radiative corrections?

How does θ change under radiative corrections? $\bar{\theta} = \theta + \operatorname{Arg} \det(M_u M_d)$ p_{μ} X ννρσ \mathcal{M} [Banno et al., 2311.07817]

How does θ change under radiative corrections?

$\bar{\theta} = \theta + \operatorname{Arg} \det(M_u M_d)$ New contributions X 10000 00000 highly subdominant [Banno et al., 2311.07817] arXiv:2403.12133

ALP contributions to the nEDM nEDM sourced by $\begin{cases} \bullet \text{ Quark EDMs and CEDMs} \\ \bullet \text{ The } \overline{\theta} \text{ parameter} \end{cases}$

Corrections to the quark EDMs and CEDMs [Di Luzio et al., 2010.13760]

arXiv:2403.12133

$\underbrace{t \, u}_{\mathbf{C}_{u_R}^{*13}/f_a} \frac{d_u}{e} \sim \frac{Q_u}{32\pi^2} m_t \frac{\operatorname{Im}(\mathbf{C}_Q^{13}\mathbf{C}_{u_R}^{*13})}{f_a^2}$

ALP contributions to the nEDM nEDM sourced by $\begin{cases} \bullet \text{ Quark EDMs and CEDMs} \\ \bullet \text{ The } \overline{\theta} \text{ parameter} \end{cases}$

Corrections to $\bar{\theta} = \theta + \operatorname{Arg} \det(M_u M_d)$

arXiv:2403.12133

 $\frac{u}{\mathbf{C}_{u_R}^{*13}/f_a} \Delta \bar{\theta}_{ALP} \sim \frac{1}{16\pi^2} \left(\frac{m_t^3}{m_u}\right) \frac{\operatorname{Im}(\mathbf{C}_Q^{13} \, \mathbf{C}_{u_R}^{*13})}{f_a^2}$

-73

ALP contributions to the nEDM $\mu \frac{d\theta}{d\mu} \simeq \sum_{q=u,d} \operatorname{Im} \operatorname{Tr} \left(\boldsymbol{M}_{q}^{-1} \mu \frac{d}{d\mu} \Delta \boldsymbol{M}_{q} \right)$

Run down from $\Lambda_{\rm UV} = f_a \longrightarrow \mu_{\rm IR} = \Lambda_{\rm QCD}$ $16\pi^2 f_a^2 m_{d_i}$ $d_i = \{d, s, b\}$

 $\bar{\theta}(\mu_{\rm IR}) \simeq \bar{\theta}_0 + \sum_{u_i = \{u, c, t\}} \frac{m_{u_k} \left(m_a^2 + \widehat{m}_{u_k}^2\right)}{16\pi^2 f_a^2 m_{u_i}} \operatorname{Im}\left(\boldsymbol{C}_Q^{ik} \boldsymbol{C}_{u_R}^{*ik}\right) \log \frac{f_a^2}{\max\left(m_a^2, m_{u_k}^2\right)}$ $\sum \frac{m_{d_k} \left(m_a^2 + \widehat{m}_{d_k}^2 \right)}{16\pi^2 f^2 m} \operatorname{Im} \left(C_Q^{ik} C_{d_R}^{*ik} \right) \log \frac{f_a^2}{\max \left(m_a^2 \right)}$ $\max\left(m_a^2, m_{d_b}^2\right)$

nEDM limits on ALP-fermion couplings

 $X_{q}^{ij} = \operatorname{Im}(C_{L}^{ij}C_{q_{R}}^{*ij})/f_{a}^{2} \left(\operatorname{GeV}^{-2}\right)$

X_{ii}^{13} Dotted lines:

$r 23 \\ u \\ r 13 \\ d$	$\frac{d_n}{e}$	$ig _{d_q, ilde{d}_q}$	$\sim C$	$\mathcal{O}(1) \times$	$rac{Q_u}{32\pi^2}$ m	$\operatorname{Im}(\mathbf{C}_Q^{13}\mathbf{C})$	* 1
- 12 - u - 23							
d							

$$-12$$

nEDM limits on ALP-fermion couplings

nEDM limits on ALP-fermion couplings

General scalar theory

• A scalar which may not be a pseudo-Goldstone

more parametric freedom

• The effective Lagrangian is $\mathcal{L} \supset \bar{u}_L v \left[i \mathbf{K}_u \frac{\phi}{\Lambda} + \mathbf{F}_u \frac{\phi^2}{\Lambda^2} \right] u_R + \bar{d}_I$

$$\bar{l}_L v \left[i \frac{\phi}{\Lambda} \mathbf{K}_d + \frac{\phi^2}{\Lambda^2} \mathbf{F}_d \right] d_R + \text{h.c.}$$

General scalar theory

• A scalar which may not be a pseudo-Goldstone

 \implies more parametric freedom

• The effective Lagrangian is $\mathcal{L} \supset \bar{u}_L v \left[i \mathbf{K}_u \frac{\phi}{\Lambda} + \mathbf{F}_u \frac{\phi^2}{\Lambda^2} \right] u_R + \bar{d}_L$

• The shift-symmetry is restored when $vK_q \equiv C_Q M_q - M_q C_{q_R}$ $2vF_q \equiv 2C_Q M_q C_{q_R} - C_Q^2 M_q - M_q C_{q_R}^2$

$$\bar{l}_L v \left[i \frac{\phi}{\Lambda} \mathbf{K}_d + \frac{\phi^2}{\Lambda^2} \mathbf{F}_d \right] d_R + \text{h.c.}$$

General scalar theory

• A scalar which may not be a pseudo-Goldstone

more parametric freedom

- The effective Lagrangian is $\mathcal{L} \supset \bar{u}_L v \left[i \mathbf{K}_u \frac{\phi}{\Lambda} + \mathbf{F}_u \frac{\phi^2}{\Lambda^2} \right] u_R + \bar{d}_I$
- The shift-symmetry is restored when

Needed to restore shift-symmetry!!

$$\bar{l}_L v \left[i \frac{\phi}{\Lambda} \mathbf{K}_d + \frac{\phi^2}{\Lambda^2} \mathbf{F}_d \right] d_R + \text{h.c.}$$

$vK_q \equiv C_QM_q - M_qC_{q_R}$ $2v \boldsymbol{F}_q \equiv 2\boldsymbol{C}_Q \boldsymbol{M}_q \boldsymbol{C}_{q_R} - \boldsymbol{C}_Q^2 \boldsymbol{M}_q - \boldsymbol{M}_q \boldsymbol{C}_{q_R}^2$

Corrections to the quark EDMs and CED [Di Luzio et al., 2010.13760]

ϕ contribution to the nEDM **nEDM** sourced by $\begin{cases} \bullet \text{ Quark EDMs and CEDMs} \\ \bullet \text{ The } \overline{\theta} \text{ parameter} \end{cases}$

 $\frac{d_n}{e}\Big|_{d_q,\tilde{d}_q} \sim \frac{Q_u}{32\pi^2} \frac{v^2}{\Lambda^2} \frac{1}{m_t} \operatorname{Im}\left[\frac{\mathbf{K}_u^{13}\mathbf{K}_u^{31}}{m_t}\right]$

arXiv:2403.12133

11

arXiv:2403.12133

11

nEDM on scalar-fermion couplings $W_{a}^{ij} = \operatorname{Im}\left(K_{a}^{ij}K_{a}^{ji}\right)/\Lambda^{2}$ **Dotted lines:** W_d^{12} W^{11}_u W_d^{11} $W^{22,33}_{u,d}$

nEDM on scalar-fermion couplings $W_a^{ij} = \operatorname{Im}\left(K_a^{ij}K_a^{ji}\right)/\Lambda^2$ **Dotted lines:** $\begin{array}{c|c} W_{u}^{12} \\ W_{u}^{23} \\ W_{u}^{23} \\ W_{u}^{23} \end{array} & \frac{d_{n}}{e} \Big|_{d_{q}, \tilde{d}_{q}} \sim \frac{Q_{u}}{32\pi^{2}} \frac{v^{2}}{\Lambda^{2}} \frac{1}{m_{t}} \operatorname{Im} \left[\mathbf{K}_{u}^{13} \mathbf{K}_{u}^{31} \right] \\ W_{u}^{13} \\$ Solid regions: $\frac{d_n}{e}\Big|_{\bar{\theta}} \sim \frac{v^2}{16\pi^2} \mathcal{O}(10^{-3} \text{ GeV}^{-1}) \times \int \frac{16\pi^2}{16\pi^2} \int \frac{\mathrm{Im}(K_u^{13} K_u^{13})}{\mathrm{Im}(K_u^{13} K_u^{13})}$ $W^{f 22,33}_{u,d}$ Х

nEDM on scalar-fermion couplings

$V_a^{ij} = \operatorname{Im}\left(F_a^{ii}\right)/\Lambda^2$

Solid regions: $\begin{array}{c|c} & & & & \\ & & & V_{d}^{22} & & \\ & & & V_{u}^{22} & & \\ & & & V_{u}^{33} & \\ & & & & V_{u}^{33} & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

arXiv:2403.12133

13

θ and the Strong CP problem

Several mechanisms to explain smallness of $\bar{\theta}$

$\theta = 0$ at IR e.g.

Peccei-Quinn mechanism Nelson-Bar mechanism |Nelson, Phys.Lett. B 136, 5-6|[Peccei, Quinn, Phys.Rev.Lett. 38, 1440] [Barr, Phys.Rev.Lett. 53, 329] arXiv:2403.12133

$\theta = 0$ at UV

e.g.

$\bar{\theta}$ and the Strong CP problem

Several mechanisms to explain smallness of $\bar{\theta}$

[Peccei, Quinn, Phys.Rev.Lett. 38, 1440]

θ and the Strong CP problem

Several mechanisms to explain smallness of θ

$\Lambda_{\rm UV} \longrightarrow \mu_{\rm IR}$

$\Delta \theta$ generated at the IR

$\bar{\theta} = 0$ at UV

e.g.

Nelson-Bar mechanism

- ALP couplings to fermion induce parametrically enhanced corrections to the nEDM at one loop
- We have improved the bounds on CP-odd ALP-fermion couplings by ~ 4 orders of magnitude

Conclusions

Without a PQ mechanism:

In the presence of a PQ mechanism:

Backup

$$d_n = 0.6(3) \times 10^{-16} \bar{\theta} [e \cdot \text{cm}] - 0.204(11)d_u + 0.784(28)d_d - 0.0028(17)d_s - 0.32(15) e \tilde{d}_u + 0.32(15) e \tilde{d}_d - 0.014(7)e\tilde{d}_s.$$

$$d_n^{PQ} = -0.204(11)d_u + 0.784(28)d_d - 0.0028(17)d_s$$
$$-0.31(15)e\tilde{d}_u + 0.62(31)e\tilde{d}_d$$