Regurgitated Dark Matter: PBH Formation and Reemission

Philip Lu Korea Institute for Advanced Study Planck 2024 June 06, 2024

arXiv:2309.05703

T. Kim, D. Marfatia, P. Lu, V. Takhistov

WIMPs and Primordial Black Holes: Introduction

Weakly Interacting Massive Particles

WIMP Miracle

Can be produced by thermal freeze-out

Required cross-sections in the range of weak interactions

Lightest supersymmetric particle

Focus of large direct detection experiments

Not found

Primordial Black Holes

Macroscopic dark matter candidate

Can comprise all of dark matter within the "mass window"

Natural consequence of inflation*

Formation scenarios usually result in gravitational waves (NanoGRAV?)

Emits Hawking Radiation

space.com

Light PBH Bounds

Primordial Black Holes from Dark Particles

Timeline

Dark Sector Model

Simple model with (asymmetric) fermion and scalar

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} - rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - rac{\mu^2}{2} \phi^2 - rac{\kappa}{2} \phi^2 (H^{\dagger}H) - V(\phi) + ar{\chi} i \partial \!\!\!/ \chi - y_{\chi} \phi ar{\chi} \chi$$

Higgs portal and Yukawa terms

Particle trapping:

$$M_{\chi}^* \equiv y_{\chi} v_* \gg T_*, \quad M_{\phi}^* \equiv \left(\frac{\partial^2 V_{\text{eff}}(\phi, T_*)}{\partial \phi^2}\right)^{1/2} \Big|_{\phi = v_*} \gg T_*$$

Initial Collapse

True bubble walls expand

Trapped particles confined to compact remnants

SM Portal Cooling

Thermal balls support by thermal pressure against vacuum pressure Trapped ϕ particles annihilate through Higgs coupling

$$\dot{C} = n^2 \langle 2E \rangle \sigma v_{\rm rel} = \frac{0.051 \kappa^2 T_1^7 m_f^2}{m_H^4}$$

Cooling leads to thermal ball ->Fermi ball transition (Fermi Pressure)

$$T_{\rm SM}^{\rm tr} \simeq 10^4 \,\,{\rm GeV}\,\kappa \left(\frac{T_1}{1\,\,{\rm GeV}}\right)^{3/2}$$

Cooling should end before BBN, lower bound on coupling

PBH Formation

Yukawa force becomes long range: $y_{\chi}\phi\bar{\chi}\chi$

$$L_{\phi}(T_D) = m_{\phi}(T_D)^{-1} = \frac{1}{\sqrt{\mu^2 + cT_D^2}}$$

Rapid collapse to PBH

Light average mass:

$$\overline{M}_{\rm PBH} \sim 7 \times 10^6 \ g \ \left(\frac{\beta/H}{10^4}\right)^{-3} \left(\frac{\eta_{\chi}}{10^{-15}}\right) \left(\frac{T_*}{1 \ {\rm GeV}}\right)^{-2}$$

Remnant Endpoints

Thermal Balls

- Kept at constant temperature
- Semi-stable DM

Fermi Balls

- Mass from fermion asymmetry
- Unstable with strong Yukawa force

Primordial Black Holes

- Can efficiently form accretion disks
- Hawking radiation

Dark Particles from Primordial Black Holes

Evaporating PBH

Recent interest on very light PBH

Hawking Temperature

$$T_{\rm PBH} = 1.06 \times 10^5 \,\,{\rm GeV} \left(\frac{M_{\rm PBH}}{10^8 {
m g}}\right)^{-1}$$

Hawking evaporation emits particles based on mass-> DM emission

What if DM produced PBH that produced DM?

Getty Images

PBH Domination

PBH density grows relative to plasma density

PBH domination before evaporation if

$$\beta\gtrsim 10^{-13}\left(\frac{M_{\rm PBH}}{10^8g}\right)^{-1}$$

Reheating temperature

$$T_{\rm RH} = 50.5 {\rm MeV} \left(\frac{10^8 {\rm g}}{M_{\rm PBH}}\right)^{3/2}$$

Dark Matter Density

Initial abundance: $\frac{\rho_{o}}{\rho_{o}}$

 $rac{
ho_{\phi,\chi}}{
ho_{
m SM}} = rac{g_{H,(\phi,\chi)}}{g_{
m H,SM}}$

Non-relativistic emission:

Particles heavier than Hawking temperature

Suppressed by particle emission threshold

$$\frac{M_{\rm PBH}^{\rm em}}{M_{\rm PBH}} = \epsilon_{\rm em} \left(\frac{M_{\rm PBH}}{10^8 g}\right)^{-1} \left(\frac{m_{(\phi,\chi)}}{10^5 \text{ GeV}}\right)^{-1}$$

Relativistic emission:

Particles lighter than Hawking temperature

Suppressed by redshift after emission

$$v \sim \frac{m_{\rm (}\phi,\chi)}{\epsilon T_{\rm PBH}}$$

Constraints

BBN constraints on FOPT/cooling/evaporation timescale

Decay of scalar WIMPs:
$$\Gamma_{\phi \to HH} \propto \frac{\kappa^2 \langle \phi \rangle^2}{m_{\phi}}$$

Direct detection experiments (XenonNT, LZ)

Invisible Higgs Decays (LHC)

WIMP Regurgitation

Conclusions

- 1. First order phase transition can trap particles and form compact remnants, which eventually collapse into PBH.
- 2. The three endpoints of this process, thermal balls, Fermi balls, and PBH can all be dark matter candidates.
- 3. Regurgitated dark matter is a novel production mechanism in which dark matter particles form PBH which reemit dark matter particles.
- 4. Due to the disassociation of interaction strength and abundance, WIMP parameter space is increased.