PLANCK2024 (Lisbon, Portugal) 4 June 2024

# Measuring spin correlations of bottom and charm quark pairs at the LHC

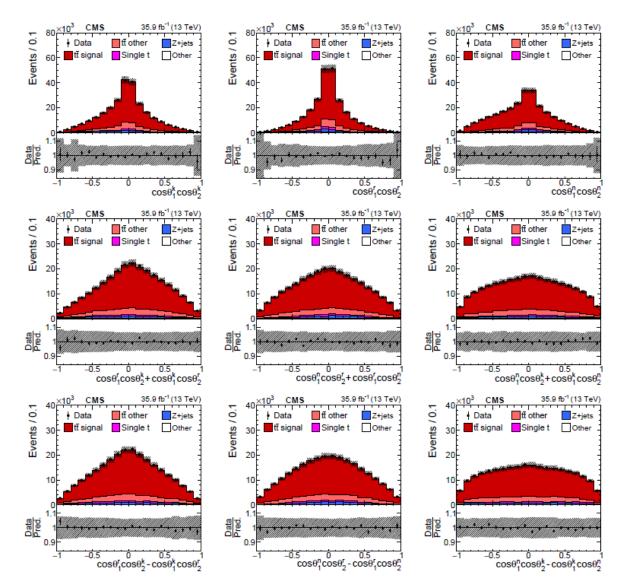
#### Yevgeny Kats

#### אוניברסיטת בן-גוריון בנגב جامعة بن غوريون في النقب Ben-Gurion University of the Negev

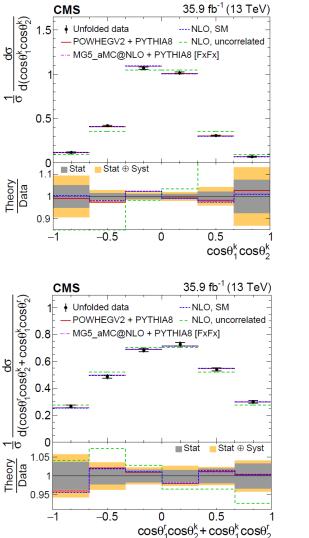
Yevgeny Kats and David Uzan, JHEP 03 (2024) 063 [arXiv:2311.08226]

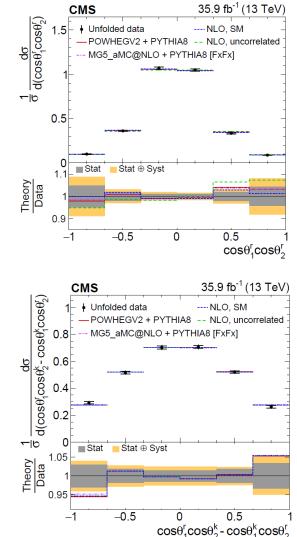
ATLAS and CMS already measure spin correlations in  $pp \rightarrow t\bar{t}$ .

Density matrix for the t and  $\overline{t}$  spins:


$$\rho = \frac{1}{4} \left( \mathbb{1} \otimes \mathbb{1} + \tilde{B}_i^+ \, \sigma^i \otimes \mathbb{1} + \tilde{B}_i^- \, \mathbb{1} \otimes \sigma^i + \tilde{C}_{ij} \, \sigma^i \otimes \sigma^j \right)$$

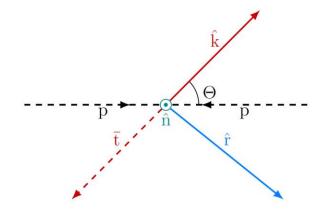
Angular distributions of leptons from top decays:


$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_1^i} = \frac{1}{2} \left( 1 + B_1^i \cos\theta_1^i \right)$$
$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_1^i \cos\theta_2^j} = \frac{1}{2} \left( 1 - C_{ij} \cos\theta_1^i \cos\theta_2^j \right) \ln\left(\frac{1}{|\cos\theta_1^i \cos\theta_2^j|}\right)$$

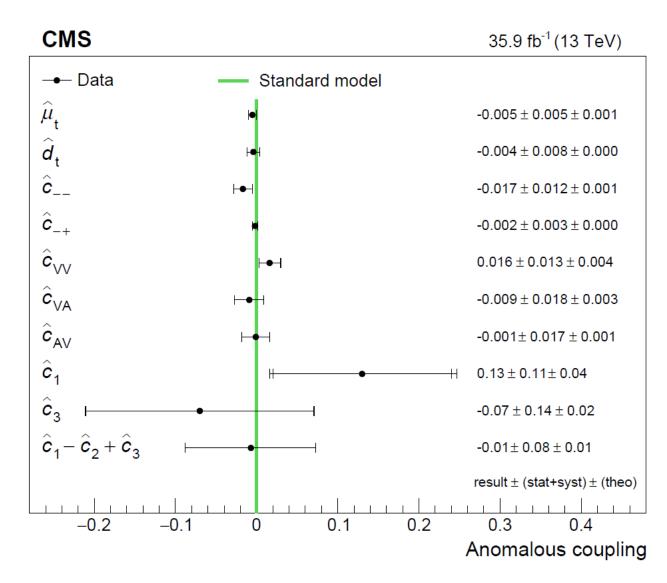

 $B = \alpha \tilde{B}$  ,  $C = \alpha^2 \tilde{C}$  ,  $\alpha \simeq 1$  (spin analyzing power)

#### ATLAS and CMS already measure spin correlations in $pp \rightarrow t\bar{t}$ .

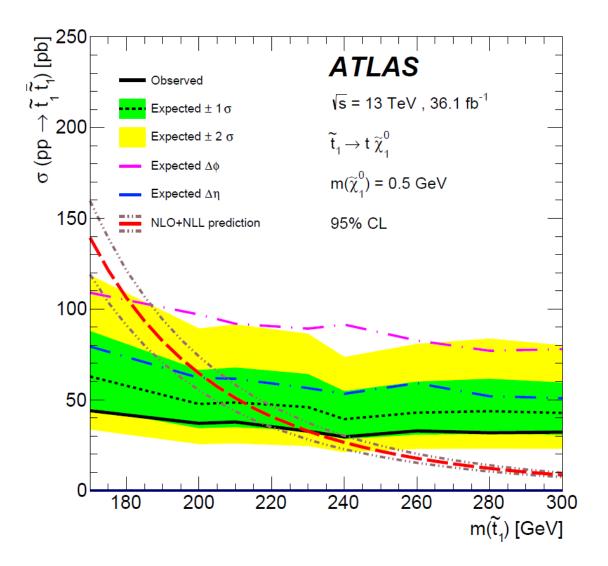



#### ATLAS and CMS already measure spin correlations in $pp \rightarrow t\bar{t}$ .






#### ATLAS and CMS already measure spin correlations in $pp \rightarrow t\bar{t}$ .


| Coefficient       | Measured           | powhegv2                       | MG5_amc@nlo                    | NLO calculation                          |
|-------------------|--------------------|--------------------------------|--------------------------------|------------------------------------------|
| $C_{kk}$          | $0.300 \pm 0.038$  | $0.314  {}^{+0.005}_{-0.004}$  | $0.325{}^{+0.011}_{-0.006}$    | $0.331  {}^{+0.002}_{-0.002}$            |
| $C_{rr}$          | $0.081\pm0.032$    | $0.048{}^{+0.007}_{-0.006}$    | $0.052  {}^{+0.007}_{-0.005}$  | $0.071  {}^{+0.008}_{-0.006}$            |
| $C_{nn}$          | $0.329\pm0.020$    | $0.317^{+0.001}_{-0.001}$      | $0.324  {}^{+0.002}_{-0.002}$  | $0.326\ ^{+0.002}_{-0.002}$              |
| $C_{rk} + C_{kr}$ | $-0.193 \pm 0.064$ | $-0.201  {}^{+0.004}_{-0.003}$ | $-0.198{}^{+0.004}_{-0.005}$   | $-0.206  {}^{+0.002}_{-0.002}$           |
| $C_{rk} - C_{kr}$ | $0.057\pm0.046$    | $-0.001  {}^{+0.002}_{-0.002}$ | $0.004  {}^{+0.002}_{-0.002}$  | 0                                        |
| $C_{nr} + C_{rn}$ | $-0.004 \pm 0.037$ | $-0.003  {}^{+0.002}_{-0.002}$ | $0.001  {}^{+0.002}_{-0.002}$  | $1.06^{+0.01}_{-0.01}	imes 10^{-3}$      |
| $C_{nr} - C_{rn}$ | $-0.001 \pm 0.038$ | $0.002  {}^{+0.002}_{-0.002}$  | $0.001  {}^{+0.003}_{-0.002}$  | 0                                        |
| $C_{nk} + C_{kn}$ | $-0.043 \pm 0.041$ | $-0.002  {}^{+0.002}_{-0.002}$ | $0.003  {}^{+0.002}_{-0.002}$  | $2.15  {}^{+0.04}_{-0.07} 	imes 10^{-3}$ |
| $C_{nk} - C_{kn}$ | $0.040\pm0.029$    | $-0.001^{+0.002}_{-0.002}$     | $-0.001  {}^{+0.002}_{-0.002}$ | 0                                        |



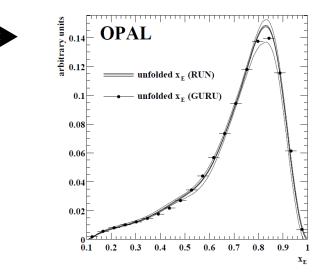
ATLAS and CMS already measure spin correlations in  $pp \rightarrow t\bar{t}$ .

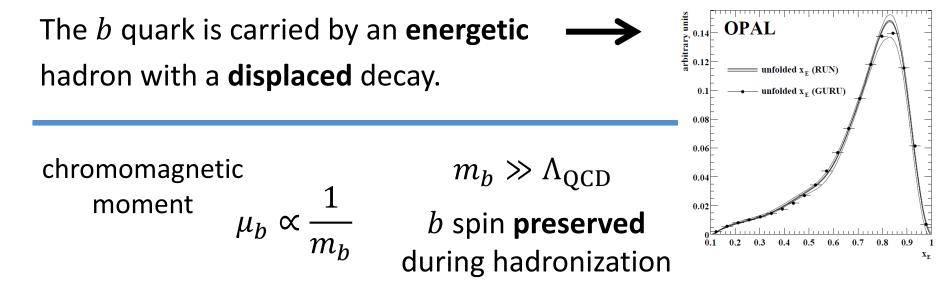


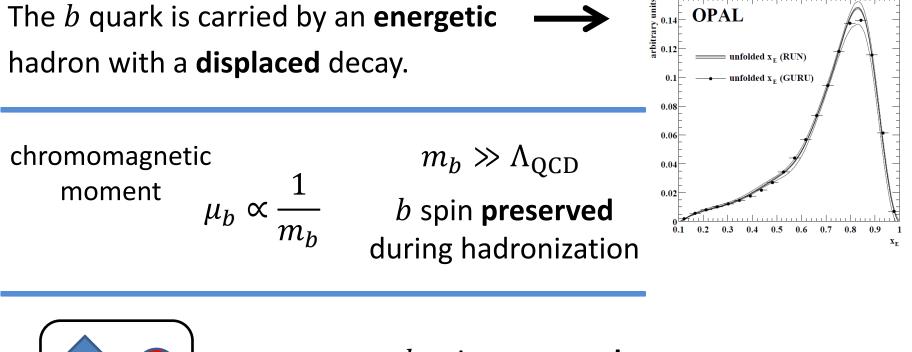
ATLAS and CMS already measure spin correlations in  $pp \rightarrow t\bar{t}$ .

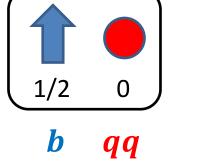


ATLAS Collaboration EPJC 80 (2020) 754 [arXiv:1903.07570]


ATLAS and CMS already measure spin correlations in  $pp \rightarrow t\bar{t}$ .


Can we do something similar with


 $pp \rightarrow b\overline{b}$  $pp \rightarrow c\overline{c}$  $pp \rightarrow s\overline{s}$ 


...

The *b* quark is carried by an **energetic** hadron with a **displaced** decay.



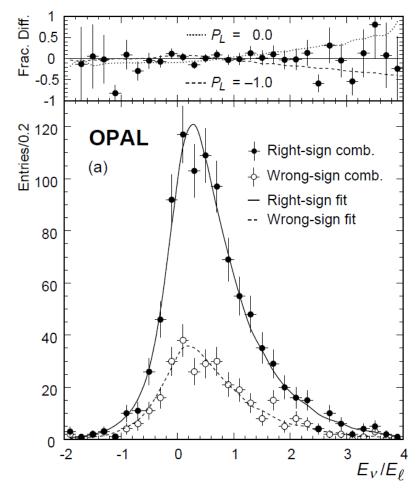






 $\Lambda_b$ 

#### *b* spin **preserved** also during lifetime


Mannel and Schuler, PLB 279, 194 (1992) Close, Körner, Phillips, Summers, J. Phys. G 18, 1703 (1992) Falk and Peskin, PRD 49, 3320 (1994) [hep-ph/9308241]

**Evidence** of  $\Lambda_b$  polarization was observed at **LEP** in  $Z \rightarrow b\overline{b}$ , where  $\mathcal{P}(b) \simeq -0.94$ :

$$\mathcal{P}(\Lambda_b) = -0.23^{+0.24}_{-0.20} {}^{+0.08}_{-0.07} \qquad \text{(ALEPH)}$$
$$\mathcal{P}(\Lambda_b) = -0.49^{+0.32}_{-0.30} \pm 0.17 \qquad \text{(DELPHI)}$$
$$\mathcal{P}(\Lambda_b) = -0.56^{+0.20}_{-0.13} \pm 0.09 \qquad \text{(OPAL)}$$
$$\text{stat. syst.}$$

ALEPH Collaboration, PLB 365, 437 (1996) DELPHI Collaboration, PLB 474, 205 (2000) OPAL Collaboration, PLB 444, 539 (1998)

Some polarization loss due to  $\Lambda_b$  sample contamination by  $\Sigma_b^{(*)} \rightarrow \Lambda_b \pi$ .



polarization retention factor  $r \equiv \frac{\mathcal{P}(\Lambda_q)}{\mathcal{P}(q)} = ?$ 

polarization retention factor  $r \equiv \frac{\mathcal{P}(\Lambda_q)}{\mathcal{P}(q)} = ?$ 

From a theoretical model:

 $r_L, r_T \sim 0.5$ 

L = longitudinal, T = transverse (relative to the fragmentation axis)

Falk and Peskin, PRD 49, 3320 (1994) [hep-ph/9308241] Galanti, Giammanco, Grossman, Kats, Stamou, Zupan, JHEP 11 (2015) 067 [1505.02771]

polarization retention factor  $r \equiv \frac{\mathcal{P}(\Lambda_q)}{\mathcal{P}(q)} = ?$ 

From a theoretical model:

 $r_L, r_T \sim 0.5$ 

L = longitudinal, T = transverse (relative to the fragmentation axis)

Falk and Peskin, PRD 49, 3320 (1994) [hep-ph/9308241] Galanti, Giammanco, Grossman, Kats, Stamou, Zupan, JHEP 11 (2015) 067 [1505.02771]

 $\succ$  From combination of LEP measurements of  $\Lambda_h$  in Z decays:

ALEPH Collab., PLB 365, 437 (1996)  $r_L = 0.47 \pm 0.14$  DELPHI Collab., PLB 474, 205 (2000) OPAL Collab., PLB 444, 539 (1998)

polarization retention factor  $r \equiv \frac{\mathcal{P}(\Lambda_q)}{\mathcal{P}(q)} = ?$ 

From a theoretical model:

 $r_L, r_T \sim 0.5$ 

L = longitudinal, T = transverse (relative to the fragmentation axis)

Falk and Peskin, PRD 49, 3320 (1994) [hep-ph/9308241] Galanti, Giammanco, Grossman, Kats, Stamou, Zupan, JHEP 11 (2015) 067 [1505.02771]

 $\succ$  From combination of LEP measurements of  $\Lambda_b$  in Z decays:

 $r_L = 0.47 \pm 0.14$  ALEPH Collab., PLB 365, 437 (1996) DELPHI Collab., PLB 474, 205 (2000) OPAL Collab., PLB 444, 539 (1998)

> Measurements of  $r_L$  for both b and c quarks can also be done using ATLAS/CMS  $t\bar{t}$  samples.

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan, JHEP 11 (2015) 067 [1505.02771]

# Spin correlations in $b\overline{b}$ and $c\overline{c}$

$$\tilde{\mathbf{C}} = \begin{pmatrix} c_{kk} & c_{kn} + c_r & c_{rk} - c_n \\ c_{kn} - c_r & c_{nn} & c_{nr} + c_k \\ c_{rk} + c_n & c_{nr} - c_k & c_{rr} \end{pmatrix}$$

|           | $t\bar{t}$ , no cuts |
|-----------|----------------------|
| $c_{kk}$  | $0.324 \pm 0.006$    |
| $c_{rr}$  | $0.009 \pm 0.006$    |
| $c_{nn}$  | $0.333 \pm 0.006$    |
| $2c_{rk}$ | $-0.211 \pm 0.008$   |

MadGraph + MadSpin, LO QCD,  $\sqrt{s} = 13$  TeV

# Spin correlations in $b\overline{b}$ and $c\overline{c}$

$$\tilde{\mathbf{C}} = \begin{pmatrix} c_{kk} & c_{kn} + c_r & c_{rk} - c_n \\ c_{kn} - c_r & c_{nn} & c_{nr} + c_k \\ c_{rk} + c_n & c_{nr} - c_k & c_{rr} \end{pmatrix}$$

|           | $t\bar{t}$ , no cuts | $b\bar{b}$ , no cuts | $c\bar{c}$ , no cuts |
|-----------|----------------------|----------------------|----------------------|
| $c_{kk}$  | $0.324 \pm 0.006$    | $0.296 \pm 0.004$    | $0.284 \pm 0.004$    |
| $c_{rr}$  | $0.009 \pm 0.006$    | $0.004 \pm 0.004$    | $-0.006 \pm 0.004$   |
| $c_{nn}$  | $0.333 \pm 0.006$    | $0.299 \pm 0.004$    | $0.298 \pm 0.004$    |
| $2c_{rk}$ | $-0.211 \pm 0.008$   | $-0.197 \pm 0.006$   | $-0.188 \pm 0.006$   |

MadGraph + MadSpin, LO QCD,  $\sqrt{s} = 13$  TeV

# Spin correlations in $b\overline{b}$ and $c\overline{c}$

$$\tilde{\mathbf{C}} = \begin{pmatrix} c_{kk} & c_{kn} + c_r & c_{rk} - c_n \\ c_{kn} - c_r & c_{nn} & c_{nr} + c_k \\ c_{rk} + c_n & c_{nr} - c_k & c_{rr} \end{pmatrix}$$

|           | $t\bar{t}$ , no cuts | $b\bar{b}$ , no cuts | $c\bar{c}$ , no cuts | $b\bar{b}$ with cuts | $c\bar{c}$ with cuts |
|-----------|----------------------|----------------------|----------------------|----------------------|----------------------|
| $c_{kk}$  | $0.324 \pm 0.006$    | $0.296 \pm 0.004$    | $0.284 \pm 0.004$    | $-0.987 \pm 0.004$   | $-0.984 \pm 0.006$   |
| $c_{rr}$  | $0.009 \pm 0.006$    | $0.004 \pm 0.004$    | $-0.006 \pm 0.004$   | $-0.603 \pm 0.004$   | $-0.609 \pm 0.006$   |
| $c_{nn}$  | $0.333 \pm 0.006$    | $0.299 \pm 0.004$    | $0.298 \pm 0.004$    | $0.591 \pm 0.004$    | $0.603 \pm 0.006$    |
| $2c_{rk}$ | $-0.211 \pm 0.008$   | $-0.197 \pm 0.006$   | $-0.188 \pm 0.006$   | $-0.038 \pm 0.006$   | $-0.008 \pm 0.009$   |

MadGraph + MadSpin, LO QCD,  $\sqrt{s} = 13$  TeV

# **Baryon decays of interest**

| Fragmentation Fraction |      | Decay Scheme                                                                                      | BR   | Spin analyzing power                                                  |
|------------------------|------|---------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------|
|                        |      | $\Lambda_b \to X_c \mu^- \bar{\nu}_\mu$                                                           | 11%  | $\alpha_{\mu^{-}} \approx -0.26,  \alpha_{\bar{\nu}_{\mu}} \approx 1$ |
| $b \to \Lambda_b$      | 7.0% | $\Lambda_b \to X_c \mu^- \bar{\nu}_\mu$<br>with $\Lambda \to p \pi^-$<br>with $\Lambda_c^+$ reco. | 2.7% |                                                                       |
|                        |      | with $\Lambda_c^+$ reco.                                                                          | 2.0% |                                                                       |
|                        |      | $\Lambda_c^+ \to p K^- \pi^+$                                                                     | 6.3% | $\alpha_{\rm eff} \approx 0.662$                                      |
| $c \to \Lambda_c$      | 6.4% | $\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$<br>with $\Lambda \to p \pi^-$                             | 3.5% | $\alpha_{\mu^+} \approx 1$                                            |
|                        |      | with $\Lambda \to p\pi^-$                                                                         | 2.2% |                                                                       |

# **Baryon decays of interest**

| Fragmentation Fraction |      | Decay Scheme                            | BR   | Spin analyzing power   |
|------------------------|------|-----------------------------------------|------|------------------------|
| $b \to \Lambda_b$      | 7.0% | $\Lambda_b \to X_c \mu^- \bar{\nu}_\mu$ | 11%  | ← inclusive            |
|                        |      | with $\Lambda \to p\pi^-$               | 2.7% | ← semi-inclusive       |
|                        |      | with $\Lambda_c^+$ reco.                | 2.0% | $\leftarrow$ exclusive |
| $c \to \Lambda_c$      | 6.4% | $\Lambda_c^+ \to p K^- \pi^+$           | 6.3% | ← hadronic             |
|                        |      | $\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$ | 3.5% | ← semileptonic         |
|                        |      | with $\Lambda \to p\pi^-$               | 2.2% | ← sennieptonic         |

+ mixed channels with one selection on one side and another on the other

# **Baryon decay angular distributions**

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_i^{\pm}} = \frac{1}{2} \left( 1 + B_i^{\pm} \cos\theta_i^{\pm} \right)$$

$$B_i^{\pm} = \alpha_{\pm} r_i f \tilde{B}_i^{\pm}$$

$$M = M = M = 0$$

$$M = M = 0$$

$$M = 0$$

$$\frac{1}{\sigma} \frac{d\sigma}{d(\cos\theta_i^+ \cos\theta_j^-)} = \frac{1}{2} \left( 1 - C_{ij} \cos\theta_i^+ \cos\theta_j^- \right) \ln\left(\frac{1}{|\cos\theta_i^+ \cos\theta_j^-|}\right)$$

$$C_{ij} = \alpha_+ \alpha_- r_i r_j f \, \tilde{C}_{ij}$$

# **Standard datasets**

|                                                         | ATLAS                  |        | C                      | CMS      |
|---------------------------------------------------------|------------------------|--------|------------------------|----------|
|                                                         | $\operatorname{Run} 2$ | HL-LHC | $\operatorname{Run} 2$ | HL-LHC   |
| Collider energy $\sqrt{s}$ [TeV]                        | 13                     | 14     | 13                     | 14       |
| Integrated luminosity $\mathcal{L}$ [fb <sup>-1</sup> ] | 140                    | 3000   | 140                    | 3000     |
| Trigger-motivated cuts:                                 |                        |        |                        |          |
| Jet $p_T$ cut [GeV]                                     |                        | 400    | 500                    | 520      |
| Double muon $p_T$ cut (without isolation) [GeV]         | 15                     | 10     | 37, 27                 | 37, 27   |
| Single muon $p_T$ cut (with isolation) [GeV]            | 27                     | 20     | 24                     | 24       |
| Double electron $p_T$ cut (without isolation) [GeV]     | 18                     | 10     | 25                     | 25       |
| Single electron $p_T$ cut (with isolation) [GeV]        |                        | 22     | 28                     | 32 or 26 |
| ${\rm Jet} \eta {\rm cut}$                              | 2.4                    | 3.8    | 2.4                    | 4.0      |
| Muon $ \eta $ cut                                       | 2.4                    | 2.5    | 2.4                    | 2.4      |
| Electron $ \eta $ cut                                   | 2.4                    | 2.5    | 2.4                    | 2.4      |

# Special dataset: CMS parked data

CMS Collaboration, arXiv:2403.16134

Data parking: record the data when bandwidth allows and process it later.



CMS parking lot (source: Google Maps)

# Special dataset: CMS parked data

CMS Collaboration, arXiv:2403.16134

- Data parking: record the data when bandwidth allows and process it later.
- > **Trigger:** muon with a low  $p_T$  threshold (7 and 12 GeV) and impact parameter significance.
- > Operated during part of Run 2 (~  $42 \text{ fb}^{-1}$ )
- First papers using this dataset appeared just recently:

Aram Hayrapetyan *et al.* (CMS), "Test of lepton flavor universality in  $B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}$  and  $B^{\pm} \rightarrow K^{\pm} e^{+} e^{-}$  decays in proton-proton collisions at  $\sqrt{s} = 13$  TeV," (2024), arXiv:2401.07090 [hep-ex].

Aram Hayrapetyan *et al.* (CMS), "Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at  $\sqrt{s} = 13$  TeV," (2024), arXiv:2403.04584 [hep-ex].

# **Details of the proposed analyses**

- Selection cuts
- Efficiencies
- □ Signal and background estimates
  - See Supplemental Slides.
  - > For even more details,
    - see the paper.

JHEP 03 (2024) 063 [arXiv:2311.08226]

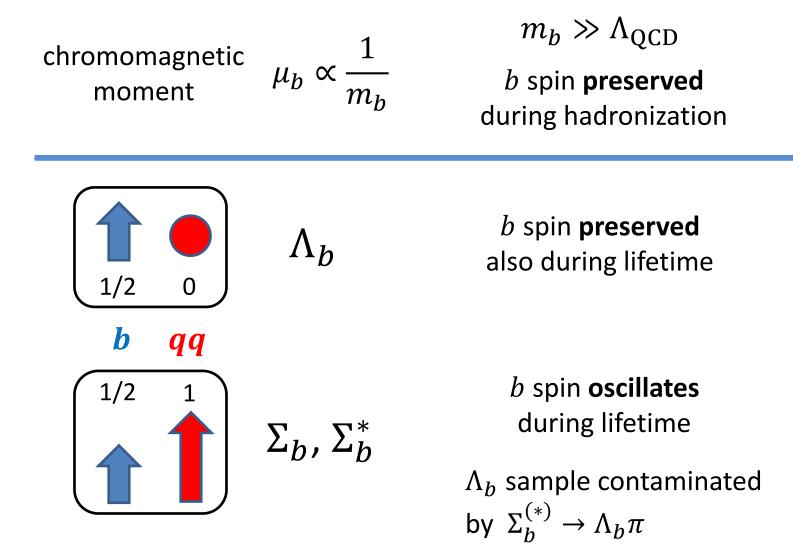
# Spin correlations opportunities summary

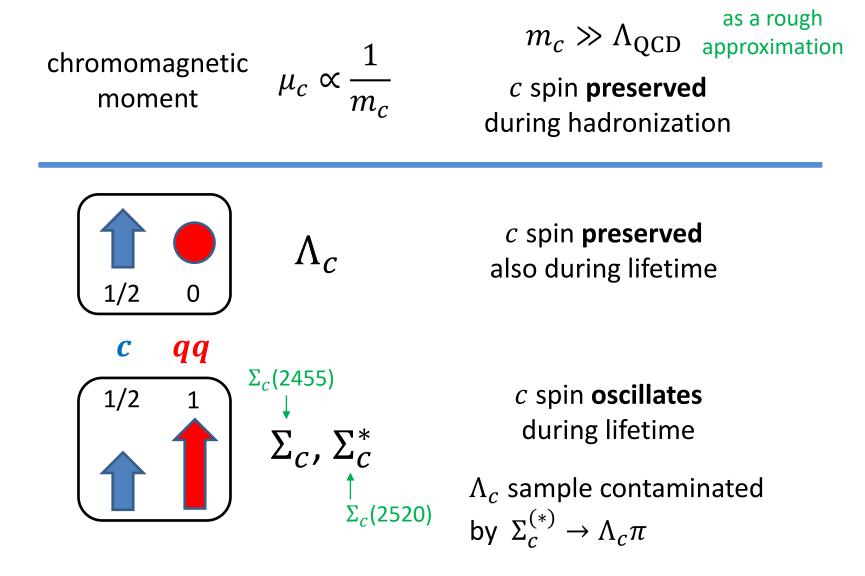
| Quark | Channel                       | Run            | HL-LHC         |                |
|-------|-------------------------------|----------------|----------------|----------------|
|       | Channer                       | standard       | parked         |                |
|       | hadronic                      |                |                |                |
| c     | semileptonic                  |                |                | $\checkmark$   |
| _     | mixed                         |                |                | $\checkmark$   |
| b     | inclusive/inclusive           | (🖍)            | (🖌)            | (🖌)            |
|       | semi-inclusive/semi-inclusive | $\checkmark$   | $\checkmark$   | $\checkmark$   |
|       | exclusive/exclusive           | $\checkmark$   | $\checkmark$   | $\checkmark$   |
|       | inclusive/exclusive           | $(\checkmark)$ | $(\checkmark)$ | $(\checkmark)$ |
|       | inclusive/semi-inclusive      | (🗡)            | $(\checkmark)$ | $(\checkmark)$ |
|       | exclusive/semi-inclusive      | $\checkmark$   | $\checkmark$   | $\checkmark$   |

purity < 10%






# **Conclusions and outlook**


- >  $b\overline{b}$  spin correlation measurements may be possible even with Run 2 datasets, especially with the CMS parked data.
- $\succ$   $c\bar{c}$  spin correlation measurements may become possible at the HL-LHC.
- > Can measure the polarization retention factors  $r_L$  and  $r_T$ (more refined: the polarized fragmentation functions):

$$r_L^2 = \frac{C_{kk}}{c_{kk}\alpha_+\alpha_-f} \ , \quad r_T^2 = \frac{C_{nn}}{c_{nn}\alpha_+\alpha_-f} \ , \quad r_T^2 = \frac{C_{rr}}{c_{rr}\alpha_+\alpha_-f}$$

- > Measuring  $r_L$  via the polarized b and c quarks in  $t\bar{t}$  samples could be a simpler first step. JHEP 11 (2015) 067 [arXiv:1505.02771]
- Measurements of entanglement and Bell nonlocality, similar to  $t\overline{t}$ .
   To appear next week (with Afik, Muñoz de Nova, Soffer, Uzan).
- Can spin correlations be useful for discovering or characterizing new physics? Work in progress (with Uzan).

# **Supplemental Slides**

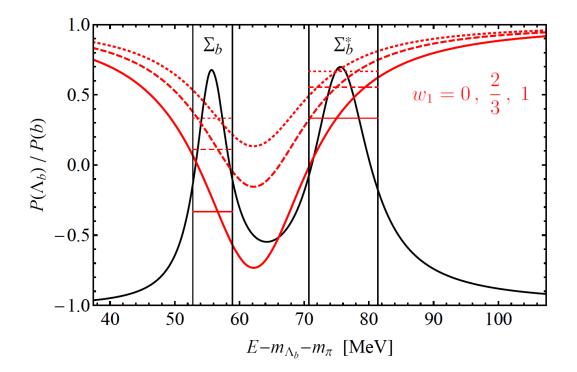




# Dominant polarization loss effect $\Sigma_b^{(*)} ightarrow \Lambda_b \pi$ decays

$$\begin{split} \left| \Lambda_{b,+1/2} \right\rangle &= \left| b_{+1/2} \right\rangle \left| S_0 \right\rangle \\ \left| \Sigma_{b,+1/2} \right\rangle &= -\sqrt{\frac{1}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{2}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+1/2}^* \right\rangle &= \sqrt{\frac{2}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{1}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+3/2}^* \right\rangle &= \left| b_{+1/2} \right\rangle \left| T_{+1} \right\rangle \end{split}$$

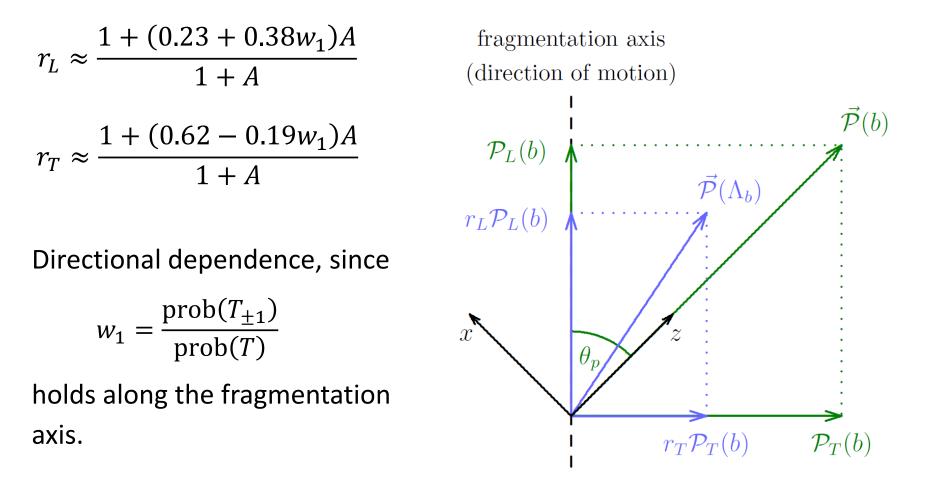
#### Production as a *b* spin eigenstate. Decay as a $\Sigma_b \text{ or } \Sigma_b^*$ mass eigenstate.


e.g. 
$$|b_{\pm 1/2}\rangle|T_0\rangle = -\sqrt{\frac{1}{3}}|\Sigma_{b,\pm 1/2}\rangle + \sqrt{\frac{2}{3}}|\Sigma_{b,\pm 1/2}^*\rangle$$

 $r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$ "diquarks" S Tspin-0 spin-1 isosinglet isotriplet  $A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$  $w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$  along axis of fragmentation

$$r \approx \frac{1 + (1 + 4w_1)A/9}{1 + A}$$

Falk and Peskin, PRD 49, 3320 (1994) [hep-ph/9308241]


More precisely, need to account for  $\Sigma_b^{(*)}$  widths (interference).



 $r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A}$ 

Parameter(MeV)
$$\Gamma_{\Sigma_b}$$
 $7 \pm 3$  $\Gamma_{\Sigma_b^*}$  $9 \pm 2$  $m_{\Sigma_b^*} - m_{\Sigma_b}$  $21 \pm 2$ 

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan JHEP 11 (2015) 067 [arXiv:1505.02771]



Galanti, Giammanco, Grossman, Kats, Stamou, Zupan JHEP 11 (2015) 067 [arXiv:1505.02771]

# Heavy quark polarization retention

$$r_{L} \approx \frac{1 + (0.23 + 0.38w_{1})A}{1 + A} \qquad A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$
$$r_{T} \approx \frac{1 + (0.62 - 0.19w_{1})A}{1 + A} \qquad w_{1} = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

#### What is known about A and $w_1$ (for both b and c quarks)?

 Pythia tunes
  $0.24 \leq A \leq 0.45$  (but based on light hadron data)

 DELPHI (LEP)
  $1 \leq A \leq 10$  (b)
  $w_1 = -0.36 \pm 0.30 \pm 0.30$  (b)

 DELPHI-95-107
  $A \approx 1.1$  (c)
 CLEO (CESR)
  $w_1 = 0.71 \pm 0.13$  (c)

 PLB 379, 292 (1996)
 PRL 78, 2304 (1997)
 PRL 78, 2304 (1997)

 Statistical hadronization
  $A \approx 2.6$  (b and c)
  $w_1 \approx 0.41$  (b), 0.39 (c)

 PRD 64, 014021 (2001)
  $A \approx 6$  (b and c)
  $w_1 \approx 0.41$  (b), 0.39 (c)

### Heavy quark polarization retention

$$r_{L} \approx \frac{1 + (0.23 + 0.38w_{1})A}{1 + A} \qquad A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$
$$r_{T} \approx \frac{1 + (0.62 - 0.19w_{1})A}{1 + A} \qquad w_{1} = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

What is known about A and  $w_1$  (for both b and c quarks)?

Overall: 
$$A \sim \mathcal{O}(1), \ 0 \leq w_1 \leq 1$$
  
 $r_L, r_T \sim \mathcal{O}(1)$ 

 $r_L$  consistent with  $\Lambda_b$  results from LEP

## Measuring $r_L$ via ATLAS/CMS $t\bar{t}$ samples

Top pair production  $pp \rightarrow t\overline{t}$ 

 $\succ t \rightarrow W^+b$  produces polarized b quarks.

 $\hookrightarrow c\bar{s}$  produces polarized *c* quarks.

- $\succ$  Easy to select a clean  $t\overline{t}$  sample (e.g., in lepton + jets).
- Kinematic reconstruction along with b and c tagging enable obtaining high-purity samples of b and c jets.
- $\succ$  Statistics in Run 2 is as large as in Z decays at LEP.
- ➢ Run 2 data allows measuring  $r_L$  with O(10%) precision for both b and c.

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan JHEP 11 (2015) 067 [arXiv:1505.02771]

# Selection for $b\overline{b}$ analysis

- Pair of opposite-sign muons (inside jets) satisfying the offline trigger cuts and carrying > 20% of the jet momentum.
- □ At least one of the jets is "*b* tagged" (with assumed efficiency of 80%), e.g. by muon impact parameter.

Dominant remaining background:

#### semileptonic *B*-meson decays

Possible approaches to dealing with it:

**Inclusive** keep it (to keep the signal efficiency high)

**Semi-inclusive** demand  $\Lambda \rightarrow p\pi^-$  coming from the *b* decay vertex (significant cost in efficiency because the  $\Lambda$  decays far)

**Exclusive** demand a fully-reconstructible  $\Lambda_c$  decay

Mixed (one choice for one jet, another choice for the second)

# Selection for $b\overline{b}$ analysis

| Selection      | Decay Modes                                                               | Branching Ratio |
|----------------|---------------------------------------------------------------------------|-----------------|
| Inclusive      | $\Lambda_b \to X_c \mu^- \bar{\nu}_\mu$                                   | 11%             |
| Semi-inclusive | $\Lambda_c^+ \to \Lambda X$                                               | 38%             |
| Semi-menusive  | $\Lambda \to p\pi^-$                                                      | 64%             |
|                | $\Lambda_c^+ \to p K^- \pi^+$                                             | 6.3%            |
|                | $\Lambda_c^+ \to \Lambda \pi^+ \to p \pi^- \pi^+$                         | 0.8%            |
|                | $\Lambda_c^+ \to pK_S \to p\pi^-\pi^+$                                    | 1.1%            |
| Exclusive      | $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^- \to p \pi^+ \pi^+ \pi^- \pi^-$ | 2.3%            |
| Exclusive      | $\Lambda_c^+ \to p K_S \pi^+ \pi^- \to p \pi^+ \pi^+ \pi^- \pi^-$         | 1.1%            |
|                | $\Lambda_c^+\to \Sigma^+\pi^+\pi^-$                                       | 4.5%            |
|                | $\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+$                                    | 1.9%            |
|                | total                                                                     | 18%             |

## Event counts for $b\overline{b}$ analysis

| $m_{jj}$ cut [GeV]                        | $N^{ii}_{b\bar{b}}$ | $N^{ss}_{b\bar{b}}$ | $N^{ee}_{b\bar{b}}$ | $N^{is}_{bar{b}}$   | $N^{ie}_{bar{b}}$   | $N^{se}_{b\bar{b}}$ |
|-------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| no cut                                    | $8.0 \times 10^{4}$ | 200                 | 640                 | $8.1 	imes 10^3$    | $1.4 \times 10^4$   | 730                 |
| 100                                       | $4.7 \times 10^4$   | 121                 | 380                 | $4.8\times10^3$     | $8.5 \times 10^3$   | 430                 |
| 300                                       | $2.7 \times 10^{3}$ | 5.0                 | 21                  | 230                 | 490                 | 20                  |
| 500                                       | 360                 |                     | 2.9                 | 20                  | 65                  | 1.8                 |
| parked data                               | $1.1 \times 10^6$   | $1.1 \times 10^{4}$ | 8700                | $2.2 \times 10^5$   | $1.9 \times 10^5$   | $2.0 \times 10^4$   |
| purity $f$ [%]                            | 0.55                | 32                  | 44                  | 4.2                 | 4.9                 | 38                  |
|                                           |                     |                     |                     |                     |                     |                     |
| $\frac{m_{jj} \text{ cut}}{[\text{GeV}]}$ | $N^{ii}_{b\bar{b}}$ | $N^{ss}_{b\bar{b}}$ | $N^{ee}_{b\bar{b}}$ | $N^{is}_{b\bar{b}}$ | $N^{ie}_{b\bar{b}}$ | $N^{se}_{b\bar{b}}$ |
| no cut                                    | $6.7 \times 10^6$   | $8.1 \times 10^4$   | $5.4 \times 10^4$   | $1.5 	imes 10^6$    | $1.2 \times 10^6$   | $1.3 \times 10^5$   |
| 100                                       | $2.6 \times 10^6$   | $3.1 \times 10^4$   | $2.1 \times 10^4$   | $5.7 \times 10^5$   | $4.7 \times 10^5$   | $5.1 \times 10^4$   |
| 300                                       | $9.6 \times 10^4$   | 610                 | 780                 | $1.5 	imes 10^4$    | $1.7 \times 10^4$   | $1.4 \times 10^3$   |
| 500                                       | $1.2 \times 10^4$   | 35                  | 98                  | $1.3 \times 10^3$   | $2.2 \times 10^3$   | 120                 |
| 750                                       | $2.0 \times 10^3$   | 3.0                 | 16                  | 150                 | 360                 | 13                  |
| 1000                                      | 460                 |                     | 3.7                 | 27                  | 82                  | 2.5                 |

44

4.2

4.9

38

Run 2

HL-LHC

purity f [%]

0.55

32

# Run 2 precision for $b\overline{b}$

| $\mathrm{channel} \rightarrow$ | inclusive              | inclusive/inclusive   |                               | inclusive/exclusive   |                               |
|--------------------------------|------------------------|-----------------------|-------------------------------|-----------------------|-------------------------------|
| trigger                        | $r_i \Delta b_i^{\pm}$ | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ |
| standard                       | 0.003                  | 0.14                  | 0.10                          | 0.11                  | 0.079                         |
| parked                         | 0.0003                 | 0.039                 | 0.027                         | 0.031                 | 0.022                         |

| $\mathrm{channel} \rightarrow$ | semi-inclusive         | semi-inclusive/semi-inclusive |                               | semi-inclusive/inclusi |                               |
|--------------------------------|------------------------|-------------------------------|-------------------------------|------------------------|-------------------------------|
| trigger                        | $r_i \Delta b_i^{\pm}$ | $r_i^2 \Delta c_{ii}$         | $r_i r_j \Delta c_{ij(\ell)}$ | $r_i^2 \Delta c_{ii}$  | $r_i r_j \Delta c_{ij(\ell)}$ |
| standard                       | 0.005                  | 0.36                          | 0.25                          | 0.16                   | 0.11                          |
| parked                         | 0.0004                 | 0.050                         | 0.035                         | 0.031                  | 0.022                         |

| $\mathrm{channel} \rightarrow$ | exclusive              | exclusive/exclusive   |                               | exclusive/semi-inclusiv |                               |
|--------------------------------|------------------------|-----------------------|-------------------------------|-------------------------|-------------------------------|
| trigger                        | $r_i \Delta b_i^{\pm}$ | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ | $r_i^2 \Delta c_{ii}$   | $r_i r_j \Delta c_{ij(\ell)}$ |
| standard                       | 0.003                  | 0.18                  | 0.11                          | 0.18                    | 0.13                          |
| parked                         | 0.0004                 | 0.049                 | 0.034                         | 0.034                   | 0.024                         |

Note: Since the performance of the different channels is comparable, sensitivity can be improved by combining channels.

# Run 2 precision for $b\overline{b}$

| $\mathrm{channel} \rightarrow$ | inclusive              | inclusiv              | ve/inclusive                  | inclusive/exclusive   |                               |  |
|--------------------------------|------------------------|-----------------------|-------------------------------|-----------------------|-------------------------------|--|
| trigger                        | $r_i \Delta b_i^{\pm}$ | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ |  |
| standard                       | 0.003                  | 0.14                  | 0.10                          | 0.11                  | 0.079                         |  |
| parked                         | 0.0003                 | 0.039                 | 0.027                         | 0.031                 | 0.022                         |  |

| $\mathrm{channel} \rightarrow$ | semi-inclusive         | semi-inclusive/semi-inclusive |                               | semi-inclusive/inclusiv |                               |
|--------------------------------|------------------------|-------------------------------|-------------------------------|-------------------------|-------------------------------|
| trigger                        | $r_i \Delta b_i^{\pm}$ | $r_i^2 \Delta c_{ii}$         | $r_i r_j \Delta c_{ij(\ell)}$ | $r_i^2 \Delta c_{ii}$   | $r_i r_j \Delta c_{ij(\ell)}$ |
| standard                       | 0.005                  | 0.36                          | 0.25                          | 0.16                    | 0.11                          |
| parked                         | 0.0004                 | 0.050                         | 0.035                         | 0.031                   | 0.022                         |

| $\mathrm{channel} \rightarrow$ | exclusive              | exclusive/exclusive   |                               | exclusive/semi-inclusi |                               |
|--------------------------------|------------------------|-----------------------|-------------------------------|------------------------|-------------------------------|
| trigger                        | $r_i \Delta b_i^{\pm}$ | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ | $r_i^2 \Delta c_{ii}$  | $r_i r_j \Delta c_{ij(\ell)}$ |
| standard                       | 0.003                  | 0.18                  | 0.11                          | 0.18                   | 0.13                          |
| parked                         | 0.0004                 | 0.049                 | 0.034                         | 0.034                  | 0.024                         |

Note: Since the performance of the different channels is comparable, sensitivity can be improved by combining channels.

## **HL-LHC** precision for $b\overline{b}$

| $\mathrm{channel} \rightarrow$                   | inclusive              | inclusive/inclusive   |                               | inclusive/exclusi     |                               |
|--------------------------------------------------|------------------------|-----------------------|-------------------------------|-----------------------|-------------------------------|
| $m_{jj} \operatorname{cut} [\operatorname{GeV}]$ | $r_i \Delta b_i^{\pm}$ | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ |
| no cut                                           | 0.0004                 | 0.015                 | 0.011                         | 0.012                 | 0.0086                        |
| 300                                              | 0.0022                 | 0.13                  | 0.091                         | 0.10                  | 0.071                         |

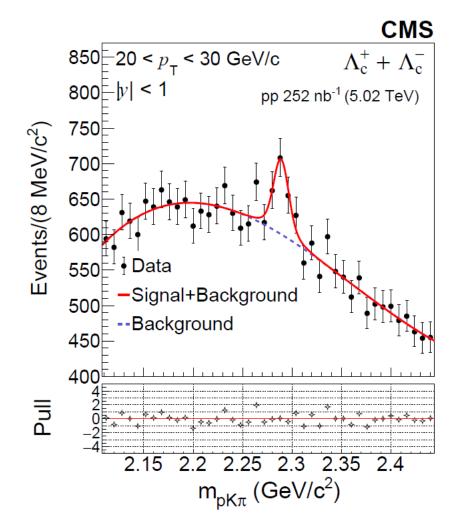
| $\mathrm{channel} \rightarrow$ | semi-inclusive         | semi-inclusive/semi-inclusive |                               | semi-inclusive/inclusive |                               |
|--------------------------------|------------------------|-------------------------------|-------------------------------|--------------------------|-------------------------------|
| $m_{jj}$ cut [GeV]             | $r_i \Delta b_i^{\pm}$ | $r_i^2 \Delta c_{ii}$         | $r_i r_j \Delta c_{ij(\ell)}$ | $r_i^2 \Delta c_{ii}$    | $r_i r_j \Delta c_{ij(\ell)}$ |
| no cut                         | 0.0004                 | 0.018                         | 0.013                         | 0.012                    | 0.0084                        |
| 300                            | 0.0027                 | 0.21                          | 0.15                          | 0.12                     | 0.082                         |

| $\mathrm{channel} \rightarrow$ | exclusive              | exclusive/exclusive   |                               | exclusive/semi-inclusiv |                               |
|--------------------------------|------------------------|-----------------------|-------------------------------|-------------------------|-------------------------------|
| $m_{jj}$ cut [GeV]             | $r_i \Delta b_i^{\pm}$ | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ | $r_i^2 \Delta c_{ii}$   | $r_i r_j \Delta c_{ij(\ell)}$ |
| no cut                         | 0.0004                 | 0.019                 | 0.013                         | 0.013                   | 0.0093                        |
| 300                            | 0.0025                 | 0.16                  | 0.11                          | 0.13                    | 0.091                         |

Note: Since the performance of the different channels is comparable, sensitivity can be improved by combining channels.

## Hadronic selection for $c\overline{c}$ analysis

$$\Lambda_c^+ \to p K^- \pi^+$$


- > Three hadron tracks consistent with a common vertex and the  $\Lambda_c^+$  mass hypothesis.
- > Backgrounds:
  - Other charmed hadron decays,

e.g.,  $D^+ \to \pi^+ K^- \pi^+ (\pi^0)$ .

- Charmed hadrons from *b* jets.
- Combinatorial background due to random track combinations.

## Hadronic selection for $c\overline{c}$ analysis

$$\Lambda_c^+ \to p K^- \pi^+$$



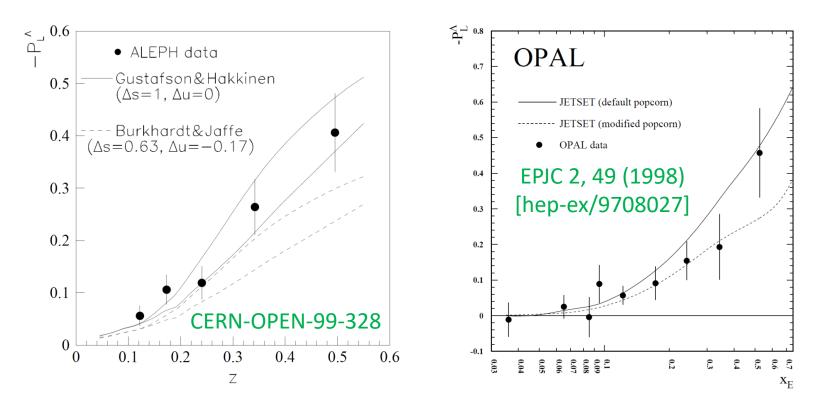
CMS Collaboration JHEP 01 (2024) 128 [arXiv:2307.11186]

## Semileptonic selection for $c\overline{c}$ analysis

- Pair of opposite-sign muons (inside jets) satisfying the offline trigger cuts.
- $\Box \Lambda \rightarrow p\pi^{-}$  decay in each jet (will help reconstruct the  $\Lambda_{c}^{+}$  and eliminate the *D*-meson background).
- **□** The inferred  $\Lambda$  trajectory should form a displaced vertex with the muon, or the  $\Lambda$  should carry a significant fraction of the jet momentum (to ensure that the  $\Lambda$  originates from the  $\Lambda_c^+$  decay).
- Charm tagging against b jets with 40% signal efficiency (which likely makes the background from b jets negligible; see paper for more details).

### **Event counts and precision for** $c\overline{c}$ **analysis**

#### **HL-LHC**


| channel      | $N_{c\bar{c}}$    | f [%]    | $r_i^2 \Delta c_{ii}$ | $r_i r_j \Delta c_{ij(\ell)}$ |
|--------------|-------------------|----------|-----------------------|-------------------------------|
| hadronic     | 24                |          |                       |                               |
| semileptonic | $2.4 \times 10^3$ | 100      | 0.060                 | 0.042                         |
| mixed        | $3.9 	imes 10^3$  | 100 - 14 | 0.072 - 0.19          | 0.050 - 0.13                  |

## s-quark polarization retention?

Cannot argue for polarization retention using heavy-quark limit.
Cannot argue for polarization loss either!

## s-quark polarization retention!

- Cannot argue for polarization retention using heavy-quark limit.
  Cannot argue for polarization loss either!
- $\succ \Lambda$  polarization studies were done in Z decays at LEP.



## s-quark polarization retention!

- Cannot argue for polarization retention using heavy-quark limit.
  Cannot argue for polarization loss either!
- >  $\Lambda$  polarization studies were done in Z decays at LEP. For z > 0.3:

 $\mathcal{P}(\Lambda) = -0.31 \pm 0.05$  Aleph, Cern-Open-99-328

 ${\cal P}(\Lambda) = -0.33 \pm 0.08$  OPAL, EPJC 2, 49 (1998) [hep-ex/9708027]

Contributions from all quark flavors are included.

For strange quarks only (non-negligible modeling uncertainty):

 $-0.65 \lesssim \mathcal{P}(\Lambda) \lesssim -0.49$  Kats, PRD 92, 071503 (2015) [1505.06731] Sizable polarization retention!

## Challenges for ss analyses

 $\Lambda \to p\pi^-$ 

- > ATLAS/CMS jet triggers require  $p_T \gtrsim 400$  GeV, limiting the statistics.
- Only about 3% of the energetic Λ baryons decay sufficiently early inside the tracker, again limiting the statistics.
- Large backgrounds from other dijet processes (no "s tagging" algorithms) lead to low sample purity (~ 1%).

### **Statistical uncertainties**

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_i^{\pm}} = \frac{1}{2} \left( 1 + B_i^{\pm} \cos\theta_i^{\pm} \right)$$

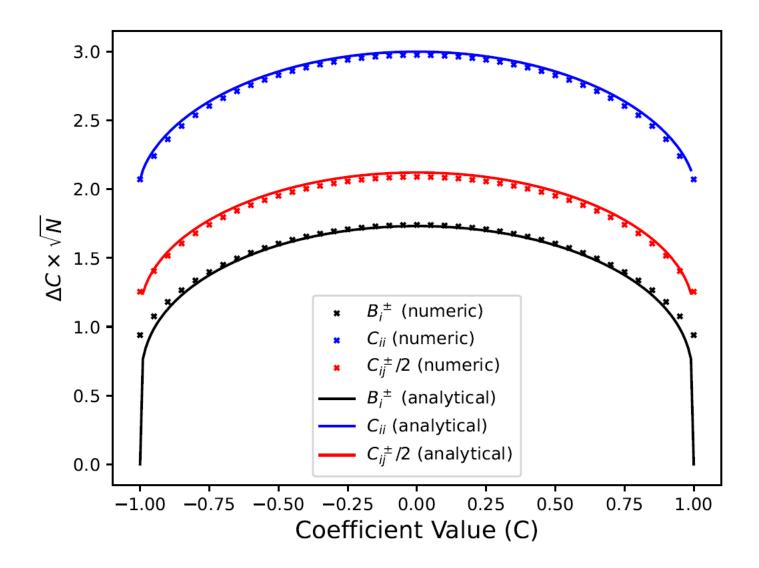
$$\frac{1}{\sigma} \frac{d\sigma}{d(\cos\theta_i^+ \cos\theta_j^-)} = \frac{1}{2} \left( 1 - C_{ij} \cos\theta_i^+ \cos\theta_j^- \right) \ln\left(\frac{1}{|\cos\theta_i^+ \cos\theta_j^-|}\right)$$

$$\frac{1}{\sigma} \frac{d\sigma}{dX_{\pm}} = \frac{1}{2} \left( 1 - \frac{C_{ij}^{\pm}}{2} X_{\pm} \right) \cos^{-1}(|X_{\pm}|)$$

$$C_{ij}^{\pm} = C_{ij} \pm C_{ji} \qquad X_{\pm} = \cos \theta_i^+ \cos \theta_j^- \pm \cos \theta_j^+ \cos \theta_i^-$$

#### Uncertainties from fitting to statistically fluctuated data:

$$\Delta B_i^{\pm} \simeq \frac{\sqrt{3}}{\sqrt{N}} , \quad \Delta C_{ij} \simeq \frac{3}{\sqrt{N}} , \quad \Delta C_{ij}^{\pm} \simeq \frac{3\sqrt{2}}{\sqrt{N}}$$


#### **Statistical uncertainties**

$$B_i^{\pm} = \alpha_{\pm} r_i f b_i^{\pm} \qquad C_{ii} = \alpha_{+} \alpha_{-} r_i^2 f c_{ii}$$
$$C_{ij}^{+} = 2\alpha_{+} \alpha_{-} r_i r_j f c_{ij} \qquad C_{ij}^{-} = 2\alpha_{+} \alpha_{-} r_i r_j f c_{\ell}$$

$$\Delta b_i^{\pm} \simeq \frac{\sqrt{3}}{|r_i \alpha_{\pm}| \sqrt{f N_{\text{sig}}}} ,$$
  
$$\Delta c_{ii} \simeq \frac{3}{r_i^2 |\alpha_{+} \alpha_{-}| \sqrt{f N_{\text{sig}}}} ,$$
  
$$\Delta c_{ij(\ell)} \simeq \frac{3}{\sqrt{2} |r_i r_j \alpha_{+} \alpha_{-}| \sqrt{f N_{\text{sig}}}}$$

## **Statistical uncertainties**

Dependence on the value of the coefficient:

