

Quarks at the Modular S₄ Cusp

I.d.M.Varzielas, M.Levy, J.T.Penedo, S.T.Petcov

Goal

Modular Invariance

Natural Hierarchies

Predictive Models w/ Natural Hierarchies

for Quarks

Modular Framework

What are modular symmetries?

• Principal Congruence $\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$ Subgroups

 Quotient Group

$$\Gamma'_N \equiv \Gamma/\Gamma(N) \simeq SL(2,\mathbb{Z}_N)$$

Modular Group

- 3 generators $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $R = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$,
- Group Relations $S^2 = R$, $(ST)^3 = \mathbb{1}$, $R^2 = \mathbb{1}$, RT = TR.
- Transformation $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : \tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d}$
 - Generating Transformations $S: \tau \to -\frac{1}{\tau}$, $T: \tau \to \tau + 1$, $R: \tau \to \tau$

• Applications to Flavour

 $\Gamma_2 \simeq S_3 \qquad \qquad \Gamma'_2 \simeq S_3$ $\Gamma_3 \simeq A_4 \qquad \qquad \Gamma'_3 \simeq T'$ $\Gamma_4 \simeq S_4 \qquad \qquad \Gamma'_4 \simeq S'_4$ $\Gamma_5 \simeq A_5 \qquad \qquad \Gamma'_5 \simeq A'_5$

 $\varphi_i \xrightarrow{\gamma} (c\tau + d)^{-k} \rho_{ij}(\gamma) \varphi_j$ Representation Matrix of Γ_N

Modular Framework

• Superpotential

$$W(\tau,\psi_I) = \sum \left(Y_{I_1\dots I_n}(\tau) \,\psi_{I_1}\dots\psi_{I_n} \right)_{\mathbf{1}}$$

Modular Framework

- Modular Forms (Yukawas):
 - "Weighted-representations" (-ish)
 - Representations (and weights) constrained by Γ_N
 - Specific functions of τ

-
$$Y_{\mathbf{r}}^{(k)}(\tau) = \left(\bigotimes_{n=1}^{k} Y_{\mathbf{r_1}}^{(1)}(\tau)\right)_{\mathbf{r}}$$

Residual Symmetries

Fundamental Domain

$$\tau = i\infty : T \circ i\infty = i\infty + 1 = i\infty$$

$$\mathbb{Z}_{N}^{T} \times \mathbb{Z}_{2}^{R} \quad T^{N} = 1 \text{ and } R^{2} = 1$$

$$\tau = i : S \circ i = \frac{-1}{i} = i$$

$$\mathbb{Z}_{4}^{S} \quad S^{2} = R \text{ and } R^{2} = 1$$

$$\tau = \omega : ST \circ \omega = \frac{-1}{-\omega^{2}} = \omega$$

$$\mathbb{Z}_{3}^{ST} \times \mathbb{Z}_{2}^{R} \quad (ST)^{3} = 1 \text{ and } R^{2} = 1$$

 ${\rm Re} \ \tau$

Natural Hierarchies

Subgroup Decomposition @ Cusp

• Field Transformations

$$\begin{split} \varphi_i &\xrightarrow{\gamma} (c\tau + d)^{-k} \rho_{ij}(\gamma) \varphi_j \\ ST &= \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \\ \varphi &\to \omega^k \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix} \varphi = \begin{pmatrix} \omega^k & 0 & 0 \\ 0 & \omega^{k+1} & 0 \\ 0 & 0 & \omega^{k+2} \end{pmatrix} \varphi \\ 0 & 0 & \omega^{k+2} \end{pmatrix} \varphi \\ \mathbf{3} &\to \mathbf{1}_k \oplus \mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2} \end{split}$$

Mass Matrices: Power Structure @ cusp

•
$$\varphi_i M(\tau)_{ij} \varphi_j^c$$
 \longrightarrow $M(\tau) \xrightarrow{\gamma} M(\gamma \tau) = (c\tau + d)^{k_Y} \rho^* M(\tau) \rho^{c\dagger}$

$$\widetilde{\rho}_{i} = w^{k} \rho_{i},$$

$$u = \frac{\tau - \omega}{\tau - \omega^{2}}, \quad \epsilon = |u| \qquad \qquad \omega^{2n} \widetilde{M}_{ij}^{(n)}(0) = \left(\widetilde{\rho}_{i} \widetilde{\rho}_{j}^{c}\right)^{*} \widetilde{M}_{ij}^{(n)}(0)$$

$$\widetilde{M}_{ij}(u) = (1 - u)^{-k_{Y}} M_{ij}(u),$$

$$\tilde{\rho}_i^c \tilde{\rho}_j = \omega^l \Rightarrow \tilde{M}_{ij} \sim M_{ij} \sim \mathcal{O}(\epsilon^l)$$

See M. Tanimoto's talk

Natural Hierarchies: An Example

S'_4 irrep r	$1,1',\mathbf{\hat{1}},\mathbf{\hat{1}}'$	$2,\mathbf{\hat{2}}$	${f 3}, {f 3}', {f \hat 3}, {f \hat 3}'$
\mathbb{Z}_3 decomposition	1_k	$1_{k+1} \oplus 1_{k+2}$	$1_k \oplus 1_{k+1} \oplus 1_{k+2}$

$$Q \sim \left(\mathbf{2}, 0
ight) \oplus \left(\mathbf{1}, 2
ight) \rightsquigarrow \mathbf{1}_1 \oplus \mathbf{1}_2 \oplus \mathbf{1}_2$$
 $q^c \sim \left(\mathbf{2}, 4
ight) \oplus \left(\mathbf{1}, 2
ight) \rightsquigarrow \mathbf{1}_2 \oplus \mathbf{1}_0 \oplus \mathbf{1}_2$

	(1	ϵ	1
$M \sim$	ϵ	ϵ^2	ϵ
	ϵ	ϵ^2	ϵ /

Natural Hierarchies: An Example

S'_4 irrep r	$1,1',\mathbf{\hat{1}},\mathbf{\hat{1}}'$	$2,\mathbf{\hat{2}}$	${f 3}, {f 3}', {f \hat 3}, {f \hat 3}'$
\mathbb{Z}_3 decomposition	1_k	$1_{k+1} \oplus 1_{k+2}$	$1_k \oplus 1_{k+1} \oplus 1_{k+2}$

$$Q \sim \left(\mathbf{2}, 0\right) \oplus \left(\mathbf{1}, 2\right) \sim \mathbf{1}_1 \oplus \mathbf{1}_2 \oplus \mathbf{1}_2$$

 $q^c \sim \left(\mathbf{2}, 4\right) \oplus \left(\mathbf{1}, 2\right) \sim \mathbf{1}_2 \oplus \mathbf{1}_0 \oplus \mathbf{1}_2$

	$\begin{pmatrix} 1 \end{pmatrix} \epsilon$	$ 1\rangle$
$M \sim$	$\epsilon \epsilon^2$	ϵ
	$\left(\begin{array}{cc} \epsilon & \epsilon^2 \end{array} \right)$	ϵ

Natural Hierarchies: An Example

S'_4 irrep r	$1,1',\mathbf{\hat{1}},\mathbf{\hat{1}}'$	$2,\mathbf{\hat{2}}$	${f 3}, {f 3}', {f \hat 3}, {f \hat 3}'$
\mathbb{Z}_3 decomposition	1_k	$1_{k+1} \oplus 1_{k+2}$	$1_k \oplus 1_{k+1} \oplus 1_{k+2}$

$$Q \sim \left(\mathbf{2}, 0
ight) \oplus \left(\mathbf{1}, 2
ight) \leadsto \mathbf{1}_1 \oplus \mathbf{1}_2 \oplus \mathbf{1}_2$$
 $q^c \sim \left(\mathbf{2}, 4
ight) \oplus \left(\mathbf{1}, 2
ight) \leadsto \mathbf{1}_2 \oplus \mathbf{1}_0 \oplus \mathbf{1}_2$

	(1	ϵ	1
$M \sim$		ϵ	ϵ^2	ϵ
		ϵ	ϵ^2	ϵ /

Natural Hierarchies: Caveats

S'_4 irrep r	$1,1',\mathbf{\hat{1}},\mathbf{\hat{1}}'$	$2,\mathbf{\hat{2}}$	${f 3}, {f 3}', {f \hat 3}, {f \hat 3}'$
\mathbb{Z}_3 decomposition	1_k	$1_{k+1} \oplus 1_{k+2}$	$1_k \oplus 1_{k+1} \oplus 1_{k+2}$

$$Q \sim \left(\mathbf{2}, 0
ight) \oplus \left(\mathbf{1}, 2
ight) \rightsquigarrow \mathbf{1}_1 \oplus \mathbf{1}_2 \oplus \mathbf{1}_2$$
 $q^c \sim \left(\mathbf{2}, 4
ight) \oplus \left(\mathbf{1}, 2
ight) \rightsquigarrow \mathbf{1}_2 \oplus \mathbf{1}_0 \oplus \mathbf{1}_2$

1	1	X	1
$M \sim$	X	ϵ^2	ϵ
Į.	ϵ	ϵ^2	ϵ /

Natural Hierarchies: Normalisations

• Zero in the Symmetric Point

• Governed by the Same Coefficient (can absorb ϵ ...)

How to Normalise The Modular Forms?

Natural Hierarchies: Normalisations

• Zero in the Symmetric Point

• Governed by the Same Coefficient (can absorb ϵ ...)

How to Normalise The Modular Forms?

No idea... but

Natural Hierarchies: Normalisations

• Relative Hierarchies are unavoidable

• Euclidean Norm

Choice as good as any ... ?

Natural Hierarchies: representations

• > 3 sub-blocks \Rightarrow > 1 $\mathcal{O}(1)$ masses

• Fully Hierarchical \Rightarrow < 4 sub-blocks \Rightarrow

 $Q \sim \mathbf{3}^*$ $q^c \sim \mathbf{3}^*$

both $\sim 3^*$

Natural Hierarchies: representations

S'_4 irrep r	$1,1',\mathbf{\hat{1}},\mathbf{\hat{1}}'$	$2,\mathbf{\hat{2}}$	${f 3}, {f 3}', {f \hat 3}, {f \hat 3}'$
\mathbb{Z}_3 decomposition	1_k	$1_{k+1} \oplus 1_{k+2}$	$1_k \oplus 1_{k+1} \oplus 1_{k+2}$

•
$$(\mathbf{3}^*, k) \rightsquigarrow \mathbf{1}_k \oplus \mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$$

• Only one large mass \implies partner $\rightsquigarrow \mathbf{1}_{k'} \oplus \mathbf{1}_{k'} \oplus \mathbf{1}_{k'}$

Natural Hierarchies: representations

S'_4 irrep r	$1,1',\mathbf{\hat{1}},\mathbf{\hat{1}}'$	$2,\mathbf{\hat{2}}$	${f 3}, {f 3}', {f \hat 3}, {f \hat 3}'$
\mathbb{Z}_3 decomposition	1_k	$1_{k+1} \oplus 1_{k+2}$	$1_k \oplus 1_{k+1} \oplus 1_{k+2}$

• Only one large mass

$$Q \sim (\mathbf{3}^*, k) \implies q^c \sim \bigoplus_{\beta} (\mathbf{1}_{\beta}, k_{\beta}) \qquad k_{\beta} - k_{\beta'} = 0 \pmod{3}$$

• Mass Matrix
$$M = f\left(Y_{\mathbf{3}^{*}}^{k_{Y}}, Y_{\mathbf{3}^{*}}^{k_{Y}+3}, Y_{\mathbf{3}^{*}}^{k_{Y}+6}, \dots\right)$$

Minimal Mass Matrices

Counting Possibilities

	3 (3 ′)	${f 3'}~({f \hat 3})$		${f 3}~({f 3}')$	$3'({f \hat{3}})$		3 (3 ′)	$3'({f \hat{3}})$
k = 1	0	1	k = 2	0	1	k = 3	1	1
k = 4	1	1	k = 5	1	2	k = 6	1	2
k = 7	2	2	k = 8	2	2	k = 9	2	3
k = 10	2	3	k = 11	3	3	k = 12	2 3	3

• Predictive: at most 4 Yukawas (4x2 + τ = 10 = 6 masses + 3 angles + δ)

Counting Possibilities: 3 parameter matrices

	3 (3 ′)	$3'({\bf \hat{3}})$		3 (3 ')	${f 3'}~({f \hat 3})$			3 (3 ′)	${f 3'}~({f \hat 3})$
k = 1	0		k = 2	0	1	k	=3	1	1
k = 4			k = 5	1	2	k	= 6	1	2
k = 7	2	2	k = 8	2	2	k	=9	2	3
k = 10	2	3	k = 11	3	3	k	= 12	3	3

Massless Quark (det = 0)

$$Y^{(1)}_{\mathbf{\hat{3}}} \propto Y^{(4)}_{\mathbf{3}}$$

Counting Possibilities: 3 parameter matrices

	3 (3 ['])	3 ′ (3 ̂)		3 (3 ')	3 ′ (3 ̂)	-		3 (3 ')	$3'({\bf \hat{3}})$
k = 1	0	1	k = 2	0	1	-	k = 3	1	1
k = 4	1	1	k = 5	1	2		k = 6		2
k = 7	2	2	k = 8	2	2		k = 9	2	3
k = 10	2	3	k = 11	3	3		k = 12	3	3

Massless Quark (det = 0)

$$Y^{(3)}_{\hat{\mathbf{3}}} \propto Y^{(6)}_{\mathbf{3}}$$

Counting Possibilities: 4 parameter matrices

	3 (3 ′)	${f 3'}~({f \hat 3})$		3 (3 ['])	${f 3'}~({f \hat 3})$		${f 3}~({f 3}')$	${f 3'}~({f \hat 3})$
k = 1	0	1	k = 2	0	1	k = 3	1	1
k = 4	1	1	k = 5	1	2	k = 6	1	2
k = 7	2	2	k = 8	2	2	k = 9	2	3
k = 10	2	3	k = 11	3	3	k = 1	2 <mark>3</mark>	3

	M_1	M_2	M_3	M_4	M_5	M_6
(\mathbf{r}_1, k_1)	$({\bf \hat{3}},1)$	(3, 4)	(3', 2)	(3', 2)	$({\bf \hat{3}}',3)$	$({\bf \hat{3}}',3)$
(\mathbf{r}_2,k_2)	(3', 4)	$({\bf 3}',4)$	$({\bf \hat{3}}',5)$	$({\bf \hat{3}}',5)$	$(\mathbf{\hat{3}},3)$	(3, 6)
(\mathbf{r}_3,k_3)	$(\mathbf{\hat{3}}',7)$	$(\mathbf{\hat{3}}',7)$	$(\mathbf{\hat{3}}, 5)$	(3 , 8)	(3 ', 6)	(3 ', 6)

Counting Possibilities: 4 parameter matrices

	3 (3 ′)	$3'$ $(\mathbf{\hat{3}})$		3 (3 ′)	${f 3}'~({f \hat 3})$		${f 3}~({f 3}')$	${f 3}'~({f \hat 3})$
k = 1	0		k = 2	0	1	k = 3	1	1
k = 4	1	(1)	k = 5	1	2	k = 6	1	2
k = 7	2	(2)	k = 8	2	2	k = 9	2	3
k = 10	2	3	k = 11	3	3	k = 12	2 <mark>3</mark>	3

Counting Possibilities: 4 parameter matrices

 $Y^{(3)}_{\hat{\mathbf{3}}} \propto Y^{(6)}_{\mathbf{3}}$

	3 (3 ′)	$3'({\bf \hat{3}})$		${f 3}~({f 3}')$	${f 3'}~({f \hat 3})$		3 (3 ')	$3'({\bf \hat{3}})$
k = 1	0	1	k = 2	0	1	 k = 3	1	1
k = 4	(1)	(1)	k = 5	1	2	k = 6	1	2
k = 7	2	(2)	k = 8	2	2	k = 9	2	3
k = 10	2	3	k = 11	3	3	k = 12	3	3

$$Y_{\mathbf{\hat{3}}}^{(1)} \propto Y_{\mathbf{3}}^{(4)}$$

$$\underbrace{M_{1} \sim M_{2}}_{(\mathbf{r}_{1}, k_{1})} (\mathbf{\hat{3}}, 1) (\mathbf{3}, 4) (\mathbf{3}', 2) (\mathbf{3}', 2) (\mathbf{\hat{3}}', 3) (\mathbf{\hat{3}}', 3)}_{(\mathbf{r}_{2}, k_{2})} (\mathbf{3}', 4) (\mathbf{3}', 4) (\mathbf{3}', 4) (\mathbf{\hat{3}}', 5) (\mathbf{\hat{3}}', 5) (\mathbf{\hat{3}}, 3) (\mathbf{\hat{3}}, 6) (\mathbf{r}_{3}, k_{3}) (\mathbf{\hat{3}}', 7) (\mathbf{\hat{3}}', 7) (\mathbf{\hat{3}}, 5) (\mathbf{3}, 8) (\mathbf{3}', 6) (\mathbf{3}', 6)$$

From Matrices to Models

Assignments, Transposition, and gCP

Are all combinations Possible?

Assignments, Transposition, and gCP

Are all combinations Possible?

 $q^c \sim \mathbf{3}^* \longrightarrow 5$ field weights to 6 Yukawa weights \longrightarrow No :(

Assignments, Transposition, and gCP

$$Q \sim \mathbf{3}^*$$

$$(M_1^T, M_4^T), \quad (M_2^T, M_5^T), \quad (M_3^T, M_6^T), (M_4^T, M_1^T), \quad (M_5^T, M_2^T), \quad (M_6^T, M_3^T), (M_i^T, M_i^T) \text{ with } i = 1, \dots, 6$$

 $q^c \sim \mathbf{3}^*$

of Parameters

$$M_q \sim \begin{pmatrix} | & | & | \\ \alpha_1 Y_1 \ \alpha_2 Y_2 \ \alpha_3 Y_3 + \alpha_4 Y_4 \\ | & | & | \end{pmatrix} \text{ or its transpose}$$

gCP

 $Q\sim \mathbf{3}^*$

(4 real) x 2 + τ

(4 real) x 2 + τ + (1 phase) x 2 $q^c\sim {f 3}^*$

(4 real) x 2 + τ + (2 phase) x 2

Numerical Results

Can we find the elusive predictive Quark model?

Foreshadowing: no

	# dofs	$Q \sim 3^*$	$q^c \sim 3^*$
gCp (w/o δ)	10	\checkmark	\checkmark
gCp (w/ δ)	10	X	X
pheno phase	11	\checkmark	
special τ	10"+2"	\checkmark	
2τ	8+4	\checkmark	\checkmark

9 <u></u>		# de	ofs	Q	$\sim 3^{*}$	q^c	$\sim 3^{*}$	_			
gCp (w/o δ)		10			\checkmark		\checkmark	-			
gCp (w pheno p	Mu	M _{1,2}	M_3	M_4	$M_{5,6}$		M _d	$M_{1,2}^{T}$	M_3^T	M_4^T	$M_{5,6}^{T}$
$\frac{1}{2\tau}$	$M_{1,2}$	0.0	9+	9+	9+		$M_{1,2}^T$	0.0		1.5	1.5
	M_3	9+	0.0	0.0	9+		M_3^T	_	1.0	-	1.0
	M_4	9+	0.0	0.0	9+		M_4^T	0.0		1.0	
	$M_{5,6}$	9+	9+	9+	0.0		$M_{5,6}^{T}$	0.0	1.5	-	1.4
	(a) Models with $Q \sim 3^*$.						(b) Model	s with q	$q^c \sim 3^*.$	

	# dofs	$Q\sim 3^*$	$q^c \sim 3^*$
gCp (w/o δ)	10	\checkmark	\checkmark
gCp (w/ δ)	10	X	X
pheno phase	11	\checkmark	
special τ	10"+2"	\checkmark	
2τ	8+4	\checkmark	\checkmark

• The problem of CP-violation

	# dofs	$Q \sim 3^*$	$q^c \sim 3^*$
gCp (w/o δ)	10	\checkmark	\checkmark
gCp (w/ δ)	10	X	X
pheno phase	11	\checkmark	
special τ	10"+2"	\checkmark	
2τ	8+4	\checkmark	\checkmark

 Pheno phase: lift gCP only in one sector (not consistently)

	# dofs	$Q \sim 3^*$	$q^c \sim 3^*$
gCp (w/o δ)	10	\checkmark	\checkmark
gCp (w/ δ)	10	X	X
pheno phase	11	\checkmark	
special τ	10"+2"	\checkmark	
2τ	8+4	\checkmark	\checkmark

Special τ : no gCP but top-down values for τ

 $\tau \simeq \mp 0.484 + 0.884 i, \ \mp 0.492 + 0.875 i, \ \mp 0.495 + 0.872 i, \ \dots,$ corresponding to $|\epsilon(\tau)| \simeq 0.04, \ 0.02, \ 0.01, \ \dots,$

${\text{gCp} (w/o \delta)}$	M_{u}	$M_{1,2}$	M_3	M_4	$M_{5,6}$		$M_{1,2}$	M_3	M_4	$M_{5,6}$
$\frac{gCp(w/\delta)}{gCp(w/\delta)}$	$M_{1,2}$	0.1	9+	9+	9+	$M_{1,2}$	5+	9+	9+	9+
pheno phase	M_3	9+	2.1	2.1	9+	M_3	9+	5 +	5 +	9+
special τ	M_4	9+	2.1	2.1	9+	M_4	9+	5 +	5 +	9+
2τ	$M_{5,6}$	9+	9+	9+	2.1	$M_{5,6}$	9+	9+	9+	5 +
	(a) $\tau = \mp 0.484 + 0.884 i.$			(b) $\tau = \mp 0.492 + 0.875 i.$						

$$\tau \simeq \mp 0.484 + 0.884 \, i, \ \mp 0.492 + 0.875 \, i, \ \mp 0.495 + 0.872 \, i, \ \dots,$$

corresponding to $|\epsilon(\tau)| \simeq 0.04, \ 0.02, \ 0.01, \ \dots,$

	# dofs	$Q \sim 3^*$	$q^c \sim 3^*$
gCp (w/o δ)	10	\checkmark	\checkmark
gCp (w/ δ)	10	X	X
pheno phase	11	\checkmark	
special τ	10"+2"	\checkmark	
2τ	8+4	\checkmark	\checkmark

 2 τ : gCP but different τ for each sector (not consistent)

Are the Hierarchies *actually* from the proximity to the cusp?

Almost?

A Closer Look @ Natural Hierarchies

	gCP (masses)	gCP (all)	pheno phase	no gCP	two moduli
$\operatorname{Re} \tau_1$	-0.4772	-0.4823	-0.4992	-0.4978	-0.4969
$\operatorname{Im} \tau_1$	0.8861	0.8784	0.8852	0.8850	0.8692
$\operatorname{Re} \tau_2$	_	_	_	_	-0.4939
$\operatorname{Im} \tau_2$	_	_	_	_	0.8856
$ \epsilon_1 $	0.0486	0.0348	0.0306	0.0306	0.0072
$ \epsilon_2 $	_	—	_	—	0.0328
$\left(m_c/m_t\right)/\left \epsilon\right $	0.055	0.052	0.088	0.088	0.371
$(m_u/m_t)/ \epsilon ^2$	0.002	0.003	0.006	0.006	0.105
$\left(m_s/m_b\right)/\left \epsilon\right $	0.282	0.400	0.448	0.448	0.418
$\left(m_d/m_b\right)/ \epsilon ^2$	0.293	0.582	0.739	0.739	0.643
$N\sigma$ (masses)	0.0	3.4	0.0	0.0	0.0
$N\sigma$ (angles)	51.8	5.5	0.0	0.0	0.0
$N\sigma \ (\delta_{\rm CP})$	11.2	0.0	0.0	0.0	0.0
$N\sigma$ (total)	52.9	6.4	0.0	0.0	0.0

Thank You