

# Quarks at the Modular $S_{4}$ Cusp 

I.d.M.Varzielas, M.Levy, J.T.Penedo, S.T.Petcov



## Goal

## Modular Invariance

## Natural Hierarchies

## Predictive Models w/ Natural Hierarchies <br> for Quarks

# Modular Framework 

## What are modular symmetries?

- Modular Group

$$
\Gamma \equiv S L(2, \mathbb{Z}) \equiv\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

- Principal $\begin{aligned} & \text { Principal } \\ & \text { Congruence } \\ & \text { Subgroups }\end{aligned} \quad \Gamma(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z}),\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)(\bmod N)\right\}$
- Quotient Group

$$
\Gamma_{N}^{\prime} \equiv \Gamma / \Gamma(N) \simeq S L\left(2, \mathbb{Z}_{N}\right)
$$

## Modular Group

- 3 generators

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad R=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),
$$

- Group Relations

$$
S^{2}=R
$$

$$
(S T)^{3}=\mathbb{1}
$$

$$
R^{2}=\mathbb{1}
$$

$$
R T=T R
$$

- Transformation $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma: \tau \rightarrow \gamma \tau=\frac{a \tau+b}{c \tau+d}$
- Generating Transformations

$$
S: \tau \rightarrow-\frac{1}{\tau}, \quad T: \tau \rightarrow \tau+1, \quad R: \tau \rightarrow \tau
$$

## Why do we care?

- Applications to Flavour

$$
\begin{array}{ll}
\Gamma_{2} \simeq S_{3} & \Gamma_{2}^{\prime} \simeq S_{3} \\
\Gamma_{3} \simeq A_{4} & \Gamma_{3}^{\prime} \simeq T^{\prime} \\
\Gamma_{4} \simeq S_{4} & \Gamma_{4}^{\prime} \simeq S_{4}^{\prime} \\
\Gamma_{5} \simeq A_{5} & \Gamma_{5}^{\prime} \simeq A_{5}^{\prime}
\end{array}
$$

## Why do we care?

- If (super)fields transform trivially under $\Gamma(\mathrm{N})$



## Why do we care?

- If (super)fields transform trivially under $\Gamma(\mathrm{N})$



## Why do we care?

- If (super)fields transform trivially under $\Gamma(\mathrm{N})$

- Dealer's choice: $\quad \varphi_{i} \sim\left(\mathbf{r}_{i}, k_{i}\right)$


## Why do we care?

- If (super)fields transform trivially under $\Gamma(\mathrm{N})$

$$
\varphi_{i} \xrightarrow{\gamma}(c \tau+d)^{-k} \rho_{i j}(\gamma) \varphi_{j}
$$

- Dealer's choice: $\quad \varphi_{i} \sim\left(\mathrm{r}_{i}, k_{i}\right)$


## Modular Framework

- Superpotential

$$
W\left(\tau, \psi_{I}\right)=\sum\left(Y_{I_{1} \ldots I_{n}}(\tau) \psi_{I_{1}} \ldots \psi_{I_{n}}\right)_{1}
$$

## Modular Framework

- Modular Forms (Yukawas):
- "Weighted-representations" (-ish)
- Representations (and weights) constrained by $\Gamma_{N}$
- Specific functions of $\tau$

$$
-Y_{\mathbf{r}}^{(k)}(\tau)=\left(\bigotimes_{n=1}^{k} Y_{\mathbf{r}_{1}}^{(1)}(\tau)\right)_{\mathbf{r}}
$$

# Residual Symmetries 

## Fundamental Domain

$$
\tau=i \infty: \quad T \circ i \infty=i \infty+1=i \infty
$$

- 

$$
\begin{gathered}
\mathbb{Z}_{N}^{T} \times \mathbb{Z}_{2}^{R} \quad T^{N}=\mathbb{1} \quad \text { and } \quad R^{2}=\mathbb{1} \\
\tau=i: \quad S \circ i=\frac{-1}{i}=i \\
\mathbb{Z}_{4}^{S} \quad S^{2}=R \quad \text { and } \quad R^{2}=\mathbb{1}
\end{gathered}
$$

$$
\begin{aligned}
\tau=\omega: & S T \circ \omega=\frac{-1}{-\omega^{2}}=\omega \\
\mathbb{Z}_{3}^{S T} \times \mathbb{Z}_{2}^{R} & (S T)^{3}=\mathbb{1} \quad \text { and } \quad R^{2}=\mathbb{1}
\end{aligned}
$$



Natural Hierarchies

## Subgroup Decomposition @ Cusp

- Field Transformations

$$
\left.\begin{array}{rl}
\varphi_{i} \stackrel{\gamma}{\rightarrow}(c \tau+d)^{-k} \rho_{i j}(\gamma) \varphi_{j} \\
S T & =\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) \\
\rho_{\mathbf{3}}(S T) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
\end{array}\right\rangle \varphi \rightarrow \omega^{k}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \varphi=\left(\begin{array}{ccc}
\omega^{k} & 0 & 0 \\
0 & \omega^{k+1} & 0 \\
0 & 0 & \omega^{k+2}
\end{array}\right) \varphi
$$

## Mass Matrices: Power Structure @ cusp

- $\varphi_{i} M(\tau)_{i j} \varphi_{j}^{c} \longrightarrow M(\tau) \xrightarrow{\gamma} M(\gamma \tau)=(c \tau+d)^{k_{Y}} \rho^{*} M(\tau) \rho^{c \dagger}$

$$
\begin{aligned}
\widetilde{\rho}_{i} & =w^{k} \rho_{i}, \\
u & =\frac{\tau-\omega}{\tau-\omega^{2}}, \quad \epsilon=|u| \quad \quad \omega^{2 n} \widetilde{M}_{i j}^{(n)}(0)=\left(\widetilde{\rho}_{i} \widetilde{\rho}_{j}^{c}\right)^{*} \widetilde{M}_{i j}^{(n)}(0) \\
\widetilde{M}_{i j}(u) & =(1-u)^{-k_{Y}} M_{i j}(u),
\end{aligned}
$$

$$
\tilde{\rho}_{i}^{c} \tilde{\rho}_{j}=\omega^{l} \Rightarrow \tilde{M}_{i j} \sim M_{i j} \sim \mathcal{O}\left(\epsilon^{l}\right)
$$

Natural Hierarchies: An Example

| $S_{4}^{\prime}$ irrep $\mathbf{r}$ | $\mathbf{1}, \mathbf{1}^{\prime}, \hat{\mathbf{1}}, \hat{\mathbf{1}}^{\prime}$ | $\mathbf{2}, \hat{\mathbf{2}}$ | $\mathbf{3}, \mathbf{3}^{\prime}, \hat{\mathbf{3}}, \hat{\mathbf{3}}^{\prime}$ |
| :--- | :---: | :---: | :---: |
| $\mathbb{Z}_{3}$ decomposition | $\mathbf{1}_{k}$ | $\mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ | $\mathbf{1}_{k} \oplus \mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ |

$$
\begin{aligned}
& Q \sim(\mathbf{2}, 0) \oplus(\mathbf{1}, 2) \rightsquigarrow \mathbf{1}_{1} \oplus \mathbf{1}_{2} \oplus \mathbf{1}_{2} \\
& q^{c} \sim(\mathbf{2}, 4) \oplus(\mathbf{1}, 2) \rightsquigarrow \mathbf{1}_{2} \oplus \mathbf{1}_{0} \oplus \mathbf{1}_{2}
\end{aligned}
$$

$$
M \sim\left(\begin{array}{cc|c}
1 & \epsilon & 1 \\
\epsilon & \epsilon^{2} & \epsilon \\
\hline \epsilon & \epsilon^{2} & \epsilon
\end{array}\right)
$$

Natural Hierarchies: An Example

| $S_{4}^{\prime}$ irrep $\mathbf{r}$ | $\mathbf{1}, \mathbf{1}^{\prime}, \hat{\mathbf{1}}, \hat{\mathbf{1}}^{\prime}$ | $\mathbf{2}, \hat{\mathbf{2}}$ | $\mathbf{3}, \mathbf{3}^{\prime}, \hat{\mathbf{3}}, \hat{\mathbf{3}}^{\prime}$ |
| :--- | :---: | :---: | :---: |
| $\mathbb{Z}_{3}$ decomposition | $\mathbf{1}_{k}$ | $\mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ | $\mathbf{1}_{k} \oplus \mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ |

$$
\begin{aligned}
& Q \sim(\mathbf{2}, 0) \oplus(\mathbf{1}, 2) \sim \mathbf{1}_{1} \oplus \mathbf{1}_{2} \oplus \mathbf{1}_{2} \\
& q^{c} \sim(\mathbf{2}, 4) \oplus(\mathbf{1}, 2) \sim \mathbf{1}_{2} \oplus \mathbf{1}_{0} \oplus \mathbf{1}_{2}
\end{aligned}
$$

$$
M \sim\left(\begin{array}{cc|c}
1 & \epsilon & 1 \\
\epsilon & \epsilon^{2} & \epsilon \\
\hline \epsilon & \epsilon^{2} & \epsilon
\end{array}\right)
$$

Natural Hierarchies: An Example

| $S_{4}^{\prime}$ irrep $\mathbf{r}$ | $\mathbf{1}, \mathbf{1}^{\prime}, \hat{\mathbf{1}}, \hat{\mathbf{1}}^{\prime}$ | $\mathbf{2}, \hat{\mathbf{2}}$ | $\mathbf{3}, \mathbf{3}^{\prime}, \hat{\mathbf{3}}, \hat{\mathbf{3}}^{\prime}$ |
| :--- | :---: | :---: | :---: |
| $\mathbb{Z}_{3}$ decomposition | $\mathbf{1}_{k}$ | $\mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ | $\mathbf{1}_{k} \oplus \mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ |

$$
\begin{aligned}
& Q \sim(\mathbf{2}, 0) \oplus(\mathbf{1}, 2) \sim \mathbf{1}_{1} \oplus \mathbf{1}_{2} \oplus \mathbf{1}_{2} \\
& q^{c} \sim(\mathbf{2}, 4) \oplus(\mathbf{1}, 2) \rightsquigarrow \mathbf{1}_{2} \oplus \mathbf{1}_{0} \nexists \mathbf{1}_{2}
\end{aligned}
$$

$$
M \sim\left(\begin{array}{cc|c}
1 & \epsilon & 1 \\
\epsilon & \epsilon^{2} & \epsilon \\
\hline \epsilon & \epsilon^{2} & \epsilon
\end{array}\right)
$$

## Natural Hierarchies: Caveats

| $S_{4}^{\prime}$ irrep $\mathbf{r}$ | $\mathbf{1}, \mathbf{1}^{\prime}, \hat{\mathbf{1}}, \hat{\mathbf{1}}^{\prime}$ | $\mathbf{2}, \hat{\mathbf{2}}$ | $\mathbf{3}, \mathbf{3}^{\prime}, \hat{\mathbf{3}}, \hat{\mathbf{3}}^{\prime}$ |
| :--- | :---: | :---: | :---: |
| $\mathbb{Z}_{3}$ decomposition | $\mathbf{1}_{k}$ | $\mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ | $\mathbf{1}_{k} \oplus \mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ |

$$
\begin{aligned}
& Q \sim(\mathbf{2}, 0) \oplus(\mathbf{1}, 2) \rightsquigarrow \mathbf{1}_{1} \oplus \mathbf{1}_{2} \oplus \mathbf{1}_{2} \\
& q^{c} \sim(\mathbf{2}, 4) \oplus(\mathbf{1}, 2) \rightsquigarrow \mathbf{1}_{2} \oplus \mathbf{1}_{0} \oplus \mathbf{1}_{2}
\end{aligned}
$$

$$
M \sim\left(\begin{array}{cc|c}
1 & \searrow & 1 \\
\wp & \epsilon^{2} & \epsilon \\
\hline \epsilon & \epsilon^{2} & \epsilon
\end{array}\right)
$$

## Natural Hierarchies: Normalisations

- Zero in the Symmetric Point
- Governed by the Same Coefficient (can absorb $\epsilon \ldots$ )

$$
M \sim\left(\begin{array}{cc|c}
1 & \epsilon & 1 \\
\epsilon & \epsilon^{2} & \epsilon \\
\hline \epsilon & \epsilon^{2} & \epsilon
\end{array}\right)
$$

How to Normalise The Modular Forms?

## Natural Hierarchies: Normalisations

- Zero in the Symmetric Point
- Governed by the Same Coefficient (can absorb $\epsilon \ldots$ )

$$
M \sim\left(\begin{array}{cc|c}
1 & \epsilon & 1 \\
\epsilon & \epsilon^{2} & \epsilon \\
\hline \epsilon & \epsilon^{2} & \epsilon
\end{array}\right)
$$

How to Normalise The Modular Forms?
No idea... but

## Natural Hierarchies: Normalisations

- Relative Hierarchies are unavoidable



## Natural Hierarchies: representations

- > 3 sub-blocks $\Rightarrow>1 \mathcal{O}(1)$ masses

$$
M \sim\left(\begin{array}{cc|c}
1 & \epsilon & 1 \\
\epsilon & \epsilon^{2} & \epsilon \\
\hline 1 & \epsilon & 1
\end{array}\right)
$$

- Fully Hierarchical $\Rightarrow<4$ sub-blocks $\Rightarrow$

$$
Q \sim \mathbf{3}^{*}
$$

$$
q^{c} \sim \mathbf{3}^{*}
$$

both $\sim 3^{*}$

## Natural Hierarchies: representations

| $S_{4}^{\prime}$ irrep $\mathbf{r}$ | $\mathbf{1}, \mathbf{1}^{\prime}, \hat{\mathbf{1}}, \hat{\mathbf{1}}^{\prime}$ | $\mathbf{2}, \hat{\mathbf{2}}$ | $\mathbf{3}, \mathbf{3}^{\prime}, \hat{\mathbf{3}}, \hat{\mathbf{3}}^{\prime}$ |
| :--- | :---: | :---: | :---: |
| $\mathbb{Z}_{3}$ decomposition | $\mathbf{1}_{k}$ | $\mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ | $\mathbf{1}_{k} \oplus \mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ |

- $\left(\mathbf{3}^{*}, k\right) \rightsquigarrow \mathbf{1}_{k} \oplus \mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$
- Only one large mass $\Rightarrow$ partner $\rightsquigarrow \mathbf{1}_{k^{\prime}} \oplus \mathbf{1}_{k^{\prime}} \oplus \mathbf{1}_{k^{\prime}}$
- No Triplets
- No doublets


## Natural Hierarchies: representations

| $S_{4}^{\prime}$ irrep $\mathbf{r}$ | $\mathbf{1}, \mathbf{1}^{\prime}, \hat{\mathbf{1}}, \hat{\mathbf{1}}^{\prime}$ | $\mathbf{2}, \hat{\mathbf{2}}$ | $\mathbf{3}, \mathbf{3}^{\prime}, \hat{\mathbf{3}}, \hat{\mathbf{3}}^{\prime}$ |
| :--- | :---: | :---: | :---: |
| $\mathbb{Z}_{3}$ decomposition | $\mathbf{1}_{k}$ | $\mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ | $\mathbf{1}_{k} \oplus \mathbf{1}_{k+1} \oplus \mathbf{1}_{k+2}$ |

- Only one large mass

$$
Q \sim\left(\mathbf{3}^{*}, k\right) \quad q^{c} \sim \bigoplus_{\beta}\left(\mathbf{1}_{\beta}, k_{\beta}\right) \quad k_{\beta}-k_{\beta^{\prime}}=0(\bmod 3)
$$

- Mass Matrix $\quad M=f\left(Y_{3^{*}}^{k_{Y}}, Y_{3^{*}}^{k_{Y}+3}, Y_{3^{*}}^{k_{Y}+6}, \ldots\right)$

Minimal Mass Matrices

## Counting Possibilities

|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=1$ | 0 | 1 |
| $k=4$ | 1 | 1 |
| $k=7$ | 2 | 2 |
| $k=10$ | 2 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=2$ | 0 | 1 |
| $k=5$ | 1 | 2 |
| $k=8$ | 2 | 2 |
| $k=11$ | 3 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=3$ | 1 | 1 |
| $k=6$ | 1 | 2 |
| $k=9$ | 2 | 3 |
| $k=12$ | 3 | 3 |

- Predictive: at most 4 Yukawas
$(4 \times 2+\tau=10=6$ masses +3 angles $+\delta)$


## Counting Possibilities: 3 parameter matrices

|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=1$ | 0 | 1 |
| $k=4$ | 1 | 1 |
| $k=7$ | 2 | 2 |
| $k=10$ | 2 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=2$ | 0 | 1 |
| $k=5$ | 1 | 2 |
| $k=8$ | 2 | 2 |
| $k=11$ | 3 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=3$ | 1 | 1 |
| $k=6$ | 1 | 2 |
| $k=9$ | 2 | 3 |
| $k=12$ | 3 | 3 |

- Massless Quark (det = 0 )

$$
Y_{\hat{\mathbf{3}}}^{(1)} \propto Y_{\mathbf{3}}^{(4)}
$$

## Counting Possibilities: 3 parameter matrices

|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=1$ | 0 | 1 |
| $k=4$ | 1 | 1 |
| $k=7$ | 2 | 2 |
| $k=10$ | 2 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=2$ | 0 | 1 |
| $k=5$ | 1 | 2 |
| $k=8$ | 2 | 2 |
| $k=11$ | 3 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=3$ | 1 | 1 |
| $k=6$ | 1 | 2 |
| $k=9$ | 2 | 3 |
| $k=12$ | 3 | 3 |

- Massless Quark (det = 0 )

$$
Y_{\hat{\mathbf{3}}}^{(3)} \propto Y_{\mathbf{3}}^{(6)}
$$

Counting Possibilities: 4 parameter matrices

|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=1$ | 0 | 1 |
| $k=4$ | 1 | 1 |
| $k=7$ | 2 | 2 |
| $k=10$ | 2 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=2$ | 0 | 1 |
| $k=5$ | 1 | 2 |
| $k=8$ | 2 | 2 |
| $k=11$ | 3 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=3$ | 1 | 1 |
| $k=6$ | 1 | 2 |
| $k=9$ | 2 | 3 |
| $k=12$ | 3 | 3 |


|  | $M_{1}$ | $M_{2}$ | $M_{3}$ | $M_{4}$ | $M_{5}$ | $M_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathbf{r}_{1}, k_{1}\right)$ | $(\hat{\mathbf{3}}, 1)$ | $(\mathbf{3}, 4)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ |
| $\left(\mathbf{r}_{2}, k_{2}\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $(\hat{\mathbf{3}}, 3)$ | $(\mathbf{3}, 6)$ |
| $\left(\mathbf{r}_{3}, k_{3}\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $(\hat{\mathbf{3}}, 5)$ | $(\mathbf{3}, 8)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ |

Counting Possibilities: 4 parameter matrices

|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=1$ | 0 | 1 |
| $k=4$ | 1 | 1 |
| $k=7$ | 2 | 2 |
| $k=10$ | 2 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=2$ | 0 | 1 |
| $k=5$ | 1 | 2 |
| $k=8$ | 2 | 2 |
| $k=11$ | 3 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=3$ | 1 | 1 |
| $k=6$ | 1 | 2 |
| $k=9$ | 2 | 3 |
| $k=12$ | 3 | 3 |


|  | $M_{1}$ | $M_{2}$ | $M_{3}$ | $M_{4}$ | $M_{5}$ | $M_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathbf{r}_{1}, k_{1}\right)$ | $(\hat{\mathbf{3}}, 1)$ | $(\mathbf{3}, 4)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ |
| $\left(\mathbf{r}_{2}, k_{2}\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $(\hat{\mathbf{3}}, 3)$ | $(\mathbf{3}, 6)$ |
| $\left(\mathbf{r}_{3}, k_{3}\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $(\hat{\mathbf{3}}, 5)$ | $(\mathbf{3}, 8)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ |

Counting Possibilities: 4 parameter matrices

|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=1$ | 0 | 1 |
| $k=4$ | 1 | 1 |
| $k=7$ | 2 | 2 |
| $k=10$ | 2 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=2$ | 0 | 1 |
| $k=5$ | 1 | 2 |
| $k=8$ | 2 | 2 |
| $k=11$ | 3 | 3 |


|  | $\mathbf{3}\left(\hat{\mathbf{3}}^{\prime}\right)$ | $\mathbf{3}^{\prime}(\hat{\mathbf{3}})$ |
| :--- | :---: | :---: |
| $k=3$ | 1 | 1 |
| $k=6$ | 1 | 2 |
| $k=9$ | 2 | 3 |
| $k=12$ | 3 | 3 |


$Y_{\hat{\mathbf{3}}}^{(1)} \propto Y_{\mathbf{3}}^{(4)}$| $M_{1} \sim$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\left.\sim M_{2}\right)$ | $M_{3}$ | $M_{4}$ | $M_{5} \sim$ | $M_{6}$ |  |  |
| $\left(\mathbf{r}_{1}, k_{1}\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 1\right)$ | $(\mathbf{3}, 4)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ |  |
| $\left(\mathbf{r}_{2}, k_{2}\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $(\hat{\mathbf{3}}, 3)$ | $(\mathbf{3}, 6)$ |  |
| $\left(\mathbf{r}_{3}, k_{3}\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $(\mathbf{3}, 8)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ |  |

From Matrices to Models

## Assignments, Transposition, and gCP

|  | $M_{1} \sim M_{2}$ | $M_{3}$ | $M_{4}$ | $M_{5} \sim M_{6}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathbf{r}_{1}, k_{1}\right)$ | $(\hat{\mathbf{3}}, 1)$ | $(\mathbf{3}, 4)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ |
| $\left(\mathbf{r}_{2}, k_{2}\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $(\hat{\mathbf{3}}, 3)$ | $(\mathbf{3}, 6)$ |
| $\left(\mathbf{r}_{3}, k_{3}\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $(\hat{\mathbf{3}}, 5)$ | $(\mathbf{3}, 8)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ |
| , 6 |  |  |  |  |  |  |
| Are all combinations Possible? |  |  |  |  |  |  |

## Assignments, Transposition, and gCP

|  | $M_{1} \sim M_{2}$ |  | $M_{3}$ | $M_{4}$ | $M_{5} \sim M_{6}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathbf{r}_{1}, k_{1}\right)$ | $(\hat{\mathbf{3}}, 1)$ | $(\mathbf{3}, 4)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ |
| $\left(\mathbf{r}_{2}, k_{2}\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $(\hat{\mathbf{3}}, 3)$ | $(\mathbf{3}, 6)$ |
| $\left(\mathbf{r}_{3}, k_{3}\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $(\hat{\mathbf{3}}, 5)$ | $(\mathbf{3}, 8)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ |

## Are all combinations Possible?

$Q \sim \mathbf{3}^{*} \longrightarrow 7$ field weights to 6 Yukawa weights $\longrightarrow$ Yes!
$q^{c} \sim 3^{*} \longrightarrow 5$ field weights to 6 Yukawa weights $\longrightarrow$ No :(

## Assignments, Transposition, and gCP

$$
Q \sim \mathbf{3}^{*}
$$

|  | $M_{1} \sim M_{2}$ |  | $M_{3}$ | $M_{4}$ | $M_{5} \sim M_{6}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathbf{r}_{1}, k_{1}\right)$ | $(\hat{\mathbf{3}}, 1)$ | $(\mathbf{3}, 4)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\mathbf{3}^{\prime}, 2\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 3\right)$ |
| $\left(\mathbf{r}_{2}, k_{2}\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\mathbf{3}^{\prime}, 4\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 5\right)$ | $(\hat{\mathbf{3}}, 3)$ | $(\mathbf{3}, 6)$ |
| $\left(\mathbf{r}_{3}, k_{3}\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $\left(\hat{\mathbf{3}}^{\prime}, 7\right)$ | $(\hat{\mathbf{3}}, 5)$ | $(\mathbf{3}, 8)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ | $\left(\mathbf{3}^{\prime}, 6\right)$ |

$$
\begin{array}{lll} 
& \left(M_{1}^{T}, M_{4}^{T}\right), & \left(M_{2}^{T}, M_{5}^{T}\right), \\
q^{c} \sim 3^{*} & \left(M_{3}^{T}, M_{6}^{T}\right), \\
\left(M_{4}^{T}, M_{1}^{T}\right), & \left(M_{5}^{T}, M_{2}^{T}\right), & \left(M_{6}^{T}, M_{3}^{T}\right),
\end{array}
$$

$$
\left(M_{i}^{T}, M_{i}^{T}\right) \text { with } i=1, \ldots, 6
$$

## \# of Parameters

$$
M_{q} \sim\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\alpha_{1} Y_{1} & \alpha_{2} Y_{2} & \alpha_{3} Y_{3}+\alpha_{4} Y_{4} \\
\mid & \mid & \mid
\end{array}\right) \text { or its transpose }
$$

\(\left.\begin{array}{c|c|c}gCP <br>
(4 real) \times 2+\tau \& Q \sim 3^{*} \& q^{c} \sim 3^{*} <br>
(4 real) \times 2+\tau <br>
+ <br>

(1 phase) \times 2\end{array}\right)\)| $(4$ real $) \times 2+\tau$ |
| :---: |
| + |
| $(2$ phase $) \times 2$ |

## Numerical Results

# Can we find the elusive predictive Quark model? 

Foreshadowing: no

## Cases considered

|  | \# dofs | $Q \sim \mathbf{3}^{*}$ | $q^{c} \sim \mathbf{3}^{*}$ |
| :---: | :---: | :---: | :---: |
| gCp (w/o $\delta)$ | 10 | $\checkmark$ | $\checkmark$ |
| gCp $(\mathrm{w} / \delta)$ | 10 | $\boldsymbol{X}$ | $\boldsymbol{X}$ |
| pheno phase | 11 | $\checkmark$ | - |
| special $\tau$ | $10^{"+}+2^{\prime \prime}$ | $\checkmark$ | - |
| $2 \tau$ | $8+4$ | $\checkmark$ | $\checkmark$ |

## Cases considered



## Cases considered

|  | \# dofs | $Q \sim \mathbf{3}^{*}$ | $q^{c} \sim \mathbf{3}^{*}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{gCp}(\mathrm{w} / \mathrm{o} \delta)$ | 10 | $\checkmark$ | $\checkmark$ |
| $\mathrm{gCp}(\mathrm{w} / \delta)$ | 10 | $\mathbf{X}$ | $\mathbf{X}$ |
| pheno phase | 11 | $\checkmark$ | - |
| special $\tau$ | $10^{"+}+2^{\prime \prime}$ | $\checkmark$ | - |
| $2 \tau$ | $8+4$ | $\checkmark$ | $\checkmark$ |

- The problem of CP-violation


## Cases considered



## Cases considered

|  | \# dofs | $Q \sim \mathbf{3}^{*}$ | $q^{c} \sim \mathbf{3}^{*}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{gCp}(\mathrm{w} / \mathrm{o} \delta)$ | 10 | $\checkmark$ | $\checkmark$ |
| $\mathrm{gCp}(\mathrm{w} / \delta)$ | 10 | $\boldsymbol{X}$ | $\boldsymbol{X}$ |
| pheno phase | 11 | $\checkmark$ | - |
| special $\tau$ | $10^{"+2}$ | $\checkmark$ | - |
| $2 \tau$ | $8+4$ | $\checkmark$ | $\checkmark$ |

- Pheno phase: lift gCP only in one sector (not consistently)


## Cases considered

|  | \# dofs | $Q \sim \mathbf{3}^{*}$ | $q^{c} \sim \mathbf{3}^{*}$ |
| :---: | :---: | :---: | :---: |
| gCp (w/o $\delta$ ) | 10 | $\checkmark$ | $\checkmark$ |
| gCp $(\mathrm{w} / \delta)$ | 10 | $\boldsymbol{X}$ | $\boldsymbol{X}$ |
| pheno phase | 11 | $\checkmark$ | - |
| special $\tau$ | $10^{"+}+2^{\prime \prime}$ | $\checkmark$ | - |
| $2 \tau$ | $8+4$ | $\checkmark$ | $\checkmark$ |

- Special $\tau$ : no gCP but top-down values for $\tau$
$\tau \simeq \mp 0.484+0.884 i, \mp 0.492+0.875 i, \mp 0.495+0.872 i, \ldots$, corresponding to $|\epsilon(\tau)| \simeq 0.04,0.02,0.01, \ldots$,


## Cases considered

| $\mathrm{gCp}(\mathrm{w} / \mathrm{o} \delta)$ | $M_{u}$ | $M_{1,2}$ | $M_{3}$ | $M_{4}$ | $M_{5,6}$ |  | $M_{1,2}$ | $M_{3}$ | $M_{4}$ | $M_{5,6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{gCp}(\mathrm{w} / \delta)$ | $M_{1,2}$ | 0.1 | 9+ | $9+$ | $9+$ | $M_{1,2}$ | $5+$ | 9+ | $9+$ | $9+$ |
| pheno phase | $M_{3}$ | $9+$ | 2.1 | 2.1 | $9+$ | $M_{3}$ | $9+$ | 5+ | 5+ | $9+$ |
| special $\tau$ | $M_{4}$ | 9+ | 2.1 | 2.1 | $9+$ | $M_{4}$ | $9+$ | 5+ | $5+$ | 9+ |
| $2 \tau$ | $M_{5,6}$ | $9+$ | $9+$ | $9+$ | 2.1 | $M_{5,6}$ | $9+$ | 9+ | $9+$ | $5+$ |
|  | (a) $\tau=\mp 0.484+0.884 i$. |  |  |  |  | (b) $\tau=\mp 0.492+0.875 i$. |  |  |  |  |

$\tau \simeq \mp 0.484+0.884 i, \mp 0.492+0.875 i, \mp 0.495+0.872 i, \ldots$, corresponding to $|\epsilon(\tau)| \simeq 0.04,0.02,0.01, \ldots$,

## Cases considered

|  | \# dofs | $Q \sim \mathbf{3}^{*}$ | $q^{c} \sim \mathbf{3}^{*}$ |
| :---: | :---: | :---: | :---: |
| gCp (w/o $\delta)$ | 10 | $\checkmark$ | $\checkmark$ |
| gCp $(\mathrm{w} / \delta)$ | 10 | $\boldsymbol{X}$ | $\boldsymbol{X}$ |
| pheno phase | 11 | $\checkmark$ | - |
| special $\tau$ | $10^{"+}+2^{\prime \prime}$ | $\checkmark$ | - |
| $2 \tau$ | $8+4$ | $\checkmark$ | $\checkmark$ |

- $2 \tau$ : gCP but different $\tau$ for each sector (not consistent)


# Are the Hierarchies actually from the proximity to the cusp? 

Almost?

## A Closer Look @ Natural Hierarchies

|  | gCP (masses) | gCP (all) | pheno phase | no gCP | two moduli |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Re} \tau_{1}$ | -0.4772 | -0.4823 | -0.4992 | -0.4978 | -0.4969 |
| $\operatorname{Im} \tau_{1}$ | 0.8861 | 0.8784 | 0.8852 | 0.8850 | 0.8692 |
| $\operatorname{Re} \tau_{2}$ | - | - | - | - | -0.4939 |
| $\operatorname{Im} \tau_{2}$ | - | - | - | - | 0.8856 |
| $\left\|\epsilon_{1}\right\|$ | 0.0486 | 0.0348 | 0.0306 | 0.0306 | 0.0072 |
| $\left\|\epsilon_{2}\right\|$ | - | - | - | - | 0.0328 |
| $\left(m_{c} / m_{t}\right) /\|\epsilon\|$ | 0.055 | 0.052 | 0.088 | 0.088 | 0.371 |
| $\left(m_{u} / m_{t}\right) /\|\epsilon\|^{2}$ | 0.002 | 0.003 | 0.006 | 0.006 | 0.105 |
| $\left(m_{s} / m_{b}\right) /\|\epsilon\|$ | 0.282 | 0.400 | 0.448 | 0.448 | 0.418 |
| $\left(m_{d} / m_{b}\right) /\|\epsilon\|^{2}$ | 0.293 | 0.582 | 0.739 | 0.739 | 0.643 |
| $N \sigma$ (masses) | 0.0 | 3.4 | 0.0 | 0.0 | 0.0 |
| $N \sigma$ (angles) | 51.8 | 5.5 | 0.0 | 0.0 | 0.0 |
| $N \sigma\left(\delta_{\text {CP }}\right)$ | 11.2 | 0.0 | 0.0 | 0.0 | 0.0 |
| $N \sigma$ (total) | 52.9 | 6.4 | 0.0 | 0.0 | 0.0 |

Thank You

