

Mapping the SMEFT one-loop structure of linear SM extensions

$$
\mathcal{O}_{H D}=\left(H^{\dagger} D^{\prime}\right.
$$

John Gargalionis, Jérémie Quevillon, Pham Ngoc Hoa Vuong, Tevong You [arXiv: 24XX.XXXXX]

IFIC
 malencia CSIC

$$
\begin{gathered}
H \sim\left(\mathbf{1}, \mathbf{2}, \frac{1}{2}\right), \quad Q \sim\left(\mathbf{3}, \mathbf{2}, \frac{1}{6}\right), \quad \bar{u} \sim\left(\overline{\mathbf{3}}, \mathbf{1},-\frac{2}{3}\right), \quad \bar{d} \sim\left(\overline{\mathbf{3}}, \mathbf{1}, \frac{1}{3}\right), \quad L \sim\left(\mathbf{1}, \mathbf{2},-\frac{1}{2}\right), \quad \bar{e} \sim(\mathbf{1}, \mathbf{1}, 1) \\
\mathscr{L}=\mathscr{L}_{\mathrm{SM}}+\sum_{p, q} c_{p q}^{(5)}\left(L_{p} L_{q}\right) H H+\sum_{i=1}^{2499} \frac{c_{i}^{(6)}}{\Lambda^{2}} \overparen{O}_{i}^{d=6}+\cdots
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{|cc|}
\hline \begin{array}{l}
\text { Bottom-up } \\
\text { approach }
\end{array} & \\
\text { UV/IR dicitionary } & \begin{array}{|l|}
\hline \text { Top-down } \\
\text { approach }
\end{array} \\
&
\end{array} \\
& H \sim\left(\mathbf{1}, \mathbf{2}, \frac{1}{2}\right), \quad Q \sim\left(\mathbf{3}, \mathbf{2}, \frac{1}{6}\right), \quad \bar{u} \sim\left(\overline{\mathbf{3}}, \mathbf{1},-\frac{2}{3}\right), \quad \bar{d} \sim\left(\overline{\mathbf{3}}, \mathbf{1}, \frac{1}{3}\right), \quad L \sim\left(\mathbf{1}, \mathbf{2},-\frac{1}{2}\right), \quad \bar{e} \sim(\mathbf{1}, \mathbf{1}, 1) \\
& \mathscr{L}=\mathscr{L}_{\mathrm{SM}}+\sum_{p, q} c_{q q}^{(5)}\left(L_{p} L_{q}\right) H H+\sum_{i=1}^{24999} c_{i}^{(6)} \mathcal{\Lambda}^{2} \sigma_{i}^{d=6}+\ldots
\end{aligned}
$$

Linear SM extensions

- Patterns of minimal tree-level deviation from the SM can be understood in terms of linear SM
extensions
$\mathscr{L}_{\mathrm{int}} \sim \mathrm{SM} \cdot \mathrm{SM} \cdot X+\mathrm{SM} \cdot \mathrm{SM} \cdot \mathrm{SM} \cdot X+\cdots$
- 48 exotic multiplets generating $d=6$ operators at tree level
- Catalogued in the Granada dictionary
- Fermions are vector-like or Majorana

Name	\mathcal{S}	\mathcal{S}_{1}	\mathcal{S}_{2}	φ	Ξ	Ξ_{1}	Θ_{1}	Θ_{3}
Irrep	$(1,1)_{0}$	$(1,1)_{1}$	$(1,1)_{2}$	$(1,2)_{\frac{1}{2}}$	$(1,3)_{0}$	$(1,3)_{1}$	$(1,4)_{\frac{1}{2}}$	$(1,4)_{\frac{3}{2}}$
Name	ω_{1}	ω_{2}	ω_{4}	Π_{1}	Π_{7}	ζ		
Irrep	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{4}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$		
Name	Ω_{1}	Ω_{2}	Ω_{4}	Υ	Φ			
Irrep	$(6,1)_{\frac{1}{3}}$	$(6,1)_{-\frac{2}{3}}$	$(6,1)_{\frac{4}{3}}$	$(6,3)_{\frac{1}{3}}$	$(8,2)_{\frac{1}{2}}$			

Table 1. New scalar bosons contributing to the dimension-six SMEFT at tree level.

Name	N	E	Δ_{1}	Δ_{3}	Σ	Σ_{1}	
Irrep	$(1,1)_{0}$	$(1,1)_{-1}$	$(1,2)_{-\frac{1}{2}}$	$(1,2)_{-\frac{3}{2}}$	$(1,3)_{0}$	$(1,3)_{-1}$	
Name	U	D	Q_{1}	Q_{5}	Q_{7}	T_{1}	T_{2}
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$	$(3,3)_{\frac{2}{3}}$

Table 2. New vector-like fermions contributing to the dimension-six SMEFT at tree level.

One-loop tools

Impressive recent progress in automating one-loop matching:

- CoDeX implements UOLEA results
- MatchMakerEFT implements diagrammatic matching
- Matchete uses functional techniques (built upon SuperTracer)

```
CoDeX:
UOLEA results:
```

MatchMakerEFT:
SOLD:
Matchete \& SuperTracer:

Bakshi Chakrabortty, Patra arXiv:1808.04403
Drozd, Ellis, Quevillon, You arXiv:1512.03003
Ellis, Quevillon, You, Zhang arXiv:1604.02445
Ellis, Quevillon, Vuong, You, Zhang arXiv:2006. 16260
Larue, Quevillon arXiv:2303.10203
Carmona, Lazopoulos, Olgoso, Santiago arXiv:2112.10787
Guedes, Olgoso, Santiago arXiv:2303.16965
Fuentes-Martín, Koenig, Pagès, Thomsen, Wilsch arXiv:2212.04510, arXiv:2012.08506

Our approach: overview

Linear SM extensions are a physically motivated subset of toy models that parametrise tree-level deviation from the SM

Primary aim: Use these tools to extend results for the linear SM extensions to the one-loop level

Extend Lagrangian
sufficient to generate
dimension-6 operators
at one loop

Lagrangian

- Similar assumptions to tree-level dictionary: limit ourselves to scalars and vector-like and Majorana fermions.

Our Lagrangian matches the conventions of the tree-level dictionary

- We don't consider mixed terms
- For one-loop matching, only need to alter scalar interactions

$$
\begin{aligned}
\Delta \mathscr{L}= & \sum_{S} \hat{\lambda}_{S}\left(H^{\dagger} H\right)\left(S^{\dagger} S\right)+\hat{\lambda}_{\varphi}^{\prime}\left(H^{\dagger} \varphi\right)\left(\varphi^{\dagger} H\right)+\sum_{i \in\{1,3\}} \hat{\lambda}_{\Theta_{i}}^{\prime}\left(\Theta_{i}^{\dagger} T_{4}^{a} \Theta_{i}\right)\left(H^{\dagger} \sigma^{a} H\right) \\
& +\sum_{i \in\{1,7\}} \hat{\lambda}_{\Pi_{i}}^{\prime}\left(\Pi_{i}^{\dagger} H\right)\left(H^{\dagger} \Pi_{i}\right)+\hat{\lambda}_{\Phi}^{\prime} \operatorname{Tr}\left[\left(\boldsymbol{\Phi}^{\dagger} \cdot \lambda H\right)\left(H^{\dagger} \boldsymbol{\Phi} \cdot \lambda\right)\right] \\
& +\sum_{S \in\{\zeta,, \gamma\}} \hat{\lambda}_{S}^{\prime} f_{a b c}\left(S^{a \dagger} S^{b}\right)\left(H^{\dagger} \sigma^{c} H\right) \\
& +\left\{\hat{\lambda}_{\Theta_{1}}^{\prime \prime} \frac{8}{3 \sqrt{5}}\left(\Theta_{1}^{I} \epsilon_{I J}\left[T_{4}^{a}\right]_{K}^{J} \Theta_{1}^{K}\right)\left(H^{\dagger} \sigma^{a} \tilde{H}\right)+\hat{\lambda}_{\Phi}^{\prime \prime} \operatorname{Tr}\left[\left(H^{\dagger} \boldsymbol{\Phi} \cdot \lambda\right)\left(H^{\dagger} \boldsymbol{\Phi} \cdot \lambda\right)\right]+\text { h.c } .\right\}
\end{aligned}
$$

Bakshi, Chakrabortty, Prakash, Rahaman, Spannowsky

Reading the Lagrangian and parsing the output: MatchMakerParser

- Written a lightweight wrapper around FeynRules to encode Lagrangians with less boilerplate code and more consistency checks
- A simple implementation of missing PythonForm to parse results from MatchMaker
- Outputs are Python classes with coefficients as methods.

Reading the Lagrangian and parsing th

- Written a lightweight wrapper around FeynRules to encode Lagrangians with less boilerplate code and more consistency checks
- A simple implementation of missing PythonForm to parse results from MatchMaker
- Outputs are Python classes with coefficients as methods.

Connection to Python ecosystem

- Plans to put one-loop dictionary on PyPI for easy use with other tools
- Limited searching and querying ability, looking into other export options

```
import wilson
    import flavio
    \zeta~(3,3)-1/3
    from oneloopdict import ZetaMatching
    SCALE = 1e3
    # Get coefficients
    zeta_matching = ZetaMatching(scale=SCALE)
    coefficients = zeta_matching.coefficient_dictionary
    # Calculate!
    zeta_wilson = wilson.Wilson(coefficients, scale=SCALE, eft="SMEFT", basis="Warsaw")
    prediction = flavio.np_prediction("a_mu", zeta_wilson)
```


R GE induced

Ellis, Quevillon, Vuong, You, Zhang arXiv:2006.16260
CP-odd triple-gauge operators not generated at one loop: Clear already from UOLEA

R GE induced

$$
\mathcal{O}_{H G}=H^{\dagger} H G_{\mu \nu}^{A} G^{A \mu \nu}
$$

Conclusions and outlook

$$
\mathcal{O}_{H B}=H^{\dagger} H B_{\mu \nu} B
$$

- Computational tools are essential for the publishing and querying of UV/IR

$$
\mathcal{O}_{H D}=\left(H^{\dagger} D^{\prime}\right.
$$ dictionaries going forward

- We use MatchMakerEFT and our MatchMakerParser to present our UV/IR dictionary
 for the linear SM extensions at one loop
- Useful tool for phenomenological analyses and general studies

$$
\mathcal{O}_{H G}=H^{\dagger} H G_{\mu \nu}^{A} G^{A \mu \nu}
$$

$$
\mathcal{O}_{H B}=H^{\dagger} H B_{\mu \nu} B
$$

$$
\mathcal{O}_{H D}=\left(H^{\dagger} D^{\prime}\right.
$$

Muito obrigado!

$$
\mathcal{O}_{H G}=H^{\oplus} H G_{\mu \nu}^{A} G^{A \mu \nu}
$$

$$
\mathcal{O}_{H B}=H^{\dagger} H B_{\mu \nu} B
$$

$$
\mathcal{O}_{H D}=\left(H^{\dagger} D\right.
$$

Backup

Linear SM extensions are useful

- Linear SM extensions are a physically motivated subset of toy models

Herrero-Garcia, Schmidt arXiv:1903.10552

- Can be used to organise complex UV models
- Can motivate directions in the space of WCs

Model	$C_{H D}$	$C_{l l}$	$C_{H l}^{3}$	$C_{H l}^{1}$	$C_{H e}$	$C_{H \square}$	$C_{\tau H}$	$C_{t H}$	$C_{b H}$
S						$-\frac{1}{2}$			
S_{1}		1							
Σ			$\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_{1}			$-\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$		
Δ_{1}					$\frac{1}{2}$		$\frac{y_{\tau}}{2}$		
Δ_{3}					$-\frac{1}{2}$		$\frac{y_{t}}{2}$		
B_{1}	1					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_{t}}{2}$	$-\frac{y_{b}}{2}$
Ξ	-2					$\frac{1}{2}$	y_{τ}	y_{t}	y_{b}
W_{1}	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_{t}}{8}$	$-\frac{y_{b}}{8}$
φ							$-y_{\tau}$	$-y_{t}$	$-y_{b}$
$\left\{B, B_{1}\right\}$						$-\frac{3}{2}$	$-y_{\tau}$	$-y_{t}$	$-y_{b}$
$\left\{Q_{1}, Q_{7}\right\}$								y_{t}	
Model	$C_{H q}^{3}$	$C_{H q}^{1}$	$\left(C_{H q}^{3}\right)_{33}$	$\left(C_{H q}^{1}\right)_{33}$	$C_{H u}$	$C_{H d}$	$C_{t H}$	$C_{b H}$	
U	$-\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$			$\frac{y_{t}}{2}$		
D	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				$\frac{y_{b}}{2}$	
Q_{5}						$-\frac{1}{2}$		$\frac{y_{b}}{2}$	
Q_{7}					$\frac{1}{2}$		$\frac{y_{t}}{2}$		
T_{1}	$-\frac{1}{16}$	$-\frac{3}{16}$	$-\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{t}}{4}$	$\frac{y_{b}}{8}$	
T_{2}	$-\frac{1}{16}$	$\frac{3}{16}$	$-\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{t}}{8}$	$\frac{y_{b}}{4}$	
T			$-\frac{1}{2} \frac{M_{2}^{2}}{v^{2}}$	$\frac{1}{2} \frac{M_{2}^{2}}{v^{2}}$			$y_{t} M_{2}^{2}$		
v^{2}									

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779
FitMaker group: Fit to top, Higgs, diboson and EW data

Linear SM extensions are useful

Model	$C_{H D}$	$C_{l l}$	$C_{H l}^{3}$	$C_{H l}^{1}$	$C_{H e}$	$C_{H \square}$	$C_{\tau H}$	$C_{t H}$	$C_{b H}$
S						$-\frac{1}{2}$			
S_{1}		1							
Σ			$\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_{1}			$-\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$		
Δ_{1}					$\frac{1}{2}$		$\frac{y_{\tau}}{2}$		
Δ_{3}					$-\frac{1}{2}$		$\frac{y_{\tau}}{2}$		
B_{1}	1					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_{t}}{2}$	$-\frac{y_{b}}{2}$
Ξ	-2					$\frac{1}{2}$	y_{τ}	y_{t}	y_{b}
W_{1}	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_{t}}{8}$	$-\frac{y_{b}}{8}$
φ							$-y_{\tau}$	$-y_{t}$	$-y_{b}$
$\left\{B, B_{1}\right\}$						$-\frac{3}{2}$	$-y_{\tau}$	$-y_{t}$	$-y_{b}$
$\left\{Q_{1}, Q_{7}\right\}$								y_{t}	
Model 2	$C_{H q}^{3}$	$C_{H q}^{1}$	$\left(C_{H q}^{3}\right)_{33}$	$\left(C_{H q}^{1}\right)_{33}$	$C_{H u}$	$C_{H d}$	$C_{t H}$	$C_{b H}$	
U	$-\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$			$\frac{y_{t}}{2}$		
D	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				$\frac{y_{b}}{2}$	
Q_{5}						$-\frac{1}{2}$		$\frac{1}{2}$	
Q_{7}					$\frac{1}{2}$		$\frac{y_{t}}{2}$		
T_{1}	$-\frac{1}{16}$	$-\frac{3}{16}$	$-\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{t}}{4}$	$\frac{y_{b}}{8}$	
T_{2}	$-\frac{1}{16}$	$\frac{3}{16}$	$-\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{t}}{8}$	$\frac{y_{b}}{4}$	
T			$-\frac{1}{2} \frac{M_{T}^{2}}{v^{2}}$	$\frac{1}{2} \frac{M_{T}^{2}}{v^{2}}$			$y_{t} \frac{M_{T}^{2}}{v^{2}}$		

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

FitMaker group: Fit to top, Higgs, diboson and EW data

$$
\begin{aligned}
-\mathcal{L}_{\text {leptons }}^{(4)}= & \left(\lambda_{N}\right)_{r i} \bar{N}_{R r} \tilde{\phi}^{\dagger} l_{L i}+\left(\lambda_{E}\right)_{r i} \bar{E}_{R r} \phi^{\dagger} l_{L i} \\
& +\left(\lambda_{\Delta_{1}}\right)_{r i} \bar{\Delta}_{1 L r} \phi e_{R i}+\left(\lambda_{\Delta_{3}}\right)_{r i} \bar{\Delta}_{3 L r} \tilde{\phi} e_{R i} \\
& +\frac{1}{2}\left(\lambda_{\Sigma}\right)_{r i} \bar{\Sigma}_{R r}^{a} \tilde{\phi}^{\dagger} \sigma^{a} l_{L i}+\frac{1}{2}\left(\lambda_{\Sigma_{1}}\right)_{r i} \bar{\Sigma}_{1 R r}^{a}{ }^{\dagger} \sigma^{a} l_{L i} \\
& +\left(\lambda_{N \Delta_{1}}\right)_{r s} \bar{N}_{R r}^{c} \phi^{\dagger} \Delta_{1 R s}+\left(\lambda_{E \Delta_{1}}\right)_{r s} \bar{E}_{L r} \phi^{\dagger} \Delta_{1 R s} \\
& +\left(\lambda_{E \Delta_{3}}\right)_{r s} \bar{E}_{L r} \tilde{\phi}^{\dagger} \Delta_{3 R s}+\frac{1}{2}\left(\lambda_{\Sigma \Delta_{1}}\right)_{r s} \bar{\Sigma}_{R r}^{c a} \tilde{\phi}^{\dagger} \sigma^{a} \Delta_{1 R s}
\end{aligned}
$$

- Lagrangian contains terms up to dimension 5 sufficient to generate dimension-6 operators at tree level
- Also includes "mixed" terms with multiple exotic multiplets

$$
+\left(\tilde{k}_{\mathcal{S}}^{B}\right)_{r} \mathcal{S}_{r} B_{\mu \nu} B^{\mu \nu}+\left(\tilde{k}_{\mathcal{S}}^{W}\right)_{r} \mathcal{S}_{r} W_{\mu \nu}^{a} W^{a \mu \nu}+\left(\tilde{k}_{\mathcal{S}}^{G}\right)_{r} \mathcal{S}_{r} G_{\mu \nu}^{A} G-\mathcal{L}_{\mathrm{SV}}=\left(\delta_{\mathcal{B S}}\right)_{r s} \mathcal{B}_{r \mu} D^{\mu} \mathcal{S}_{s}+\left(\delta_{\mathcal{W} \Xi}\right)_{r s} \mathcal{W}_{r, \mu} D^{\mu} \Xi_{s} \quad \text { Scalar-vector mixed }
$$

$$
+\left\{\left(\delta_{\mathcal{L}^{1} \varphi}\right)_{r s} \mathcal{L}_{1 r \mu}^{1 \dagger} D^{\mu} \varphi_{s}+\left(\delta_{\mathcal{W}^{1} \Xi_{1}}\right)_{r s} \mathcal{W}_{1 r \mu}^{1 \dagger} D^{\mu} \Xi_{1 s}+\text { h.c. }\right\}
$$

$$
+\left(\varepsilon_{\mathcal{S} \mathcal{L}_{1}}\right)_{r s t} \mathcal{S}_{r} \mathcal{L}_{1 s \mu}^{\dagger} \mathcal{L}_{1 t}^{\mu}+\left(\varepsilon_{\Xi \mathcal{L}_{1}}\right)_{r s t} \Xi_{r}^{a} \mathcal{L}_{1 s \mu}^{\dagger} \sigma^{a} \mathcal{L}_{1 t}^{\mu}
$$

$$
+\left\{\left(\varepsilon_{\Xi_{1} \mathcal{L}_{1}}\right)_{r s t} \Xi_{1 i}^{a} \mathcal{L}_{1 s \mu}^{\dagger} \sigma^{a} \tilde{\mathcal{L}}_{1 t}^{\mu}+\text { h.c. }\right\}
$$

$$
+\left\{\left(g_{\mathcal{S} \mathcal{L}_{1}}\right)_{r s} \phi^{\dagger}\left(D_{\mu} \mathcal{S}_{r}\right) \mathcal{L}_{1 s}^{\mu}+\left(g_{\mathcal{S} \mathcal{L}_{1}}^{\prime}\right)_{r s}\left(D_{\mu} \phi\right)^{\dagger} \mathcal{S}_{r} \mathcal{L}_{1 s}^{\mu}\right.
$$

$$
+\left(g_{\Xi \mathcal{L}_{1}}\right)_{r s} \phi^{\dagger} \sigma^{a}\left(D_{\mu} \Xi_{r}^{a}\right) \mathcal{L}_{1 s}^{\mu}+\left(g_{\Xi \mathcal{L}_{1}}^{\prime}\right)_{r s}\left(D_{\mu} \phi\right)^{\dagger} \sigma^{a} \Xi_{r}^{a} \mathcal{L}_{1 s}^{\mu}
$$

$$
\left.+\left(g_{\Xi_{1} \mathcal{L}_{1}}\right)_{r s} \tilde{\phi}^{\dagger} \sigma^{a}\left(D_{\mu} \Xi_{1 r}^{a}\right)^{\dagger} \mathcal{L}_{1 s}^{\mu}+\left(g_{\Xi_{1} \mathcal{L}_{1}}^{\prime}\right)_{r s}\left(D_{\mu} \tilde{\phi}\right)^{\dagger} \sigma^{a} \Xi_{1 r}^{a \dagger} \mathcal{L}_{1 s}^{\mu}+\text { h.c. }\right\}
$$

$$
\begin{aligned}
& +\left(\tilde{k}_{\mathcal{S}}^{\tilde{B}}\right)_{r} \mathcal{S}_{r} B_{\mu \nu} \tilde{B}^{\mu \nu}+\left(\tilde{k}_{\mathcal{S}}^{\tilde{W}}\right)_{r} \mathcal{S}_{r} W_{\mu \nu}^{a} \tilde{W}^{a \mu \nu}+\left(\tilde{k}_{\mathcal{S}}^{\tilde{G}}\right)_{r} \mathcal{S}_{r} G_{\mu \nu}^{A} \tilde{G} \\
& +\left\{\left(\tilde{y}_{\mathcal{S}}^{e}\right)_{r i j} \mathcal{S}_{r} \bar{e}_{R i} \phi^{\dagger} l_{L j}+\left(\tilde{y}_{\mathcal{S}}^{d}\right)_{r i j} \mathcal{S}_{r} \bar{d}_{R i} \phi^{\dagger} q_{L j}+\left(\tilde{y}_{\mathcal{S}}^{u}\right)_{r i j} \mathcal{S}_{r} \bar{u}_{R i}\right. \\
& +\left(\tilde{k}_{\Xi}^{\phi}\right)_{r} \Xi_{r}^{a} D_{\mu} \phi^{\dagger} \sigma^{a} D^{\mu} \phi+\left(\tilde{\lambda}_{\Xi}\right)_{r} \Xi_{r}^{a}|\phi|^{2} \phi^{\dagger} \sigma^{a} \phi \\
& +\left(\tilde{k}_{\Xi}^{W B}\right)_{r} \Xi_{r}^{a} W_{\mu \nu}^{a} B^{\mu \nu}+\left(\tilde{k}_{\Xi}^{W}\right)_{r} \Xi_{r}^{a} W_{\mu \nu}^{a} \tilde{B}^{\mu \nu} \\
& +\left\{\left(\tilde{y}_{\Xi}^{e}\right)_{r i} \Xi_{r}^{a} \bar{e}_{R i} \phi^{\dagger} \sigma^{a} l_{L j}+\left(\tilde{y}_{\Xi}^{d}\right)_{r i j} \Xi_{r}^{a} \bar{d}_{R i} \phi^{\dagger} \sigma^{a} q_{L j}+\left(\tilde{y}_{\Xi}^{u}\right)_{r i j}\right. \\
& +\left\{\left(\tilde{k}_{\Xi_{1}}\right)_{r} \Xi_{1 r}^{a \dagger} D_{\mu} \tilde{\phi}^{\dagger} \sigma^{a} D^{\mu} \phi+\left(\tilde{\lambda}_{\Xi_{1}}\right)_{r} \Xi_{1 r}^{a \dagger}|\phi|^{2} \tilde{\phi}^{\dagger} \sigma^{a} \phi+\left(\tilde{y}_{\Xi_{1}}^{e}\right)_{r}\right. \\
& +\left(\tilde{y}_{\Xi_{1}}^{d}\right)_{r i j} \Xi_{1 r}^{a \dagger} \bar{d}_{R i} \tilde{\phi}^{\dagger} \sigma^{a} q_{L j}+\left(\tilde{y}_{\Xi_{1}}^{u}\right)_{r i j} \Xi_{1 r}^{a \dagger} \bar{q}_{L i} \sigma^{a} \phi u_{R j}+\text { h.c. }
\end{aligned}
$$

- Tree-level completions of operators of odd mass dimension written down up to dimension 11
- Database of 500,000 Lagrangians \Rightarrow Requires computational tools!
- Matching onto any specific basis still needs to be done by hand

Investigation of magic zeros

- Magic zero: a quantity suppressed without an apparent symmetry explanation
- E.g. Vanishing dipole coefficient $H^{\dagger} \ell \sigma^{\mu \nu} e^{c} F_{\mu \nu}$ in model with two vector-like Dirac fermions: $S \sim(1,1)_{0}$ and $L \sim(1,2)_{1 / 2}$

$$
\mathscr{L} \supset-m_{L} L^{0} L^{c 0}-m_{S} S S^{c}-Y_{V}^{\prime} H^{0} L^{0} S^{c}+Y_{L} H^{+} e S^{c}-Y_{R} H^{-} L^{0} e^{c}+\text { h.c. }
$$

- Generalised parity symmetry $\mathscr{P}^{\prime}: L^{0} \leftrightarrow S^{c \dagger}, L^{c 0} \leftrightarrow S^{\dagger}, m_{L} \leftrightarrow m_{S}^{*}, Y_{V}^{\prime} \leftrightarrow Y_{V}^{*}, Y_{L} \leftrightarrow Y_{R}^{*}$
- But dipole operator even under parity!

Investigation of magic zeros

- Magic zero: a quant
- E.g. Vanishing dipol $L \sim(1,2)_{1 / 2}$

$$
\begin{aligned}
& \operatorname{In}[3]:=\text { alphaOeB[1, 1] /. MatchingResult } \\
& \text { Out }[3]=\frac{1}{384 \text { MDelta1 }^{2} \text { MN }^{2} \pi^{2}} \\
& \text { g1 onelooporder (4 MN }{ }^{2} \text { lambdaDelta1[1] } \times \text { lambdaDelta1bar [mif3] } \times \mathrm{yl}[1, \mathrm{mif} 3] \text { - } \\
& 3 \mathrm{iCPV}^{2} \mathrm{MN}^{2} \text { lambdaDelta1[1] } \times \text { lambdaDelta1bar [mif3] } \times \mathrm{yl}[1, \mathrm{mif3}]+ \\
& \tau_{L} \equiv \frac{e}{32 \pi^{2}} \cdot \frac{v}{\sqrt{2}} \cdot \frac{Y_{L} Y_{R} Y_{V}^{*}}{\left|m_{L}\right|^{2}-\left|m_{S}\right|^{2}} \xrightarrow{\mathscr{P}^{\prime}}-\tau_{L}
\end{aligned}
$$

- Generalised parity symmetry $\mathscr{P}^{\prime}: L^{0} \leftrightarrow S^{c \dagger}, L^{c 0} \leftrightarrow S^{\dagger}, m_{L} \leftrightarrow m_{S}^{*}, Y_{V}^{\prime} \leftrightarrow Y_{V}^{*}, Y_{L} \leftrightarrow Y_{R}^{*}$
- But dipole operator even under parity!

