Accidentally Light Scalars from Large Representations

Giacomo Ferrante

- based on
- JHEP, vol.01, p. 075, 2024 w/ F. Brümmer, M. Frigerio & T. Hambye +
 - arXiv:2406.02531 w/ F. Brümmer & M. Frigerio

- 1. Nambu-Goldstone bosons:
 - SSB: $U(1) \rightarrow Ø$
 - Massless at all orders

Credit: CERN

- Nambu-Goldstone bosons: 1.
 - SSB: $U(1) \rightarrow Ø$
 - Massless at all orders
- 2. Pseudo Nambu-Goldstone bosons:
 - SSB + explicit symmetry breaking terms

Credit: CERN

- Nambu-Goldstone bosons: 1.
 - SSB: $U(1) \rightarrow Ø$
 - Massless at all orders
- 2. Pseudo Nambu-Goldstone bosons:
 - SSB + explicit symmetry breaking terms
- 3. Accidents

Credit: CERN

 $\phi = (\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)_1$

$$\phi = (\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)_1$$

$$V(\phi) = -\mu^2 S + \frac{1}{2} \left[\lambda S^2 + \kappa \left(S^2 - |S'|^2 \right) + \delta A^a \right]$$

No symmetry larger than $SU(2)_D \times U(1)_D$

1

$$\phi = (\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)_1$$

$$V(\phi) = -\mu^2 S + \frac{1}{2} \left[\lambda S^2 + \kappa \left(S^2 - |S'|^2 \right) + \delta A^a \right]$$

No symmetry larger than $SU(2)_D \times U(1)_D$

VEV:
$$\begin{cases} \langle \phi_1 \rangle = v \sin \alpha \\ \langle \phi_3 \rangle = v \cos \alpha \end{cases}$$

1

$$\phi = (\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)_1$$

$$V(\phi) = -\mu^2 S + \frac{1}{2} \left[\lambda S^2 + \kappa \left(S^2 - |S'|^2 \right) + \delta A^a \right]$$

No symmetry larger than $SU(2)_D \times U(1)_D$

VEV:
$$\begin{cases} \langle \phi_1 \rangle = v \sin \alpha \\ \langle \phi_3 \rangle = v \cos \alpha \end{cases}$$

$$\phi = (\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)_1$$

$$V(\phi) = -\mu^2 S + \frac{1}{2} \left[\lambda S^2 + \kappa \left(S^2 - |S'|^2 \right) + \delta A^a \right]$$

No symmetry larger than $SU(2)_D \times U(1)_D$

VEV:
$$\begin{cases} \langle \phi_1 \rangle = v \sin \alpha \\ \langle \phi_3 \rangle = v \cos \alpha \end{cases}$$

$$\phi = (\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)_1$$

$$V(\phi) = -\mu^2 S + \frac{1}{2} \left[\lambda S^2 + \kappa \left(S^2 - |S'|^2 \right) + \delta A^a \right]$$

No symmetry larger than $SU(2)_D \times U(1)_D$

VEV:
$$\begin{cases} \langle \phi_1 \rangle = v \sin \alpha \\ \langle \phi_3 \rangle = v \cos \alpha \end{cases}$$

$$\phi = (\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)_1$$

$$V(\phi) = -\mu^2 S + \frac{1}{2} \left[\lambda S^2 + \kappa \left(S^2 - |S'|^2 \right) + \delta A^a \right]$$

No symmetry larger than $SU(2)_D \times U(1)_D$

VEV:
$$\begin{cases} \langle \phi_1 \rangle = v \sin \alpha \\ \langle \phi_3 \rangle = v \cos \alpha \end{cases}$$

No symmetry protection

$$\phi = (\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)_1$$

$$V(\phi) = -\mu^2 S + \frac{1}{2} \left[\lambda S^2 + \kappa \left(S^2 - |S'|^2 \right) + \delta A^a \right]$$

No symmetry larger than $SU(2)_D \times U(1)_D$

VEV:
$$\begin{cases} \langle \phi_1 \rangle = v \sin \alpha \\ \langle \phi_3 \rangle = v \cos \alpha \end{cases}$$

1-loop

$$\longrightarrow V_{\text{eff}}(\alpha) \simeq \frac{\alpha}{6}$$

No symmetry protection

Possible Applications

Dark matter

Accident \equiv Abelian Higgs of U(1)'

Possible Applications

Dark matter

Accident \equiv Abelian Higgs of U(1)'

Solution to Little Hierarchy Problem

Possible Applications

Dark matter

Accident \equiv Abelian Higgs of U(1)'

Solution to Little Hierarchy Problem

Accident \equiv Abelian Higgs of U(1)'

Solution to Little Hierarchy Problem

Accident \equiv Abelian Higgs of U(1)'

Solution to Little Hierarchy Problem

Small field Inflation requires: flat potential

K. Freese, J. A. Freeman, A. V. Olinto Phys.Rev.Lett. 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$

K. Freese, J. A. Freeman, A. V. Olinto Phys.Rev.Lett. 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$

BUT

K. Freese, J. A. Freeman, A. V. Olinto Phys.Rev.Lett. 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

1. Excluded by CMB observations

K. Freese, J. A. Freeman, A. V. Olinto Phys.Rev.Lett. 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

1. Excluded by CMB observations

2. Large-field model: $f \ge M_{\rm Pl}$

Small field Inflation requires: flat potential +

K. Freese, J. A. Freeman, A. V. Olinto *Phys.Rev.Lett.* 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

1. Excluded by CMB observations

2. Large-field model: $f \ge M_{\text{Pl}}$

ial + protection from radiative corrections

D. E. Kaplan, N. J. Weiner <u>JCAP 02 (2004) 005</u>

G. Ross, G. German *Phys.Lett.B* 684,199 (2010)

Small field Inflation requires: flat potential + protection from radiative corrections

K. Freese, J. A. Freeman, A. V. Olinto *Phys.Rev.Lett.* 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

1. Excluded by CMB observations

2. Large-field model: $f \ge M_{\text{Pl}}$

D. E. Kaplan, N. J. Weiner <u>JCAP 02 (2004) 005</u>

G. Ross, G. German *Phys.Lett.B* 684,199 (2010)

Small field Inflation requires: flat potential + protection from radiative corrections

K. Freese, J. A. Freeman, A. V. Olinto *Phys.Rev.Lett.* 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

1. Excluded by CMB observations

2. Large-field model: $f \ge M_{\text{Pl}}$

D. E. Kaplan, N. J. Weiner <u>JCAP 02 (2004) 005</u>

G. Ross, G. German *Phys.Lett.B* 684,199 (2010)

Small field Inflation requires: flat potential + protection from radiative corrections

K. Freese, J. A. Freeman, A. V. Olinto *Phys.Rev.Lett.* 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

1. Excluded by CMB observations

2. Large-field model: $f \ge M_{\text{Pl}}$

D. E. Kaplan, N. J. Weiner <u>JCAP 02 (2004) 005</u>

G. Ross, G. German *Phys.Lett.B* 684,199 (2010)

Small field Inflation requires: flat potential + protection from radiative corrections

K. Freese, J. A. Freeman, A. V. Olinto Phys.Rev.Lett. 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

1. Excluded by CMB observations

2. Large-field model: $f \ge M_{\rm Pl}$

D. E. Kaplan, N. J. Weiner JCAP 02 (2004) 005

G. Ross, G. German Phys.Lett.B 684,199 (2010)

Small field Inflation requires: flat potential + protection from radiative corrections

K. Freese, J. A. Freeman, A. V. Olinto *Phys.Rev.Lett.* 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

1. Excluded by CMB observations

2. Large-field model: $f \ge M_{\text{Pl}}$

D. E. Kaplan, N. J. Weiner <u>JCAP 02 (2004) 005</u>

G. Ross, G. German *Phys.Lett.B* 684,199 (2010)

Small field Inflation requires: flat potential +

K. Freese, J. A. Freeman, A. V. Olinto *Phys.Rev.Lett.* 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

- Excluded by CMB observations
- Large-field model: $f \ge M_{\rm Pl}$

ial + protection from radiative corrections

D. E. Kaplan, N. J. Weiner <u>JCAP 02 (2004) 005</u>

G. Ross, G. German *Phys.Lett.B* 684,199 (2010)

Small field Inflation requires: flat potential +

K. Freese, J. A. Freeman, A. V. Olinto *Phys.Rev.Lett.* 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

- Excluded by CMB observations
- Large-field model: $f \ge M_{\rm Pl}$

ial + protection from radiative corrections

D. E. Kaplan, N. J. Weiner <u>JCAP 02 (2004) 005</u>

G. Ross, G. German *Phys.Lett.B* 684,199 (2010)

Small field Inflation requires: flat potential +

K. Freese, J. A. Freeman, A. V. Olinto *Phys.Rev.Lett.* 65 (1990) 3233-3236

 φ **pNBG** of a shift symm $V_{\rm NI}(\varphi) = M^4 \left[1 - \cos\left(\frac{\varphi}{f}\right) \right]$ BUT

- Excluded by CMB observations
- Large-field model: $f \ge M_{\rm Pl}$

ial + protection from radiative corrections

D. E. Kaplan, N. J. Weiner <u>JCAP 02 (2004) 005</u>

G. Ross, G. German *Phys.Lett.B* 684,199 (2010)

 $V = V(\phi) + \frac{\lambda_{\chi}}{4} \left(|\chi|^2 - v_{\chi}^2 \right)^2 + \zeta T_{AB}^a T_{BC}^b \phi^{*A} \phi^C \chi^{*a} \chi^b$

$$V = V(\phi) + \frac{\lambda_{\chi}}{4} \left(|\chi|^2 - v_{\chi}^2 \right)^2 + \zeta T_{AB}^a T_{BC}^b \phi^{*A} \phi$$

Inflation:
$$\begin{cases} \langle \phi \rangle = v(\alpha) \text{ (Accidentally flat of } \alpha) \\ \langle \chi \rangle = 0 \end{cases}$$

"Accidental" Inflation

 $\phi^C \chi^{*a} \chi^b$

direction)

$$V = V(\phi) + \frac{\lambda_{\chi}}{4} \left(|\chi|^2 - v_{\chi}^2 \right)^2 + \zeta T_{AB}^a T_{BC}^b \phi^{*A} \phi$$

Inflation:
$$\begin{cases} \langle \phi \rangle = v(\alpha) \text{ (Accidentally flat of } \alpha) \\ \langle \chi \rangle = 0 \end{cases}$$

"Accidental" Inflation

4

$$V = V(\phi) + \frac{\lambda_{\chi}}{4} \left(|\chi|^2 - v_{\chi}^2 \right)^2 + \zeta T_{AB}^a T_{BC}^b \phi^{*A} \phi$$

Inflation:
$$\begin{cases} \langle \phi \rangle = v(\alpha) \text{ (Accidentally flat of } \alpha) \\ \langle \chi \rangle = 0 \end{cases}$$

$$V = V(\phi) + \frac{\lambda_{\chi}}{4} \left(|\chi|^2 - v_{\chi}^2 \right)^2 + \zeta T_{AB}^a T_{BC}^b \phi^{*A} \phi$$

Inflation: $\begin{cases} \langle \phi \rangle = v(\alpha) \text{ (Accidentally flat direction)} \\ \langle \chi \rangle = 0 \end{cases}$ $=m_{\chi^3}^2(\alpha)$ $V_{\text{inf}} = V_0 + \frac{c_1 v^4}{64\pi^2} \cos(6\alpha) - \frac{1}{2} \left[\mu_{\chi}^2 - \zeta v^2 \sin^2(\alpha) \right] |\chi^3|^2 + \dots$

$$V = V(\phi) + \frac{\lambda_{\chi}}{4} \left(|\chi|^2 - v_{\chi}^2 \right)^2 + \zeta T_{AB}^a T_{BC}^b \phi^{*A} \phi$$

Inflation:
$$\begin{cases} \langle \phi \rangle = v(\alpha) \text{ (Accidentally flat of } \langle \chi \rangle = 0 \\ = m_{\chi^3}^2(\alpha) \end{cases}$$
$$V_{\text{inf}} = V_0 + \frac{c_1 v^4}{64\pi^2} \cos(6\alpha) - \frac{1}{2} \left[\mu_{\chi}^2 - \zeta v^2 \sin^2(\alpha) \right] \langle \chi \rangle = 0 \end{cases}$$

Protection from ALL Inflaton = Accident higher-order corrections

 n_s

 $\chi \sim 3$ $\mathrm{SU}(2) \times \mathbb{Z}_4^{(\chi)} : \chi \to i\chi$

 $\chi \sim \mathbf{3}$ SU(2) × $\mathbb{Z}_{4}^{(\chi)}$: $\chi \rightarrow i\chi$

$\chi \sim \mathbf{3}$ $SU(2) \times \mathbb{Z}_{4}^{(\chi)} : \chi \to i\chi$ \downarrow Add a soft breaking of \mathbb{Z}_{4} :

 $i m_{\chi}^2 \chi \chi + h \cdot c$.

$\chi \sim \mathbf{3}$ $SU(2) \times \mathbb{Z}_{4}^{(\chi)} : \chi \to i\chi$ \downarrow Add a soft breaking of \mathbb{Z}_{4} :

 $i m_{\chi}^2 \chi \chi + h \cdot c$.

 $\chi \sim 3$ SU(2) × $\mathbb{Z}_4^{(\chi)}$: $\chi \to i\chi$

Add a soft breaking of \mathbb{Z}_4 : $i m_{\chi}^2 \chi \chi + h \cdot c$.

DWs annihilate and emit GWs!

Conclusions

Large representations => tree-level massless scalars

- Large representations => tree-level massless scalars
- Possible applications:
 - (Abelian) Higgs model: little hierarchy problem
 - Dark Matter candidate

- Large representations => tree-level massless scalars
- Possible applications:
 - (Abelian) Higgs model: little hierarchy problem
 - Dark Matter candidate
- "Accidental" Inflation

- Large representations => tree-level massless scalars
- Possible applications:
 - (Abelian) Higgs model: little hierarchy problem
 - Dark Matter candidate
- "Accidental" Inflation
 - Flatness ensured by gauge symmetries

- Large representations => tree-level massless scalars
- Possible applications:
 - (Abelian) Higgs model: little hierarchy problem
 - Dark Matter candidate
- "Accidental" Inflation
 - Flatness ensured by gauge symmetries
 - **GWs** from DWs \bullet

- Large representations => tree-level massless scalars
- Possible applications:
 - (Abelian) Higgs model: little hierarchy problem
 - Dark Matter candidate
- "Accidental" Inflation
 - Flatness ensured by gauge symmetries
 - **GWs** from DWs \bullet
 - GWs from Tachyonic Preheating

Thank you for your attention!

Backup Slides

Vacuum Manifold

 $\Delta V_{\rm CW}(\alpha) = \frac{1}{64\pi^2} \operatorname{Str}\left(\mathscr{M}(\alpha)^4 \log \frac{\mathscr{M}(\alpha)^2}{\Lambda^2}\right)$

Fermions: $\psi \sim \mathbf{3}_{+1/2}, \quad \xi \sim \mathbf{3}_{-1/2}$

 $\mathscr{L} \supset y \left(\psi^T \phi \psi + \chi^T \phi^* \chi \right) + M \psi^T \chi + h.c.$

Effective Potential

Possible Applications Abelian Higgs

$V_{\rm eff}(\alpha) \simeq c_1 \cos(6\alpha) + c_2 \cos(12\alpha)$ \downarrow Tuning c_1 against c_2 : breaking of U(1)' at a scale $v' \ll v$

We can identify the accident with the Abelian Higgs

Possible Applications Dark Matter

The SU(3) ten-plet

$$V = -\mu^2 S + \frac{1}{2}(\lambda S^2 + \delta A^a A^a)$$

 $SU(3) \times U(1) \longrightarrow U(1)_3 \times U(1)_8$ & 6 accidents • ESP: • Generic point: $SU(3) \times U(1) \longrightarrow Ø$ & 2 accidents

Scalar one-loop corrections -----> The ESP is stabilised

Invariant ONLY under $SU(3) \times U(1)$

"Accidental" Inflation "Real" Model

 $\phi \sim 5, \quad \chi \sim 3$

 $G = \operatorname{SO}(3) \times \mathbb{Z}_2^{(\phi)}$

 $V = -\frac{1}{2}\mu_{\phi}^2\phi^2 - \frac{1}{2}\mu_{\chi}^2\chi^2 + \frac{\lambda_{\phi}}{\Lambda}(\phi^2)^2 + \frac{\lambda_{\chi}}{\Lambda}(\chi^2)^2 + \frac{\varepsilon}{\Lambda}\phi^2\chi^2 + \frac{\zeta}{\Lambda}T_{AC}^aT_{CB}^b\phi_A\phi_B\chi^a\chi^b$

No Topological Defect Production

Parameter Space

 n_r

 n_r

Accidental Inflation GWs from Tachyonic Preheating

End of inflation: $m_{\chi^3}^2 < 0$

Tachyonic Preheating

G. N. Felder et al. *Phys. Rev. Lett.* 87, 011601 (2001) G. N. Felder et al. *Phys. Rev. D 64, 123517 (2001)*

Large "bubbly" inhomogeneities: $R_* \sim$

$$\frac{1}{k_*}$$

$$\begin{aligned} & \iint_{\substack{Phys. \; Rev. \; D, \; vol. \; 76, \; p. \; 123517, \; 2007.}} \\ & \\ \text{GWs:} & \begin{cases} & \nu_* \simeq 4 \times 10^{10} \; \text{Hz} \frac{k_*}{\rho_{\inf}^{1/4}} \\ & & h^2 \Omega_* \simeq 10^{-6} \left(\frac{H_{\inf}}{k_*}\right)^2 \end{cases} \end{aligned}$$

$(G\mu)^{\text{CMB}} \lesssim 10^{-7} \Longrightarrow V_0 \lesssim \text{few} \times 10^{14} \text{GeV}$

Cosmic Strings

 $V = -\frac{1}{2}\mu_{\phi}^{2}\phi^{2} + \frac{\lambda_{\phi}}{4}(\phi^{2})^{2} - \mu_{\chi}^{2}\chi^{*}\chi + \lambda_{\chi}(\chi^{*}\chi)^{2} + \delta\chi^{*2}\chi^{*}\chi^{2}$

 $f_p \simeq 1.6 \times 10^{-7}$

 $h^2 \Omega_{\rm GW} \left(f_p \right) \simeq 1.6 \times 10^{-5}$

$$\alpha_{\rm ann} \equiv \frac{\rho_{\rm DW}(t_{\rm ann})}{\rho_r(t_{\rm ann})} \simeq \frac{4}{3} C_d \mathcal{A}^2 \frac{\sigma^2}{M_P^2 \Delta V}$$

Domain Walls

$$\chi^2 + \frac{1}{2} \left(\kappa \chi^2 \chi^2 + \text{h.c.} \right) + \frac{\varepsilon}{2} \phi^2 \left(\chi^* \chi \right) + \frac{\zeta}{2} T^a_{AC} T^b_{CB} \phi_A \phi_B \chi$$

$$\operatorname{Hz}\left(\frac{g_*(T_{\mathrm{ann}})}{100}\right)^{1/6} \frac{T_{\mathrm{ann}}}{\operatorname{GeV}}$$
$$\left(\frac{100}{g_*(T_{\mathrm{ann}})}\right)^{1/3} \frac{3}{32\pi} \tilde{\epsilon} \,\alpha_{\mathrm{ann}}^2 \,\mathcal{S}(f/f_p)$$

$$T_{\rm ann} = \left[\frac{45}{2\pi^2} \frac{g_*(T_{\rm ann})^{-1}}{C_d^2 \mathcal{A}^2} \frac{M_{\rm P}^2 \Delta V^2}{\sigma^2}\right]^{1/4}$$

