

HNLs from Heavy ALP decays at Neutrino Facilities

...based on 2311.07713

PLANCK 2024 Asli M. Abdullahi 6 June 2024

Fantastic Beasts and How to Find Them With Neutrino Detectors

Fantastic F

WHY NEUTRINO EXPERIMENTS?

- High POT (~1e21)
 - \rightarrow large flux of charged and neutral mesons
 - → **Potentially** sizeable flux of BSM particles
 - Large detector masses ~ O(1e2) tonnes
 - → Potentially larger interaction cross-sections
 - Good PID (p, μ, e, γ reconstructed) and calorimetry
 - Parasitic → shared cost with neutrino projects

See talk by Richard Van de Water, U.S. Cosmic Visions 2017

"Future possibilities at Proton fixed target experiments"

Fig. 1 of 1812.06771 (Buonocore et al.)

Fig. 1 of 1812.06771 (Buonocore et al.)

Plethora of NP

"Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities" AA, A. de Gouvea, B. Dutta, I. Shoemaker and Z. Tabrizi ArXiv: 2311.07713 [hep-ph]

"A panorama of new-physics explanations to the MiniBooNE excess" AA, J. Hoefken-Zink, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2308.02543 [hep-ph]

"Constraining light thermal inelastic dark matter with NA64" AA, B. Banto Oberhauser, P. Crivelli, M. Hostert, D. Massaro, L. Molina Bueno, M. Mongillo, S. Pascoli ArXiv: 2302.05414 [hep-ph]

"Semi-Visible Dark Photon Phenomenology at the GeV Scale" AA, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2302.05410 [hep-ph]

"A dark seesaw solution to low energy anomalies: MiniBooNE, the muon (g - 2), and BaBar" AA, M. Hostert, S. Pascoli ArXiv: 2007.11813 [hep-ph]

Plethora of NP

Among the NP options are: Light Z' **HNLs** Light **ALPs** Dark **Matter**

"Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities" AA, A. de Gouvea, B. Dutta, I. Shoemaker and Z. Tabrizi ArXiv: 2311.07713 [hep-ph]

"A panorama of new-physics explanations to the MiniBooNE excess" AA, J. Hoefken-Zink, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2308.02543 [hep-ph]

"Semi-Visible Dark Photon Phenomenology at the GeV Scale" AA, B. Banto Oberhauser, P. Crivelli, M. Hostert, D. Massaro, L. Molina Bueno, M. Mongillo, S. Pascoli ArXiv: 2302.05414 [hep-ph]

"Semi-Visible Dark Photon Phenomenology at the GeV Scale" AA, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2302.05410 [hep-ph]

"A dark seesaw solution to low energy anomalies: MiniBooNE, the muon (g - 2), and BaBar"
AA, M. Hostert, S. Pascoli
ArXiv: 2007.11813 [hep-ph]

Heavy Neutral Leptons: Minimal scenario

$$\mathcal{L} \supset -y ar{m{L}} \left(i \sigma^2 H^*
ight) m{N} - rac{M_N}{2} \overline{m{N}^c} m{N}$$

• Singlet N couples to SM leptons through Higgs

 \rightarrow The only renormalizable coupling to a singlet fermion

• Mass mixing with SM neutrinos and active-sterile neutrino oscillations

$$\mathcal{L} \supset -y ar{m{L}} \left(i \sigma^2 H^*
ight) N - rac{M_N}{2} \overline{N^c} N$$

- Singlet N couples to SM leptons through Higgs
 → The only renormalizable coupling to a singlet fermion
- Mass mixing with SM neutrinos and active-sterile neutrino oscillations
- Could explain neutrino mass \rightarrow Type 1 seesaw

$$\mathcal{L} \supset -y ar{m{L}} \left(i \sigma^2 H^*
ight) N - rac{M_N}{2} \overline{N^c} N$$

- Singlet N couples to SM leptons through Higgs
 → The only renormalizable coupling to a singlet fermion
- Mass mixing with SM neutrinos and active-sterile neutrino oscillations
- Could explain neutrino mass → Type 1 seesaw

 m_D^2

Breitbach, Buonocore, Frugiuele, Kopp, Mittnacht, JHEP (2022)

HNLs: Minimal scenario

ROADBLOCK: Production and detection through neutrino mixing

Event rate suppressed by $|U_{\alpha N}|^4$

Typically **long-lived** and have **weaker-than-weak** interactions

 \rightarrow Challenging to probe seesaw region and below

HNLs: Minimal scenario

ROADBLOCK: Production and detection through neutrino mixing

Event rate suppressed by $|U_{\alpha N}|^4$

How to bypass the roadblock?

- New pseudoscalar, a, couples to HNLs directly
- Analogous to $\pi^+ \rightarrow l^+ + \nu$ in SM

"Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities" AA, A. de Gouvea, B. Dutta, I. Shoemaker and Z. Tabrizi ArXiv: 2311.07713 [hep-ph]

"Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities" AA, A. de Gouvea, B. Dutta, I. Shoemaker and Z. Tabrizi ArXiv: 2311.07713 [hep-ph]

"Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities" AA, A. de Gouvea, B. Dutta, I. Shoemaker and Z. Tabrizi ArXiv: 2311.07713 [hep-ph]

Asli Abdullahi - PLANCK 2024 19

- \circ Enhanced wrt the usual HNL if ${\theta_a}^2 \gg |U_{lpha}|^2$
- Different angular distributions

Our through a new mediator, e.g. Z'

HNL production via ALP

Theoretical realization: "Dark Matter and Neutrino Mass from the Smallest Non-Abelian Chiral Dark Sector" J. M. Berryman, A. de Gouvea, K. J. Kelly, Y. Zhang ArXiv: 1706.02722 [hep-ph]

2 The Model

Following the results discussed in detail in Ref. [5], $SU(3) \times SU(2)$ is the smallest, non-abelian, chiral gauge theory that does not contain a U(1) gauge group. The minimal^{*} fermion content is

$$Q_D(3,2), \quad u_D^c(\bar{3},1), \quad d_D^c(\bar{3},1), \quad L_D(1,2),$$
(2.1)

$$\mathcal{L} \supset \frac{g_2}{2\sqrt{2}} \left[\bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2 X^{\mu}_+ + \bar{q}_2 \gamma_\mu (1 - \gamma_5) q_1 X^{\mu}_- \right] + \frac{g_2}{4} \left[\bar{q}_1 \gamma_\mu (1 - \gamma_5) q_1 - \bar{q}_2 \gamma_\mu (1 - \gamma_5) q_2 \right] X^{\mu}_3, \quad (2.5)$$

where $X_{\pm}^{\mu} = (X_1^{\mu} \mp i X_2^{\mu})/\sqrt{2}$. In section 4.1, we will introduce dark pions, composite states made of a dark quark and a dark antiquark. We will define $\{\pi_D^+, \pi_D^0, \pi_D^-\} = \{q_1 \bar{q}_2, (q_1 \bar{q}_1 - q_2 \bar{q}_2)/\sqrt{2}, q_2 \bar{q}_1\}, i.e.,$ the "charge" assignments correspond to the sign of the quark couplings to X_3 (third-component of dark SU(2)).

HNL production via ALP

Theoretical realization: "Dark Matter and Neutrino Mass from the Smallest Non-Abelian Chiral Dark Sector" J. M. Berryman, A. de Gouvea, K. J. Kelly, Y. Zhang ArXiv: 1706.02722 [hep-ph]

2 The Model

Following the results gauge theory that doe

Disclaimer:

$\mathcal{L} \supset \frac{g_2}{2\sqrt{2}} \begin{bmatrix} \bar{q}_1 \gamma_\mu (\begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \text{This is a pheno talk. Discussion is general and} \\ \text{not tied to any specific model} \\ \end{array}$

 $_{2}]X_{3}^{\mu},$ (2.5)

iral

2.1)

where $X_{\pm}^{\mu} = (X_1^{\mu} \mp i X_2^{\mu})/\sqrt{2}$. In section 4.1, we will introduce dark pions, composite states made of a dark quark and a dark antiquark. We will define $\{\pi_D^+, \pi_D^0, \pi_D^-\} = \{q_1 \bar{q}_2, (q_1 \bar{q}_1 - q_2 \bar{q}_2)/\sqrt{2}, q_2 \bar{q}_1\}, i.e.,$ the "charge" assignments correspond to the sign of the quark couplings to X_3 (third-component of dark SU(2)).

ALP flux

Contributions from: $\pi^0 o \pi^0 + g_{\pi a} a$, $\eta o \eta^0 + g_{\eta a} a$, $\eta \rightarrow \eta^{0} + g_{\eta a} a,$ To obtain ALP flux $\frac{d^{2} \phi_{a}}{dE_{a} d\theta_{a}} = g_{\mathbf{m}a}^{2} \frac{E_{a}}{E_{\mathbf{m}}} \frac{d^{2} \phi_{\mathbf{m}}}{dE_{\mathbf{m}} d\theta_{\mathbf{m}}}$ $\underbrace{\overset{\Gamma}{=}}_{\mathbf{w}} \frac{10^{13}}{10^{11}}$

HNL flux

HNL flux

Potential sensitivity to the seesaw region!

Sensitivity doesn't vary significantly between flavours

Breitbach, Buonocore, Frugiuele, Kopp, Mittnacht, JHEP (2022)

Weak dependence on flavour **significant** for tau mixing

 $|\mathbf{U}_{\tau 4}|^2 \sim 10^3 |\mathbf{U}_{\mu 4}|^2$

Main Takeaways

- Neutrino experiments are excellent place to search for new physics
 → large flux of charged and neutral mesons
 - Minimal HNL models face strong mixing suppression
 - Decoupling the production and detection can enhance HNL production rate
 - Production flavour insensitive
 - Potentially strong sensitivities as DUNE ND-like experiments

Thank you for your attention!

SM neutrino fluxes

Neutrino fluxes dependent on kaon, pion and charmed meson fluxes which vary significantly

 $\phi_{\nu_e} \sim 2 \times 10^{-2} \phi_{\nu_{\mu}} \sim 10^4 \phi_{\nu_{\tau}}$

27

$$v_D = 10^3 \text{ TeV}$$

