BOOSTING DARK MATTER WITH RELIC SUPERNOVA NEUTRINOS

Manibrata Sen Max-Planck-Institut für Kernphysik Heidelberg PLANCK2024

Core-collapse SNe: Mechanism

Core-collapse SNe leading to MeV neutrino emission.

• Almost entire energy of the SN emitted in neutrinos. $\sim 10^{58}$ neutrinos in 10 seconds.

Figure from Roberts and Reddy, Handbook of Supernovae, Springer Intl., 2017

The Díffuse Supernova Neutrino Background

- A galactic SN is very rare. So, should we wait a lifetime?
- We can be more inclusive, and look to the distant Universe for more SNe.
- Not that rare. On an average, there is 1 SN going off per second. The neutrino emission produces the DSNB.
- Detectable neutrino flux, mostly from stars upto redshift z~1, but extends upto z~6.
- Opens up a new frontier in neutrino astronomy.

DSNB=Diffuse Supernova Neutrino Background

How to estimate the DSNB?

A. Das, T. Herbermann, **MS**, V. Takhistov (arXiv: 2403.15367) A. Das, **MS**, (PRD 2021)

Putting all ingredients together

- The DSNB isotropic flux of neutrinos of all flavour.
- Uncertainties from lack of knowledge of star-formation rate.
- Universe filled with MeV energy neutrinos.

The Basic Idea

- Neutrino-Dark Matter interactions can allow neutrinos to scatter off DM.
- Upscatter a fraction of cold DM to neutrino-like energies.
- Can leave observable signature in DM direct detection experiments.

A. Das, T. Herbermann, **MS**, V. Takhistov (arXiv: 2403.15367) A. Das, **MS**, (PRD 2021)

How to estimate Boosted Dark Matter flux?

• The flux of boosted DM at the Earth is given by

$$\frac{d\Phi_{\chi}}{dT_{\chi}} = \int \frac{d\Omega}{4\pi} \int dl \frac{\rho_{\chi}(l)}{m_{\chi}} \int_{E_{\nu}}^{E_{\nu}^{max}} D_{halo}$$

Previous works on cosmic ray - boosted dark matter assumed

Parametric assumption. Is it correct?

 $\frac{dE_{\nu}}{dE_{\nu}} \frac{d\sigma_{\nu\chi}}{dT_{\chi}}$ **DSNB DM**- ν **cross-section**

$$\frac{d\sigma_{\nu\chi}}{dT_{\chi}} = \frac{\sigma}{T_{\chi}^{\max}}$$

- Consider two examples: 1. Scalar mediated interaction: $\mathscr{L} \supset g \bar{L} \Phi \chi_{DM}$
 - 2. Vector mediated interaction: $\mathscr{L} \supset (g \bar{L} \gamma_{\mu} L + g_{\gamma} \bar{\chi} \gamma_{\mu} \chi) Z'^{\mu}$

Inaccuracy of a constant cross-section assumption

Attentuation effect

- Attenuation due to interaction with particles in the Earth and atmosphere.
- Mean energy loss of a single DM particle due to scattering with particle i

$$\frac{dT_{\chi}}{dx}(x) = -\sum_{i} n_i(x) \int_0^{T_i^m}$$

 Analytical solution under constant cross-section assumption. Can give inaccurate results!

• We perform a fully numerical computation of the attenuation.

The boosted DM flux

A. Das, T. Herbermann, **MS**, V. Takhistov (arXiv: 2403.15367)

How does this affect signals in DD experiments?

A. Das, T. Herbermann, **MS**, V. Takhistov (arXiv: 2403.15367)

 10^{4}

 Here $\bar{\sigma}_{e\chi} = \frac{g^4}{\pi} \frac{\mu_{e\chi}^2}{(q_{\rm ref}^2 + m_{\rm med}^2)^2}$

• Attenuation: (i) Upper ceiling constraint.

(ii) Down scattering - stronger constraints at lower m_{γ} .

Strong differences with constant crosssection assumption.

Signals in different experiments

• Differential electron scattering rate $\frac{dR}{dT_e} = N_e \int dT_{\chi} \frac{d\Phi_{\chi}}{dT_{\gamma}^z} \frac{d\sigma_{e\chi}}{dT_e}$

A. Das, T. Herbermann, **MS**, V. Takhistov (arXiv: 2403.15367)

Constraínts on parameter space

Constraints from Xenon and LZ are similar.

PandaX has weaker constraints due to location at larger depth.

• Highlights the necessity of energy-dependent cross-section as well as attenuation effects.

Conclusions

- SN1987A.
- observational sigantures.
- particles. Can alter limits drastically!
- Set new limits on DM-neutrino and electron interactions for DM masses in the range

 The DSNB- an isotropic, ever-present flux of supernova neutrinos. Opens up a plethora of avenues for multi-messenger astroparticle physics, next giant leap from the Sun and

Neutrino-dark matter interactions allow the DSNB to boost DM to MeV energies. Can have

• Discard the assumption of constant interaction cross-section. This is not valid for light mass

 $m_{\rm DM} \sim (0.1, 10^4) \, {\rm MeV}$, using recent data from XENONnT, LUX-ZEPLIN, and PandaX-4T.

THANK YOU!

Backup

Flux and velocity distribution

Cross-section dependence

Scalar Heavy Mediator Limit:

$$\frac{d\sigma_{\nu\chi}}{dT_{\chi}} \propto \begin{cases} \frac{1}{T_{\chi}^2 m_{\chi}} , & \text{for } E_{\nu} \gg m_{\chi} \\\\ \frac{1}{m_{\chi}^3} , & \text{for } m_{\chi} \gg E_{\nu} . \end{cases}$$

Vector

Light Mediator Limit:

Constraínts on parameter space

Other constraints

Ingredient 1: Cosmology

Parameter	TT+lowE 68% limits	TE+lowE 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+BAO 68% limits
$H_0 [{ m kms^{-1}Mpc^{-1}}]$	66.88 ± 0.92	68.44 ± 0.91	69.9 ± 2.7	67.27 ± 0.60	67.36 ± 0.54	67.66 ± 0.42
$\Omega_\Lambda \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	0.679 ± 0.013	0.699 ± 0.012	$0.711\substack{+0.033\\-0.026}$	0.6834 ± 0.0084	0.6847 ± 0.0073	0.6889 ± 0.0056
$\Omega_m \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.}$	0.321 ± 0.013	0.301 ± 0.012	$0.289^{+0.026}_{-0.033}$	0.3166 ± 0.0084	0.3153 ± 0.0073	0.3111 ± 0.0056
$\Omega_{\rm m} h^2$	0.1434 ± 0.0020	0.1408 ± 0.0019	$0.1404^{+0.0034}_{-0.0039}$	0.1432 ± 0.0013	0.1430 ± 0.0011	0.14240 ± 0.00087
$\Omega_{\rm m}h^3$	0.09589 ± 0.00046	0.09635 ± 0.00051	$0.0981\substack{+0.0016\\-0.0018}$	0.09633 ± 0.00029	0.09633 ± 0.00030	0.09635 ± 0.00030
σ_8	0.8118 ± 0.0089	0.793 ± 0.011	0.796 ± 0.018	0.8120 ± 0.0073	0.8111 ± 0.0060	0.8102 ± 0.0060

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda (1+z)^{3(1+w)} + (1-\Omega_m - \Omega_\Lambda)(1+z)^2}$$

• Underlying cosmology is well constrained from Planck 2018 data. Parameters provide a normalisation to the spectral

PLANCK 2018

Ingredient 2: Star formation Rate

Cosmic SFR pretty well known from data in the UV and the far-infrared

$$\dot{\rho}_*(z) = \dot{\rho}_0 \left[(1+z)^{-10\alpha} + \left(\frac{1+z}{B}\right)^{-10\beta} + \left(\frac{1+z}{C}\right)^{-10\beta} + \left(\frac{1+$$

$$B = (1 + z_1)^{1 - \alpha/\beta}$$
$$C = (1 + z_1)^{(\beta - \alpha)/\gamma} (1 + z_2)^{1 - \beta/\gamma}$$

$$R_{\rm CCSN}(z) = \dot{\rho}_*(z) \frac{\int_8^{50} \psi(M) \, dM}{\int_{0.1}^{100} M\psi(M) \, dM}.$$

Manibrata Sen

Here $\psi(M) \sim M^{-2.35}$ is the initial mass distribution function

Hopkins, Beacom, ApJ2006 Yuksel, Kistler, Beacom, Hopkins, ApJ2008 Horiuchi, Beacom, Dwek, PRD2009

Ingredient 3: Neutrino spectra

• Assume an approximately thermal spectra, characteristic of late-time phase.

- Could be processed oscillations, howeve Hence ignore.
- Only assume adiaba heaviest neutrino + lightest neutrinos +

Temperature hierarc

Variation with <E> and alpha

Figure 10: Examples of unoscillated flux, Φ_w^0 ($w = e, \bar{e}, x$) (Eq. (15)), for different spectral parameters E_{0w}, α_w . Left: the curves of increasing thickness (increasing color intensity) correspond to $E_{0w} = 9, 12, 15, 18$ MeV, with $\alpha_w = 3$. Right: the curves of increasing thickness (increasing color intensity) correspond to $\alpha_w = 2, 3, 4, 5$ with $E_{0w} = 15$ MeV.

Variation with redshift

Figure 13: The contribution to the unoscillated $\bar{\nu}_e$ flux of sources in bins of increasing redshift, for the best fit SNR parameter $\beta = 3.28$ [59]. The solid curves from thinner to thicker (darker to lighter color) refer to the intervals: z = 0 - 1, z = 1 - 2, z = 2 - 3, z = 3 - 4 and z = 4 - 5. The dashed line is the total flux integrated over all redshifts. The parameters of the H case were used (Table 1).

Failed Supernovae

- Stars with $M > 25 40 M_{\odot}$ can end up forming a failed SN. (Dashed SN, solid- BH).
- Neutrino spectra can be more energetic due to rapid contraction of the PNS before collapse.

• 'S' EoS is stiffer, so stronger core-bounce and hence more energetic neutrinos.

LS EoS

Solution: Gd doping.

- Reduces energy threshold.
- will be reduced by a factor of 5.