

Heavy Neutrino-Antineutrino Oscillations at Colliders

Bruno M. S. Oliveira

Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa (UL) CERN/FIS-PAR/0002/2021 and CERN/FIS-PAR/0019/2021

PLANCK2024 The 26th International Conference From the Planck Scale to the Electroweak Scale

 $\mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$

 $\mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$

Colourless

Neutral

Neutrinos are special: tral Only left-chiral

Massless

 $\mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$

Unable to explain neutrino flavour oscillations

Colourless

 $\mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$

Explains neutrino flavour oscillations

$$\mathcal{L}_D = -[M_D]_{\alpha i} \overline{\nu_{L\alpha}} \nu_{Ri} + \text{h.c.}$$

Conserves lepton number (LNC)

Majorana Mass Lagrangian:

$$\mathcal{L}_{M}=-\frac{1}{2}\big[M_{M}^{R}\big]_{ij}\overline{\nu_{Ri}}\nu_{Rj}+\text{h.c.}$$

Violates lepton number (LNV)

$$\mathcal{L}_D = -[M_D]_{\alpha i} \overline{\nu_{L\alpha}} \nu_{Ri} + \text{h.c.}$$

Conserves lepton number (LNC)

Light Neutrinos ν :

Left-Right Mixing:

Heavy Neutrinos n:

 $M_{\nu}\simeq -\theta M_M^R \theta^T$

 $\theta = [M_D] [M_M^R]^{-1}$

 $M_n \simeq M_M^R$

Majorana Mass Lagrangian:

$$\mathcal{L}_M = -\frac{1}{2} \big[M_M^R \big]_{ij} \overline{\nu_{Ri}} \nu_{Rj} + \text{h.c.}$$

Violates lepton number (LNV)

- 1

$$\mathcal{L}_D = -[M_D]_{\alpha i} \overline{\nu_{L\alpha}} \nu_{Ri} + \text{h.c.}$$

Conserves lepton number (LNC)

Light Neutrinos ν :

 $M_{\nu}\simeq -\theta M_M^R \theta^T$

Majorana Mass Lagrangian:

$$\mathcal{L}_{M}=-\frac{1}{2}\big[M_{M}^{R}\big]_{ij}\overline{\nu_{Ri}}\nu_{Rj}+\mathrm{h.c.}$$

Violates lepton number (LNV)

Left-Right Mixing:

 $\theta = [M_D] [M_M^R]^{-1}$

Heavy Neutrinos n:

$$M_n \simeq M_M^R$$

$$\mathcal{L}_D = -[M_D]_{\alpha i} \overline{\nu_{L\alpha}} \nu_{Ri} + \text{h.c.}$$

Conserves lepton number (LNC)

Light Neutrinos ν :

 $M_{\nu}\simeq -\theta M_M^R \theta^T$

Majorana Mass Lagrangian:

$$\mathcal{L}_{M}=-\frac{1}{2}\big[M_{M}^{R}\big]_{ij}\overline{\nu_{Ri}}\nu_{Rj}+\mathrm{h.c.}$$

Violates lepton number (LNV)

Left-Right Mixing:

 $\theta = [M_D] [M_M^R]^{-1}$

Heavy Neutrinos n:

 $M_n\simeq M_M^R$

Two neutrinos:

$$M = \begin{pmatrix} 0_{3\times3} & m_D^{(1)T} & m_D^{(2)T} \\ m_D^{(1)} & m_M^{(1)} & 0 \\ m_D^{(2)} & 0 & m_M^{(2)} \end{pmatrix}$$

$$M_{\nu} = \frac{m_D^{(1)} \otimes m_D^{(1)}}{m_M^{(1)}} + \frac{m_D^{(2)} \otimes m_D^{(2)}}{m_M^{(2)}}$$

Symmetry Protected Seesaw Scenarios [2210.10738]

Symmetric limitMild symmetry breakingLarge symmetry breaking $M = \begin{pmatrix} 0 & m_D^T & 0 \\ m_D & 0 & m_M \\ 0 & m_M & 0 \end{pmatrix}$ $M = \begin{pmatrix} 0 & m_D^T & \mu_D^T \\ m_D & \mu'_M & m_M \\ \mu_D & m_M & \mu_M \end{pmatrix}$ $M = \begin{pmatrix} 0 & m_D^T & \hat{m}_D^T \\ m_D & \hat{m}'_M & m_M \\ \hat{m}_D & m_M & \hat{m}_M \end{pmatrix}$ $\mu_D, \mu_M, \mu'_M \ll m_M$ $\hat{m}_D, \hat{m}_M, \hat{m}'_M \sim m_M$

$$P_{\rm dec \ osc}^{\rm LNC/LNV}(\tau) \quad = \quad \left[P_{\rm decay}(\tau) = \Gamma e^{-\Gamma \tau} \right] \quad \times \quad \left[P_{\rm osc}^{\rm LNC/LNV}(\tau) = \frac{1}{2} \big[1 \pm e^{-\lambda} \cos(\Delta m \tau) \big] \right]$$

$$P_{\rm dec \ osc}^{\rm LNC/LNV}(\tau) \quad = \quad \left[P_{\rm decay}(\tau) = \Gamma e^{-\Gamma \tau} \right] \quad \times \quad \left[P_{\rm osc}^{\rm LNC/LNV}(\tau) = \frac{1}{2} \big[1 \pm e^{-\lambda} \cos(\Delta m \tau) \big] \right]$$

Time-integrated behaviour:

$$\underbrace{R=0}_{\text{Pure Dirac HNL}} < \underbrace{R=\frac{P^{\text{LNV}}}{P^{\text{LNC}}}=\frac{\Delta m^2}{\Delta m^2+2\Gamma^2}}_{\text{Pseudo-Dirac HNL}} < \underbrace{R=1}_{\text{Single Majorana HNL}}$$

$$P_{\rm dec \ osc}^{\rm LNC/LNV}(\tau) \quad = \quad \left[P_{\rm decay}(\tau) = \Gamma e^{-\Gamma \tau} \right] \quad \times \quad \left[P_{\rm osc}^{\rm LNC/LNV}(\tau) = \frac{1}{2} \big[1 \pm e^{-\lambda} \cos(\Delta m \tau) \big] \right]$$

Time-integrated behaviour:

$$\underbrace{R=0}_{\text{Pure Dirac HNL}} < \underbrace{R=\frac{P^{\text{LNV}}}{P^{\text{LNC}}}=\frac{\Delta m^2}{\Delta m^2+2\Gamma^2}}_{\text{Pseudo-Dirac HNL}} < \underbrace{R=1}_{\text{Single Majorana HNL}}$$

More details in [Jan Hajer's Talk]

Detecting Lepton Number Violation

LNV can be directly measured

Detecting Lepton Number Violation

Resolving Heavy Neutrino-Antineutrino Oscillations [2212.00562]

Group LNC/LNV events ⇒ **Fit** oscillations ⇒ **Analyse** significance

Resolving Heavy Neutrino-Antineutrino Oscillations [2212.00562]

Group LNC/LNV events \Rightarrow **Fit** oscillations \Rightarrow **Analyse** significance

HL-LHC:

Capable of resolving $N\overline{N}Os$

Luminosity \Rightarrow Narrow frequency spectrum

Detecting Heavy Neutral Leptons

Resolving Heavy Neutrino-Antineutrino Oscillations [2212.00562, 2308.07297, Preliminary]

Forward-Backward Asymmetry Opening Angle Asymmetry

Lab frame (p_Z^2)

Forward-Backward Asymmetry [2308.07297]

Resolving Heavy Neutrino-Antineutrino Oscillations [2308.07297, Preliminary]

 $\label{eq:bis} \begin{array}{l} \cos\beta \text{:} \\ \text{Distinguishes } Z \rightarrow \nu \overline{N} \text{ from } Z \rightarrow \bar{\nu}N \end{array}$

 $q_\ell \cos \beta$: Distinguishes LNC from LNV

Resolving Heavy Neutrino-Antineutrino Oscillations [2308.07297, Preliminary]

Opening Angle Asymmetry [2202.06703, Preliminary]

 $\mathrm{d}\sigma_{\mathrm{LNC/LNV}} \propto (\sigma_0 \mp \sigma_1 \cos\alpha) \, \mathrm{d} \cos\alpha$

$$P^{M}_{\text{LNC/LNV}}(\alpha) = \frac{1}{2}(1 \mp a \cos \alpha) \qquad a = \frac{\sigma_{1}}{\sigma_{0}}$$

Opening Angle Asymmetry [Preliminary]

 $\cos \alpha$:

More sensitive to $N\overline{N}$ Os that $\cos\beta$

Challenging to measure

Opening Angle Asymmetry [Preliminary]

 p_ℓ :

Equally sensitive to $N\overline{N}$ Os as $\cos \alpha$

Straightforward to measure

Results [Preliminary]

Results [Preliminary]

Results [Preliminary]

28 / 39

Collider-testable type I seesaw models predict pseudo-Dirac HNLs $$\Downarrow$$ $$N\!\overline{\!N}\!Os$$ between LNC and LNV

HL-LHC (W decay) LNV can be measured directly ↓ NNOs manifest as decaying oscillations FCC-*ee* (Z decay) LNV can be detected in final state observables $\downarrow \downarrow$ $N\overline{N}$ Os manifest as an oscillatory pattern

Number of events + Interplay of oscillation and decay $\downarrow\downarrow$ Oscillations can be resolvable $\downarrow\downarrow$ Understand neutrino mass generation + Detect LNV Stefan Antusch and Johannes Rosskopp. 'Heavy Neutrino-Antineutrino Oscillations in Quantum Field Theory'. In: JHEP 03 (2021), p. 170. DOI: 10.1007/JHEP03(2021)170. arXiv: 2012.05763 [hep-ph].

Alain Blondel, André de Gouvêa and Boris Kayser. 'Z-boson decays into Majorana or Dirac heavy neutrinos'. In: *Phys. Rev. D* 104.5 (2021), p. 055027. DOI: 10.1103/PhysRevD.104.055027. arXiv: 2105.06576 [hep-ph].

Krzysztof Mękała, Jürgen Reuter and Aleksander Filip Żarnecki. 'Heavy neutrinos at future linear e⁺e⁻ colliders'. In: *JHEP* 06 (2022), p. 010. DOI: 10.1007/JHEP06(2022)010. arXiv: 2202.06703 [hep-ph].

Stefan Antusch, Jan Hajer and Johannes Rosskopp. 'Simulating lepton number violation induced by heavy neutrino-antineutrino oscillations at colliders'. In: *JHEP* 03 (2023), p. 110. DOI: 10.1007/JHEP03(2023)110. arXiv: 2210.10738 [hep-ph].

Stefan Antusch, Jan Hajer and Johannes Rosskopp. 'Beyond lepton number violation at the HL-LHC: resolving heavy neutrino-antineutrino oscillations'. In: *JHEP* 09 (2023), p. 170. DOI: 10.1007/JHEP09(2023)170. arXiv: 2212.00562 [hep-ph].

Stefan Antusch, Jan Hajer and Johannes Rosskopp. 'Decoherence effects on lepton number violation from heavy neutrino-antineutrino oscillations'. In: *JHEP* 11 (2023), p. 235. DOI: 10.1007/JHEP11(2023)235. arXiv: 2307.06208 [hep-ph].

Stefan Antusch, Jan Hajer and Bruno M. S. Oliveira. 'Heavy neutrino-antineutrino oscillations at the FCC-ee'. In: JHEP 10 (2023), p. 129. DOI: 10.1007/JHEP10(2023)129. arXiv: 2308.07297 [hep-ph].

Stefan Antusch, Jan Hajer and Bruno M. S. Oliveira. 'Discovering lepton number violation in distributions at the FCC-ee'. (June 2024). In progress.

Jan Hajer. 'Measuring lepton number violation at colliders'. PLANCK2024. June 2024. URL: https://indico.cern.ch/event/1323379/contributions/5889385/.

Symmetry Protected Seesaw Scenarios [2210.10738]

Seesaw	Hierarchy	Benchmark Model
Linear	Normal Inverted	$\begin{array}{l} \Delta m_{\nu} = 42.3 \mathrm{meV} \\ \Delta m_{\nu} = 748 \mathrm{\mu eV} \end{array}$
Inverse		$\begin{array}{l} m_{\nu}=0.5\mathrm{meV}\\ m_{\nu}=5.0\mathrm{meV}\\ m_{\nu}=50\mathrm{meV} \end{array}$

Phenomenological Symmetry Protected Seesaw Scenario (pSPSS)

Two Majorana DOF described by six additional parameters

$$m_M \qquad (\theta_e, \theta_\mu, \theta_\tau) \qquad \qquad \Delta m \qquad \lambda$$

$$M_{\rm 4/5} \simeq m_M \Big(1 + \frac{1}{2} |\theta|^2 \Big) \pm \frac{1}{2} \Delta m \quad \Gamma = \Gamma(m_M, \theta_e, \theta_\mu, \theta_\tau)$$

Light neutrinos are Majorana particles \Downarrow No Lepton Number

			_		
Run	Z Pole	WW Threshold		Run	HL-LHC
Simulated Events	309965	47937	-	Simulated Events	50000
Exactly one/three μ	-34241 -1498	-14009 -2819	-	Exactly one prompt μ Exactly one displaced i	-23196 -21652
Displaced μ	-3964	-5107		Exactly one displaced μ	-1396
Displaced j	-12128	-4322		μ isolation	-838
Vertex direction	-53	-3		Vertex direction	0
N mass window	-40534	-1709		No prompt electron	0
			-	W mass window	-111
Remaining events	217547	19968	-	$N \max$ window	-1211
				Remaining Events	1596

$$\begin{array}{ll} Z: & m_M = 14 \, {\rm GeV} & \left(\theta_e, \theta_\mu, \theta_\tau \right) = (0,3,0) \times 10^{-4} & \Gamma = 22.6 \, \mu {\rm eV} \\ WW: & m_M = 5.5 \, {\rm GeV} & \left(\theta_e, \theta_\mu, \theta_\tau \right) = (0,1,0) \times 10^{-3} & \Gamma = 2.05 \, \mu {\rm eV} \\ {\rm LHC} & m_M = 14 \, {\rm GeV} & \left(\theta_e, \theta_\mu, \theta_\tau \right) = (0,3.162 \, 28,0) \times 10^{-4} & \Gamma = 13.8 \, \mu {\rm eV} \end{array}$$

The three muons in the $WW\,{\rm diagram}$ are correctly identified in $19\,132$ events

Null hypothesis

Oscillations are absent in the data

Alternative hypothesis

Oscillations are present in the data

Agreement between hypothesis and data

$$\begin{split} \# \text{Events:} \quad P_{\text{hyp}}^{\text{bin}} &= \frac{N_{\text{hyp}}(\tau_{\text{bin}})^{N_{\text{bin}}!}e^{-N_{\text{hyp}}(\tau_{\text{bin}})}}{N_{\text{bin}}!} \qquad \qquad P_{\text{hyp}} = \prod_{\text{bins}} P_{\text{hyp}}^{\text{bin}} \\ \text{Observable:} \quad P_{\text{hyp}}^{\text{event}} &= \frac{1}{\sqrt{2\pi}\sigma_{\text{event}}} \exp\left\{-\frac{1}{2}\left(\frac{\mu_{\text{hyp}}(\tau_{\text{event}}) - \mu_{\text{event}}}{\sigma_{\text{event}}}\right)^2\right\} \quad P_{\text{hyp}} = \prod_{\text{events}} P_{\text{hyp}}^{\text{event}} \end{split}$$

Significance

Likelihood of finding oscillations at a given LLR under the null hypothesis