Associated $t\bar{t}$ Production with Invisible Particles @ the LHC

Antonio Onofre (antonio.onofre@cern.ch)

PLANCK2024, 3rd-7th June 2024, IST Lisbon

Э

Outline

The LHC has become a *t*-quark factory: $t\bar{t}, t\bar{t} + X \ (X = H, \gamma, W, Z)$, single-top... with window for precision SM tests Looking into top quark precision tests can invisible particles spoil precision measurements?

- Double Top Quark Production @ LHC
- $t\bar{t} + Y_0$ production @ LHC Angular distributions and Asymmetries [JHEP 11 (2023) 125] [arXiv:2404.10852, 16 april 2024]

10000000

Double Top Quark Production @ LHC

- *t*-quark is the heaviest known fundamental fermion
 m_t = 172.52 ± 0.33 GeV (LHC comb. Nov. 2023)
 Large Yukawa coupling
- dominant decay: $t \to bW^+$ BR $(t \to sW) \le 0.18\%$, BR $(t \to dW) \le 0.02\%$ • $\tau_t = (3.29^{+0.90}_{-0.63}) \times 10^{-25}$ s
- $\tau_t = (3.29_{-0.63}) \times 10^{-0.5}$ [PRD 85091104,2012]
 - \Rightarrow *t*-quark decays before hadronizing $\underline{\underline{P}}$ polarization transf. to decay products.
- $t\bar{t}$ production @ LHC

Spin Observables @ LHC

Produced unpolarised, t-quark spins are correlated

t-quark decays

4/28

Normalised differential cross section

 $\frac{1}{\sigma}\frac{d^2\sigma}{d\cos\theta_1^i d\cos\theta_2^j} = \frac{1}{4}(1 + \frac{B_1^i}{\cos\theta_1^i} + \frac{B_2^j}{\cos\theta_2^i} + \frac{B_2^j}{\cos\theta_2^i} - \frac{C_{ij}}{\cos\theta_1^i} \cos\theta_1^j \cos\theta_2^j)$

 $\beta_{\pm}^{l}(\beta_{2}^{l}) = \ell^{+}(\ell^{-})$ directions in the $t(\bar{t})$ system, with respect to i(j) axis $(\hat{r}, \hat{k}, \hat{n})$ **B**₁(**B**₂) = top (anti-top) vector spin polarisations **C** = spin correlation matrix

Spin properties completely determined by 15 coefficients that may be probed individually:

$$\frac{1}{\sigma}\frac{d\sigma}{dx} = \frac{1}{2}\left(1 + \left[\operatorname{Coeff.}\right]x\right)f(x)$$

Spin Observables @ LHC

Other observables maybe used to probe Spin Correlations in tt Dileptonic Events

PRD 100 (2019) 072002 (CMS)

Antonio Onofre

PLANCK2024, 3rd -7th June 2024, IST Lisbon

Can invisible particles change significantly distributions? A Spin Perspective

Antonio Onofre PLANCK2024, 3rd-7th June 2024, IST Lisbon

Interaction Lagrangians for Spin 0 [EPJC 75, 482 (2015)].

$$\begin{split} \mathcal{L}_{SM}^{Y_0} &= \left[\bar{t} \frac{y_{33}^t}{\sqrt{2}} \left(g_{u_{33}}^S + i g_{u_{33}}^P \gamma^5 \right) t \right] Y_0, \\ \mathcal{L}_{Y_0}^{X_D} &= \bar{X}_D (g_{X_D}^S + i g_{X_D}^P \gamma^5) X_D Y_0 \\ \bullet \text{ CP-Even } (g_{u_{33}}^S = 1, g_{u_{33}}^P = 0) \\ \bullet \text{ CP-Odd } (g_{u_{33}}^S = 0, g_{u_{33}}^P = 1) \\ \bullet \text{ CP-Mixed } (g_{u_{33}}^{S/P} \neq 0) \end{split}$$

э

Dileptonic final states of the $t\bar{t}$ system is again used here: $t\bar{t} \rightarrow W^+ b W^- \bar{b} \oplus W^+ (W^+) \rightarrow l^+ \nu_{l^+} (l^- \bar{\nu}_{l^-})$, and $l = e, \mu$.

The strategy:

- - Main motivated by Cosmology e.g., GW190521 re-interpretation PRL 126 (2021) 8, 081101 and PRD 108 (2023) 12, 123020
 - Sun-like star orbiting a compact object, MNRAS 524 (2023) 3, 4083
- Apply the usual $pp \rightarrow t\bar{t}$ dileptonic analysis to $pp \rightarrow t\bar{t}Y_0$;
- Y_0 is a spin-0 DM mediator that couples to both DM and SM particles;

向下 イヨト イヨト 三日

Generated LHC-like signal and background events at $\sqrt{s} = 13 - 14$ TeV using MadGraph5_aMC@NLO Signal events ($pp \rightarrow t\bar{t}Y_0$) generated with DMsimp [EPJC 75, 482 (2015)], for both pure scalar ($J^{CP} = 0^+$) and pseudo-scalar ($J^{CP} = 0^-$) mediators. The mediator is, for now, not allowed to decay.

The focus is the top quarks mediator interaction!!

- SM dominant Backgrounds: $t\bar{t}, t\bar{t}H, t\bar{t}V(V = Z, W^{\pm})$ and single-*t*.
- Delphes used for a fast simulation of an LHC detector.

Selection Cuts

Events must have at least 2 opposite sign leptons and 2 *b*-jets with $p_T \ge 20$ GeV and $|\eta| \le 2.5$ (remove back. $|m_Z$ -91GeV|>10 GeV).

Ъ.

• DM Effects in *tt* Spin Observables

Leptons azimuthal angle difference (LAB)

Kinematic Reconstruction

The undetected neutrinos are reconstructed by imposing (E, \vec{p}) conservation

$$egin{aligned} (P_{W^+}+P_b)^2 &= m_t^2 \ (P_{W^-}+P_{ar b})^2 &= m_t^2 & p_
u^x+p_{ar
u}^x &= oldsymbol{\mathcal{E}}_T^x \ (P_
u+P_{l^+})^2 &= m_{W^+}^2 & p_
u^y+p_{ar
u}^y &= oldsymbol{\mathcal{E}}_T^y \ (P_{ar
u}+P_{l^-})^2 &= m_{W^-}^2 \end{aligned}$$

Image: E_T fully accounted for by the neutrinos
 Image: DM mediator contribution is considered negligible (approximation)

Strong correlation between Parton Level and Reconstructed Kinematics.

What does this tell us?

- Reconstructed kinematics enables studying angular distributions of $t\bar{t}$ systems in the presence of new invisible particles!
- Possible to reconstruct the $t\bar{t}$ system of $t\bar{t}Y_0$ events without even trying to reconstruct the invisible DM mediator (Y_0)

Antonio Onofre

PLANCK2024, 3rd -7th June 2024, IST Lisbon

14/28

Since we cant get rid of these events, can we probe DM @ the LHC with *t*-quark angular distributions?.... Spin CP-sensitive observables have been quite powerful in *ttH*!

O Effective Lagrangian for $t\bar{t}H$ interaction

- $\mathcal{L}(Htt) = -\frac{m_t}{v} \bar{\psi}_t (\kappa + i \bar{\kappa} \gamma_5) \psi_t H,$ $\mathbf{k}(\vec{k}) = \text{CP-even (CP-odd) components}$ SM (pure CP-even): $\mathbf{k} = \mathbf{1}$ and $\vec{k} = 0$ BSM (pure CP-odd): $\mathbf{k} = \mathbf{0}$ and $\vec{k} = 1$
- Using only $t\overline{t}$ information

Spin-parity sensitivity is clear !

[PRD100,075034 (2019)]

16/28

Y.

10000000

00000000

DM Effects in tt Spin Observables

[JHEP 11 (2023) 125]

only visible (rec.) particles used here no attempt to use any information from Y₀

Solution Confidence level (CL) limits for the DM mediator couplings are set for several observables ($\Delta \phi_{\parallel}, b_4, b_2, \tilde{b}_2^y, \tilde{b}_2^d, ...$).

Two different exclusion scenarios are considered:

Scenario 1 exclusion of the SM + new CP-Mixed DM mediator (*H*₁), assuming the SM as null hypothesis (*H*₀);

CP-Mixed cross-section is given by:

$$\sigma_{CP-Mixed} = (g_{u_{33}}^S)^2 \sigma_{CP-Even} + (g_{u_{33}}^P)^2 \sigma_{CP-Odd}$$
(1)

Scenario 2 exclusion of the SM + new CP-Mixed DM mediator (*H*₁), assuming the SM + pure CP-Even mediator, as null hypothesis (*H*₀)
 the idea is: if indeed we discover something, would we be able to test its properties?

E nac

• DM Effects in *tt* Spin Observables

[JHEP 11 (2023) 125]

only visible (rec.) particles used here no attempt to use any information from $\ensuremath{\gamma_0}$

DM Effects in tt Spin Observables

[JHEP 11 (2023) 125]

20/28

DM Effects in tt Spin Observables

Antonio Onofre

PLANCK2024, 3rd-7th June 2024, IST Lisbon

Forward-Backward Asymmetries $[x_c = 0]$

FB Asymmetries from angular distributions

[arXiv:2404.10852]

FB Asymmetries evaluated at Parton-Level:

Observable	$10^{-2}{ m GeV} \ tar{t}Y^+/tar{t}Y^-$	$1~{ m GeV} \ tar{t}Y^+/tar{t}Y^-$	$10~{ m GeV} \ tar{t}Y^+/tar{t}Y^-$	$100~{ m GeV} \ tar{t}Y^+/tar{t}Y^-$	$125~{ m GeV} \ tar{t}Y^+/tar{t}Y^-$
b_2	-0.839/-0.579	-0.834/-0.579	-0.819/-0.568	-0.703/-0.409	-0.674/-0.377
$ ilde{b}_2^{\widehat{y}}$	+0.222/-0.042	+0.219/-0.041	+0.217/-0.049	+0.211/-0.156	+0.199/-0.180
$ ilde{b}_2^{\widehat{d}}$	+0.098/-0.110	+0.092/-0.109	+0.086/-0.116	+0.061/-0.185	+0.046/-0.199

Forward-Backward Asymmetries $[x_c = 0]$

Scenario 1

CL limits for $b_2 m_{Y_0} = 0.01 \text{GeV}$ (left), $m_{Y_0} = 10 \text{GeV}$ (center), and $m_{Y_0} = 125 \text{GeV}$ (right), $L = 300 \text{ fb}^{-1}$.

quite consistent exclusion limits when compared with full angular distributions;

Forward-Backward Asymmetries $[x_c = 0]$

• DM Effects in *tt* Spin Observables

[arXiv:2404.10852]

only visible (rec.) particles used here no attempt to use any information from Y₀

- The kinematic reconstruction of the *tt* system holds in *tt* Y₀ events,
 if NP events is out there in the top quark sector, we cant get rid of it easily!
- Top quark spin observables are quite powerful to probe NP, when performing precision tests of the SM;
- Asymmetries can be effectively used in searches for DM.

Antonio Onofre PLANCK2024, 3rd-7th June 2024, IST Lisbon

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Scenario 1 - Other Mediator Masses Explored

Exclusion Limits from b ₂						
		300	fb ⁻¹	3000 fb ⁻¹		
m _{Y0}		(68% CL)	(95% CL)	(68% CL)	(95% CL)	
0.01 GeV	$g_{u_{33}}^S \in$	[-0.0425, 0.0475]	[-0.0875, 0.0875]	[-0.0225, 0.0225]	[-0.0475, 0.0475]	
	$g_{u_{33}}^{ ho_{33}} \in$	[-0.83, 0.83]	[-1.57, 1.57]	[-0.4725, 0.4575]	[-0.8775, 0.8925]	
10 GeV	$g_{u_{33}}^S \in$	[-0.1375, 0.1375]	[-0.2575, 0.2625]	[-0.0775, 0.0775]	[-0.1425, 0.1475]	
	$g_{u_{33}}^{P^*} \in$	[-0.85, 0.85]	[-1.61, 1.61]	[-0.4725, 0.4725]	[-0.8925, 0.8925]	
125 GeV	$g_{u_{33}}^S \in$	[-1.01, 1.015]	[-1.885, 1.89]	[-0.5625, 0.5625]	[-1.0575, 1.0575]	
	$g_{u_{33}}^{\rho^{\circ}} \in$	[-1.29, 1.27]	[-2.41, 2.43]	[-0.725, 0.725]	[-1.35, 1.375]	

Exclusion Limits from $\tilde{b}_2^{(0,1,0)}$

		300 fb ⁻¹		3000	fb ⁻¹
m_{Y_0}		(68% CL)	(95% CL)	(68% CL)	(95% CL)
0.01 GeV	$g^S_{u_{33}} \in$	[-0.0425, 0.0425]	[-0.0875, 0.0875]	[-0.0225, 0.0225]	[-0.0475, 0.0475]
0.01 0.01	$g_{u_{33}}^{P^0} \in$	[-0.87, 0.87]	[-1.65, 1.67]	[-0.4875, 0.4875]	[-0.9375, 0.9225]
10 GeV	$g_{u_{33}}^S \in$	[-0.1375, 0.1375]	[-0.2575, 0.2625]	[-0.0775, 0.0775]	[-0.1475, 0.1475]
	$g_{u_{33}}^{P^{o}} \in$	[-0.89, 0.91]	[-1.71, 1.69]	[-0.5025, 0.5025]	[-0.9525, 0.9525]
125 GeV	$g_{u_{33}}^S \in$	[-1.06, 1.065]	[-1.985, 1.99]	[-0.5925, 0.5925]	[-1.1175, 1.1175]
	$g_{u_{33}}^{P^{0}} \in$	[-1.57, 1.55]	[-2.93, 2.91]	[-0.875, 0.875]	[-1.65, 1.65]

Antonio Onofre PLANCK2024, 3rd-7th June 2024, IST Lisbon

▲□▶▲御▶★臣▶★臣▶ 臣 のへで

Exclusion Limits from $ ilde{b}_2^{(0,\sqrt{2},\sqrt{2})}$						
		300	fb-1	3000 fb⁻ ¹		
m _{Y0}		(68% CL)	(95% CL)	(68% CL)	(95% CL)	
0.01 GeV	$g_{u_{33}}^S \in$	[-0.0422, 0.0474]	[-0.0876, 0.0876]	[-0.0225, 0.0225]	[-0.0475, 0.0475]	
	$g^{P_{u_{33}}} \in$	[-0.87, 0.87]	[-1.67, 1.67]	[-0.4875, 0.4875]	[-0.9375, 0.9375]	
10 GeV	$g_{u_{33}}^S \in$	[-0.138, 0.138]	[-0.263, 0.263]	[-0.078, 0.078]	[-0.148, 0.148]	
	$g^{P^0}_{u_{33}} \in$	[-0.92, 0.92]	[-1.71, 1.71]	[-0.5025, 0.5025]	[-0.9525, 0.9525]	
125 GeV	$g_{u_{33}}^{S} \in$	[-1.06, 1.065]	[-1.985, 1.99]	[-0.5925, 0.5925]	[-1.1175, 1.1175]	
	$g_{u_{33}}^{P^{\circ}} \in$	[-1.57, 1.55]	[-2.93, 2.95]	[-0.875, 0.875]	[-1.65, 1.65]	

- The exclusion limits worsen as masses increase, once the $t\bar{t}Y_0$ production cross-section decreases for heavier mediator masses;
- A considerable portion of the parameter space can already be excluded for $L = 300 \ fb^{-1}$.
- Exclusion limits improve by roughly a factor of 2 when $L = 3000 \ fb^{-1}$.