Fermion mass hierarchy and CP violation in modular symmetry

Morimitsu Tanimoto

Niigata University

June 4, 2024 PLANCK2024

Instituto Superior Tecnico, Lisboa, Portugal

1 Modular Symmetry

We can discuss the flavor problem based on " modular symmetry"

Mass hierarchy

Flavor mixing
of quarks/leptons CP violation

Are Yukawa couplings (Mass matrix) modular forms?
F. Feruglio, arXiv:1706.08749

Modular forms meet flavor problem !

What is Modular form？

$$
f(x)=\sin 2 \pi x, \quad \mathrm{~T}: x \rightarrow x+1 \Rightarrow f(x+1)=f(x) \quad \text { shift-symmetry }
$$

$$
\begin{aligned}
&\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad(a, b, c, d) \text { are integer and } a d-b c=1 \\
& \gamma:\left(z \rightarrow \frac{a z+b}{c z+d}\right. \\
& z \text { is complex } \\
& \text { Modular transformation }
\end{aligned}
$$

Modular form $f(z)$ is defined by imposing three conditions
（1）$f(z)$ is holomorphic＠ $\operatorname{Im} Z>0$
（2）$f(z)$ is holomorphic
＠$z \rightarrow i \infty$
$f\left(\frac{a z+b}{c z+d}\right)=\begin{gathered}\text { 保型因子 } \\ =(c z+d)^{k} f(z) \\ \text { Automorphy fac }\end{gathered}$
（3） $f\left(\frac{a z+b}{c z+d}\right)=f(z)$ Modular function only constant

Modular forms appear naturally in top-down scenarios based on a class of string compactifications

We get 4D effective Lagrangian by integrating out over 6D.
$S=\int d^{4} x d^{6} y \mathcal{L}_{10 D} \rightarrow \int d^{4} x \mathcal{L}_{\mathrm{eff}}$

$>4 D$ effective theory depends on internal space

2D torus has Modular symmetry
$2 D$ torus $\left(T^{2}\right)$ is equivalent to parallelogram with identification of confronted sides.

lm

(a)

Two-dimensional torus T^{2} is obtained as

$$
\mathrm{T}^{2}=\mathbb{R}^{2} / \Lambda
$$

Λ is two-dimensional lattice, which is spanned by two lattice vectors

$$
\alpha_{1}=2 \pi R \quad \text { and } \quad \alpha_{2}=2 \pi R T
$$

$$
\begin{aligned}
&(\mathrm{x}, \mathrm{y}) \sim(\mathrm{x}, \mathrm{y})+\mathrm{n}_{1} \alpha_{1}+n_{2} \alpha_{2} \\
& \tau=\alpha_{2} / \alpha_{1} \text { is a modulus parameter (complex). }
\end{aligned}
$$

The same lattice is spanned by other bases under the transformation

$$
\binom{\alpha_{2}^{\prime}}{\alpha_{1}^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\alpha_{2}}{\alpha_{1}} \quad \begin{aligned}
& \mathbf{a d}-\mathbf{b} c=1 \\
& \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \text { are integer } \operatorname{SL}(2, Z)
\end{aligned}
$$

Modular transf. does not change the lattice (torus)
$4 D$ effective theory (depends on τ) must be invariant under modular transf.

$$
\text { e.g.) } \mathcal{L}_{\mathrm{eff}} \supset Y(\tau)_{i j} \phi \overline{\psi_{i}} \psi_{j}
$$

The modular transformation is generated by S and T.

$$
\begin{gathered}
S: \tau \underset{\text { duality }}{\sim}-\frac{1}{\tau} \\
\left(\begin{array}{ll}
a \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\begin{array}{c}
T: \tau \longrightarrow \tau+1 \\
\text { Discrete shift symmetry }
\end{array} \\
\mathbf{\alpha}_{\mathbf{2}}^{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)} \\
\binom{\alpha_{2}^{\prime}}{\alpha_{1}^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
\alpha_{2} \\
\alpha_{1} \\
\alpha_{1}
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
S: \tau \longrightarrow-\frac{1}{\tau}, & \text { Duality } \\
T: \tau \longrightarrow & \tau+1 . \\
& \text { Dicrete shift symmetry } \\
& S^{2}=1,
\end{aligned} \quad(S T)^{3}=1 .
$$

generate infinite discrete group

Modular group

Fundamental Domain of $\tau \quad \begin{aligned} & S: \tau \rightarrow-\frac{1}{\tau} . \\ & T: \tau \rightarrow \tau+1 .\end{aligned}$

- - Symmetric point of τ
(Residual symmetry)

Generate finite modular group

$$
\begin{aligned}
& \text { Modular group } \\
& \Gamma \simeq\left\{S, T \mid S^{2}=\mathbb{I},(S T)^{3}=\mathbb{I}\right\} \quad \text { infinite discrete group }
\end{aligned}
$$

Modular group has subgroups Impose
congruence conditiol $\Gamma(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, Z),\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad(\bmod N)\right\}$ called principal congruence subgroups (normal subgroup)

$$
\Gamma_{N} \equiv \Gamma / \Gamma(N) \text { quotient group finite group of level } N
$$

$$
\Gamma_{\mathrm{N}} \simeq\left\{S, T \mid S^{2}=\mathbb{I},(S T)^{3}=\mathbb{I} T^{N}=\mathbb{I}\right\}
$$

$$
\Gamma_{2} \simeq S_{3} \quad \Gamma_{3} \simeq A_{4} \quad \Gamma_{4} \simeq S_{4} \quad \Gamma_{5} \simeq A_{5}
$$

Consider Yukawa couplings with Γ_{N} symmetry

Yukawas are given in terms of modular forms with weight k

Modular transformation $\quad Y^{(k)} \rightarrow(c \tau+d)^{k} Y^{(k)}$

Modular invariance gives

$$
k=k_{Q}+k_{q^{c}}+k_{H_{q}}
$$

Automorphy factor vanishes!

Weights satisfy this strictly.

2 Modular forms with weigh k

Let us consider Level 3 ($\mathrm{N}=3$)

$$
\Gamma_{N} \simeq\left\{S, T \mid S^{2}=\mathbb{I},(S T)^{3}=\mathbb{I}, T^{N}=\mathbb{D}\right\}
$$

$$
\Gamma_{3} \simeq \mathbf{A}_{4} \text { group } 1,1^{\prime}, 1^{\prime \prime}, 3
$$

Number of modular forms depend on weight k (even)

$$
k+1 \text { for } A_{4} \quad\left(2 k+1 \text { for } S_{4}\right)
$$

For $\mathrm{k}=0$, the modular form is constant (modular function)
For $\mathrm{k}=2$, there are 3 linealy independent modular forms, which form a A_{4} triplet.

F. Feruglio, arXiv:1706.08749

A_{4} triplet of modular forms with weight 2

$$
\begin{aligned}
& Y_{1}(\tau)=\frac{i}{2 \pi}\left(\frac{\eta^{\prime}(\tau / 3)}{\eta(\tau / 3)}+\frac{\eta^{\prime}((\tau+1) / 3)}{\eta((\tau+1) / 3)}+\frac{\eta^{\prime}((\tau+2) / 3)}{\eta((\tau+2) / 3)}-\frac{27 \eta^{\prime}(3 \tau)}{\eta(3 \tau)}\right), \\
& Y_{2}(\tau)=\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau / 3)}{\eta(\tau / 3)}+\omega^{2} \frac{\eta^{\prime}((\tau+1) / 3)}{\eta((\tau+1) / 3)}+\omega \frac{\eta^{\prime}((\tau+2) / 3)}{\eta((\tau+2) / 3)}\right), \\
& Y_{3}(\tau)=\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau / 3)}{\eta(\tau / 3)}+\omega \frac{\eta^{\prime}((\tau+1) / 3)}{\eta((\tau+1) / 3)}+\omega^{2} \frac{\eta^{\prime}((\tau+2) / 3)}{\eta((\tau+2) / 3)}\right) Y_{2}^{2}+2 Y_{1} Y_{3}=0
\end{aligned}
$$

$$
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \quad \text { Dedekind eta-function }
$$

$$
Y=\left(\begin{array}{l}
Y_{1}(\tau) \\
Y_{2}(\tau) \\
Y_{3}(\tau)
\end{array}\right)=\left(\begin{array}{c}
1+12 q+36 q^{2}+12 q^{3}+\ldots \\
-6 q^{1 / 3}\left(1+7 q+8 q^{2}+\ldots\right) \\
-18 q^{2 / 3}\left(1+2 q+5 q^{2}+\ldots\right)
\end{array}\right) \quad q=e^{2 \pi i \tau}
$$

$$
\rho(\mathrm{S})=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), \quad \rho(\mathrm{T})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), \quad \omega=\exp \left(i \frac{2}{3} \pi\right)
$$

We find easily modular forms with higher weights $k=4,6$...

\# of modular forms is $\mathbf{k + 1}$

Weight 2 3 Modular forms

$$
\mathbf{Y}_{3}{ }^{(2)}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)
$$

Modular forms with higher weights are constructed by the tensor product of modular forms of weight 2

$$
\begin{aligned}
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)_{3} \otimes\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)_{3} & =\left(a_{1} b_{1}+a_{2} b_{3}+a_{3} b_{2}\right)_{1} \oplus\left(a_{3} b_{3}+a_{1} b_{2}+a_{2} b_{1}\right)_{1^{\prime}} \\
& \oplus\left(a_{2} b_{2}+a_{1} b_{3}+a_{3} b_{1}\right)_{1^{\prime \prime}} \\
& \oplus \frac{1}{3}\left(\begin{array}{l}
2 a_{1} b_{1}-a_{2} b_{3}-a_{3} b_{2} \\
2 a_{3} b_{3}-a_{1} b_{2}-a_{2} b_{1} \\
2 a_{2} b_{2}-a_{1} b_{3}-a_{3} b_{1}
\end{array}\right)_{3} \oplus \frac{1}{2}\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{1} b_{2}-a_{2} b_{1} \\
a_{3} b_{1}-a_{1} b_{3}
\end{array}\right)_{3}
\end{aligned}
$$

$$
1 \otimes 1=1, \quad 1^{\prime} \otimes 1^{\prime}=1^{\prime \prime}, \quad 1^{\prime \prime} \otimes 1^{\prime \prime}=1^{\prime}, \quad 1^{\prime} \otimes 1^{\prime \prime}=1
$$

J.T.Penedo, S.T.Petcov, Nucl.Phys.B939(2019)292

$$
Y_{\mathbf{3}}^{(2)} \times \mathbf{Y}_{\mathbf{3}}^{(2)} \quad \Rightarrow \quad \mathbf{Y}_{1}^{(4)}=Y_{1}^{2}+2 Y_{2} Y_{3}, \quad \mathbf{Y}_{1^{\prime}}^{(4)}=Y_{3}^{2}+2 Y_{1} Y_{2}, \quad \mathbf{Y}_{1^{\prime \prime}}^{(4)}=Y_{2}^{2}+2 Y_{1} Y_{3}=0
$$

Weight 4
5 Modular forms

$$
\mathbf{Y}_{3}^{(4)}=\left(\begin{array}{l}
Y_{1}^{2}-Y_{2} Y_{3} \\
Y_{3}^{2}-Y_{1} Y_{2} \\
Y_{2}^{2}-Y_{1} Y_{3}
\end{array}\right)
$$

Modular forms at nearby symmetric points

Consider A_{4} triplet modular forms with weigh $k=2$. $(N=3)$

$$
\begin{aligned}
& Y_{1}(\tau)=1+12 q+36 q^{2}+12 q^{3}+\cdots \\
& Y_{2}(\tau)=-6 q^{1 / 3}\left(1+7 q+8 q^{2}+\cdots\right) \\
& Y_{3}(\tau)=-18 q^{2 / 3}\left(1+2 q+5 q^{2}+\cdots\right)
\end{aligned}
$$

$$
q=e^{2 \pi i \tau}=e^{2 \pi i \operatorname{Re} \tau} e^{-2 \pi \operatorname{Im} \tau}
$$

$$
\varepsilon=6|q|^{1 / 3}
$$

$\tau \rightarrow \infty \quad \underset{A_{i}}{\left(Y_{1}, Y_{2}, Y_{3}\right)^{\top}} \rightarrow \underset{A_{4} \text { triplet }}{(1,-\varepsilon,-1 / 2} \underset{|\varepsilon| \ll 1}{2} \varepsilon^{\top} \rightarrow(1,0,0)^{\top}$
$\mathbf{k}=4 \quad \mathbf{Y}_{3}^{(4)}=Y_{0}^{2}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \mathbf{Y}_{1}^{(4)}=Y_{0}^{2}, \quad \mathbf{Y}_{1^{\prime}}^{(4)}=0, \quad \rho(T)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right)$
$k=6$ $\mathbf{Y}_{3}^{(6)}=Y_{0}^{3}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$,
$\mathrm{Y}_{3^{\prime}}^{(6)}=0$,
$\mathbf{Y}_{1}^{(6)}=Y_{0}^{3}$,
Z_{3} symmetry
$\mathbf{k}=8 \quad \mathbf{Y}_{3}^{(8)}=Y_{0}^{4}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \mathbf{Y}_{3^{\prime}}^{(8)}=0, \quad \mathbf{Y}_{1}^{(8)}=Y_{0}^{4}, \quad \mathbf{Y}_{1^{\prime}}^{(8)}=0, \quad \mathbf{Y}_{1^{\prime \prime}}^{(8)}=0$

$$
\begin{aligned}
& Y_{1}(\tau)=1+12 q+36 q^{2}+12 q^{3}+\cdots, \\
& Y_{2}(\tau)=-6 q^{1 / 3}\left(1+7 q+8 q^{2}+\cdots\right), \\
& Y_{3}(\tau)=-18 q^{2 / 3}\left(1+2 q+5 q^{2}+\cdots\right) .
\end{aligned}
$$

$$
q=e^{2 \pi i \tau}=e^{2 \pi i \operatorname{Re} \tau} e^{-2 \pi \operatorname{Im} \tau}
$$

$\varepsilon=6|q|^{1 / 3}$

Modular forms are also hierarchical at $\mathrm{T}=\omega$

$$
\begin{gathered}
\rho(S T)=\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \\
\mathbf{\tau}=\boldsymbol{\omega} \quad \mathbf{k}=\mathbf{2} \quad \mathbf{Y}_{3}^{(2)}=\frac{3}{2} \omega Y_{0}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{Z}_{3} \text { symmetry } \\
\mathbf{Y}_{3}^{(4)}=\frac{9}{4} Y_{0}^{2}\left(\begin{array}{l}
0 \\
0 \\
\mathbf{k}=\mathbf{4}
\end{array}\right), \quad \mathbf{Y}_{3}^{(6)}=0, \quad \mathbf{Y}_{3^{\prime}}^{(6)}=\frac{27}{8} \omega^{2} Y_{0}^{3}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{gathered}
$$

3 Mass hierarchy in modular invariance

P.P.Novichkov, J.T.Penedo, S.T.Petcov, JHEP 04(202I)206, arXiv:2 I 02.07488

We can construct the mass matrix with hierarchical masses by using the hierarchical modular forms at nearby $\tau=\infty \mathbf{i}$ and ω

$$
\mathcal{M}_{q} \sim v_{q}\left(\begin{array}{ccc}
\epsilon^{2} & \epsilon & 1 \\
\epsilon^{2} & \epsilon & 1 \\
\epsilon^{2} & \epsilon & 1
\end{array}\right)_{R L}
$$

This hierarchical structure is not accidental. Thanks to Residual symmetry $\mathbf{Z}_{3} \quad(N=3)$
F. Feruglio, V. Gherardi, A. Romanino,A. Titov, S.T.Petcov, M.Tanimoto
S. Kikuchi, T. Kobayashi, K. Nasu, S. Takada, H. Uchida
Y. Abe, T. Higaki, J. Kawamurab,T. Kobayashi,
S. Kikuchi, T. Kobayashi, K. Nasu, S. Takada, H. Uchida

Modular invariant mass matrix

$$
M(\gamma \tau)=(c \tau+d)^{K} \rho^{c}(\gamma)^{*} M(\tau) \rho(\gamma)^{\dagger} \quad K=k^{c}+k
$$

$$
\begin{aligned}
& \mathbf{\tau}=\mathbf{i} \infty \quad \boldsymbol{\gamma}=\mathbf{T}: \mathbf{\tau} \rightarrow \mathbf{\tau + \mathbf { I }} \quad \mathbf{C T}+\mathbf{d}=\mathbf{1} \quad M_{i j}(T \tau)=\left(\rho_{i}^{c} \rho_{j}\right)^{*} M_{i j}(\tau) \\
& \mathrm{q} \xrightarrow{\mathrm{~T}} \mathrm{q} \xi \\
& q \equiv \exp (i 2 \pi \tau / N) \quad \xi=\exp (i 2 \pi / N) \\
& \rho(T)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \\
& \text { nth derivative } \\
& M_{i j}(\xi \ddot{q})=\left(\rho_{i}^{c} \rho_{j}\right)^{*} M_{i j}(\bar{q}) \longrightarrow \xi^{n} M_{i j}^{(n)}(0)=\left(\rho_{i}^{c} \rho_{j}\right)^{*} M_{i j}^{(n)}(0) \\
& M_{i j}(q)=a_{0} q^{\ell}+a_{1} q^{\ell+N}+a_{2} q^{\ell+2 N}+\ldots, \quad \ell=0,1,2, \ldots, N-1,
\end{aligned}
$$

For $\mathbf{N}=\mathbf{3} \quad M(\tau) \sim \mathcal{O}\left(\epsilon^{\ell}\right) \quad \ell=0,1,2 \quad|\mathbf{q}|=\boldsymbol{\varepsilon} \quad \mathbf{z}_{3}$ symmetry

Mass hierarchy is also realized close to $\tau=\omega$

$$
M(\gamma \tau)=(c \tau+d)^{K} \rho^{c}(\gamma)^{*} M(\tau) \rho(\gamma)^{\dagger} \quad K=k^{c}+k
$$

mass matrix is invariant under ST transformation (Z_{3} symmetry $)$

$$
\text { Near } \tau=\omega \quad u=\frac{\tau-\omega}{\tau-\omega^{2}}(u=0 @ \tau=\omega) \quad|u|=\epsilon
$$

ST transformation : $u \rightarrow \omega^{2} u$

$$
M(S T \tau)_{i j}=M\left(\omega^{2} u\right)_{i j}=(-(\tau+1))^{K}\left[\rho^{c}(\gamma)_{i} \rho(\gamma)_{j}\right]^{*} M(u)_{i j}
$$

$$
M(\tau) \sim \mathcal{O}\left(\epsilon^{\ell}\right) \quad \ell=0,1,2
$$

due to residual symmetry Z_{3}

Observed Yukawa ratios at GUT scale with $\tan \beta=10$

S. Antusch, V. Maurer, JHEP 1311 (2013) 115 [arXiv:1306.6879].

$$
\begin{array}{ll}
\frac{y_{d}}{y_{b}}=9.21 \times 10^{-4}(1 \pm 0.111), & \frac{y_{s}}{y_{b}}=1.82 \times 10^{-2}(1 \pm 0.055) \\
\frac{y_{u}}{y_{t}}=5.39 \times 10^{-6}(1 \pm 0.311), & \frac{y_{c}}{y_{t}}=2.80 \times 10^{-3}(1 \pm 0.043)
\end{array}
$$

$$
m_{b(t)}: m_{s(c)}: m_{d(u)} \sim 1:|\epsilon|:|\epsilon|^{2}
$$

For down quark sector $\varepsilon_{d}=0.02 \sim 0.03$
For up quark sector $\quad \varepsilon_{u}=0.002 \sim 0.003$
We have only one ε because of one modulus $\mathbf{T} \quad|q|=\varepsilon$

$$
q=e^{2 \pi i \tau}=e^{2 \pi i \operatorname{Re} \tau} e^{-2 \pi \operatorname{Im} \tau}
$$

4 Examples in A_{4} modular symmetry

@ $\quad \mathrm{T}=\boldsymbol{\omega}$

	Q	$\left(u^{c}, c^{c}, t^{c}\right),\left(d^{c}, s^{c}, b^{c}\right)$	H_{q}	$\mathrm{Y}_{3}^{(6)}, \mathrm{Y}_{3^{\prime}}^{(6)}$	$\mathrm{Y}_{3}^{(4)}$	$\mathrm{Y}_{3}^{(2)}$
$S U(2)$	2	1	2	1	1	1
$\mathrm{~A}_{4}$	3	$\left(1,1^{\prime \prime}, 1^{\prime}\right)$	1	3	3	3
k_{I}	2	$(4,2,0)$	0	$k=6$	$k=4$	$k=2$

$W_{d}=\left[\alpha_{d}\left(\mathbf{Y}_{3}^{(6)} Q\right)_{1} d_{1}^{c}+\alpha_{d}^{\prime}\left(\mathbf{Y}_{3^{\prime}}^{(6)} Q\right)_{1} d_{1}^{c}+\beta_{d}\left(\mathbf{Y}_{3}^{(4)} Q\right)_{1^{\prime}} s_{1^{\prime}}^{c}+\gamma_{d}\left(\mathbf{Y}_{3}^{(2)} Q\right)_{1^{\prime \prime}} b_{1^{\prime}}^{c}\right] H_{d}$

Suppose all coefficients are same order.

$$
M_{q}=v_{q}\left(\begin{array}{ccc}
\alpha_{q} & 0 & 0 \\
0 & \beta_{q} & 0 \\
0 & 0 & \gamma_{q}
\end{array}\right)\left(\begin{array}{ccc}
Y_{1}^{(6)}+g_{q} Y_{1}^{\prime(6)} & Y_{3}^{(6)}+g_{q} Y_{3}^{\prime(6)} & Y_{2}^{(6)}+g_{q} Y_{2}^{\prime(6)} \\
Y_{2}^{(4)} & Y_{1}^{(4)} & Y_{3}^{(4)} \\
Y_{3}^{(2)} & Y_{2}^{(2)} & Y_{1}^{(2)}
\end{array}\right)_{R I}
$$

$$
\mathrm{g}_{\mathrm{q}}=\alpha_{q}^{\prime} / \alpha_{q} \quad \begin{aligned}
& \text { S.T.Petcov, M.Tanimoto, Eur. Phys. J. C 83(2023)579 } \\
& \text { [arXiv:2212.13336] }
\end{aligned}
$$

$$
M_{q}=v_{q}\left(\begin{array}{ccc}
\alpha_{q} & 0 & 0 \\
0 & \beta_{q} & 0 \\
0 & 0 & \gamma_{q}
\end{array}\right)\left(\begin{array}{ccc}
Y_{1}^{(6)}+g_{q} Y_{1}^{\prime(6)} & Y_{3}^{(6)}+g_{q} Y_{3}^{\prime(6)} & Y_{2}^{(6)}+g_{q} Y_{2}^{\prime(6)} \\
Y_{2}^{(4)} & Y_{1}^{(4)} & Y_{3}^{(4)} \\
Y_{3}^{(2)} & Y_{2}^{(2)} & Y_{1}^{(2)}
\end{array}\right)_{R L}
$$

At $\tau=\omega \quad$ in the diagonal base of ST

$$
\mathbf{Y}_{3}^{(2)}=\frac{3}{2} \omega Y_{0}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{Y}_{3}^{(4)}=\frac{9}{4} Y_{0}^{2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \mathbf{Y}_{3}^{(6)}=0, \quad \mathbf{Y}_{3^{\prime}}^{(6)}=\frac{27}{8} \omega^{2} Y_{0}^{3}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

$$
\mathcal{M}_{q}^{(0)}=M_{q} V_{\mathrm{ST}}^{\dagger}=v_{q}\left(\begin{array}{ccc}
0 & 0 & \frac{27}{8} \hat{\alpha}_{q} g_{q} \omega \\
0 & 0 & \frac{9}{4} \hat{\beta}_{q} \omega^{2} \\
0 & 0 & \frac{3}{2} \hat{\gamma}_{q}
\end{array}\right)
$$

rank one matrix

very small

$$
\tau=\omega+\epsilon
$$

$$
\frac{Y_{2}(\tau)}{Y_{1}(\tau)} \simeq-\frac{2}{3} \epsilon_{1}, \quad \frac{Y_{3}(\tau)}{Y_{1}(\tau)} \simeq \frac{2}{9} \epsilon_{1}^{2} \quad \epsilon_{1} \simeq 2.1 i \epsilon
$$

In the diagonal base of ST

$$
\mathcal{M}_{q} \sim v_{q}\left(\begin{array}{ccc}
\hat{\alpha}_{q} \omega Y_{1}^{3} & 0 & 0 \\
0 & \hat{\beta}_{q} \omega^{2} Y_{1}^{2} & 0 \\
0 & 0 & \hat{\gamma}_{q} Y_{1}
\end{array}\right)\left(\begin{array}{ccc}
\left(-3+\frac{3}{4} g_{q}\right) \epsilon_{1}^{2} & -\frac{9}{2} \epsilon_{1}\left(1+\frac{g_{q}}{2}\right) & \frac{3}{2} \frac{27}{8} \\
-\frac{3}{2} \epsilon_{1}^{2} & \frac{9}{2} \epsilon_{1} & \frac{1}{3} \\
\frac{1}{3} \epsilon_{1}^{2} & -\epsilon_{1} & \frac{3}{2}
\end{array}\right)
$$

$$
\begin{gathered}
\mathbf{g}_{\mathbf{q}} \sim \mathbf{1} \\
m_{q 3}: m_{q 2}: m_{q 1} \simeq 1:\left|\epsilon_{1}\right|:\left|\epsilon_{1}\right|^{2} \simeq 1:|\epsilon|:|\epsilon|^{2} \\
\mathbf{g}_{\mathbf{q}} \gg 1 \\
m_{q 3}: m_{q 2}: m_{q 1} \simeq 1:\left(\frac{\left|\epsilon_{1}\right|}{\left|g_{q}\right|}:\left(\frac{\left|\epsilon_{1}\right|}{\left|g_{q}\right|}\right)^{2}\right.
\end{gathered}
$$

$$
\tau=\omega+\epsilon
$$

Real parameters except for T

ϵ	$\frac{\beta_{d}}{\alpha_{d}}$	$\frac{\gamma_{d}}{\alpha_{d}}$	g_{d}	$\frac{\beta_{u}}{\alpha_{u}}$	$\frac{\gamma_{u}}{\alpha_{u}}$	g_{u}
$0.01779+i 0.02926$	3.26	0.43	-1.40	1.05	0.80	-16.1

$$
\left|g_{d}\right| \sim 1 \quad\left|g_{u}\right| \sim 10
$$

	$\frac{m_{s}}{m_{b}} \times 10^{2}$	$\frac{m_{d}}{m_{b}} \times 10^{4}$	$\frac{m_{c}}{m_{t}} \times 10^{3}$	$\frac{m_{u}}{m_{t}} \times 10^{6}$	$\left\|V_{u s}\right\|$	$\left\|V_{c b}\right\|$	$\left\|V_{u b}\right\|$	J_{CP}
Fit	1.52	8.62	2.50	5.43	0.2230	0.0786	0.00368	-2.9×10^{-8}
Exp	1.82	9.21	2.80	5.39	0.2250	0.0400	0.00353	2.8×10^{-5}
1σ	± 0.10	± 1.02	± 0.12	± 1.68	± 0.0007	± 0.0008	± 0.00013	${ }_{-0.12}^{+0.14} \times 10^{-5}$

CPV is very small!

Why CPV is so small?

CP phase structure of mass matrix

$$
\begin{aligned}
& \tau=\omega+\epsilon \quad \frac{Y_{2}(\tau)}{Y_{1}(\tau)} \simeq-\frac{2}{3} \epsilon_{1}, \quad \frac{Y_{3}(\tau)}{Y_{1}(\tau)} \simeq \frac{2}{9} \epsilon_{1}^{2} \quad \epsilon_{1} \simeq 2.1 i \epsilon \\
& \mathcal{M}_{q}^{\text {gen }}=v_{q}\left(\begin{array}{ccc}
i^{2} \epsilon^{2} & i \epsilon & 1 \\
i^{2} \epsilon^{2} & i \epsilon & 1 \\
i^{2} \epsilon^{2} & i \epsilon & 1
\end{array}\right), \quad q=d, u \\
& \begin{array}{c}
\left(\mathcal{M}_{q}^{g e n}\right)^{\dagger} \mathcal{M}_{q}^{g e n}=v_{q}^{2} \underbrace{\left(\begin{array}{ccc}
-i e^{-i \kappa_{q}} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & i e^{i \kappa_{q}}
\end{array}\right)}_{\mathbf{P}\left(\mathbf{K}_{q}\right)}\left(\begin{array}{cc}
\left|\epsilon_{q}\right|^{4} & \left|\epsilon_{q}\right|^{3} \\
\left(\left.\epsilon_{q}\right|^{2}\right. \\
\left|\epsilon_{q}\right|^{3} & \left|\epsilon_{q}\right|^{2} \\
\left|\epsilon_{q}\right|^{2} & \left|\epsilon_{q}\right| \\
\left|\epsilon_{q}\right| & 1
\end{array}\right)\left(\epsilon_{q} \mid e^{i \kappa_{q}} \quad \mathrm{P}\left(\mathbf{K}_{q}\right)^{\star}\right.
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{U}_{\mathrm{CKM}}^{\mathrm{gen}}=\mathrm{O}_{\mathrm{u}}^{\mathrm{T}} \mathrm{P}^{*}\left(\kappa_{\mathrm{u}}\right) \mathrm{P}\left(\kappa_{\mathrm{d}}\right) \mathrm{O}_{\mathrm{d}} \\
\mathrm{P}\left(\kappa_{\mathrm{q}}\right)=\operatorname{diag}\left(\mathrm{e}^{-\mathrm{i}\left(\kappa_{\mathrm{q}}+\pi / 2\right)}, 1, \mathrm{e}^{\mathrm{i}\left(\kappa_{\mathrm{q}}+\pi / 2\right)}\right)
\end{gathered}
$$

Common t $\quad \epsilon_{1 d}=\epsilon_{1 u} \quad \kappa_{d}=\kappa_{u} \quad \mathrm{P}^{*}\left(\kappa_{\mathrm{u}}\right) \mathrm{P}\left(\kappa_{\mathrm{d}}\right)=1$
CP conserving if other parameters are real

Two different $\tau \quad \epsilon_{d} \neq \epsilon_{u} \quad \mathrm{P}^{*}\left(\kappa_{\mathrm{u}}\right) \mathrm{P}\left(\kappa_{\mathrm{d}}\right) \neq 1$
CP violation even if other parameters are real Spontaneous CP violation
S.T.Petcov, M.Tanimoto, JHEP 08 (2023)086 [arXiv:2306.05730]
@ $\tau=i \infty$ putting $\left|g_{d}\right| \sim\left|g_{u}\right| \sim 1$

	Q	$\left(d^{c}, s^{c}, b^{c}\right),\left(u^{c}, c^{c}, t^{c}\right)$	H_{u}	H_{d}	
$S U(2)$	2	1		2	2
A_{4}	3	$\left(1^{\prime}, 1^{\prime}, 1^{\prime}\right)$	$\left(1^{\prime}, 1^{\prime}, 1^{\prime}\right)$	1	1
k	2	$(4,2,0)$	$(6,2,0)$	0	0

Irreducible representations

$$
A_{4}: 1,1^{\prime}, 1^{\prime \prime}, 3
$$

Weight k is set to vanish automorphy factor $(c \tau+d)^{k}$

$$
\begin{gathered}
W_{d}=\left[\alpha_{d}\left(\mathbf{Y}_{3}^{(6)} Q\right)_{1} d_{1}^{c}+\alpha_{d}^{\prime}\left(\mathbf{Y}_{3^{\prime}}^{(6)} Q\right)_{1} d_{1}^{c}+\beta_{d}\left(\mathbf{Y}_{3}^{(4)} Q\right)_{1^{\prime}} s_{1^{\prime}}^{c}+\gamma_{d}\left(\mathbf{Y}_{3}^{(2)} Q\right)_{1^{\prime \prime}} b_{1^{\prime}}^{c}\right] H_{d} \\
\mathbf{A}_{4} 3 \times 3 \times 1^{\prime} \\
\text { Weight } 6-2-4
\end{gathered}
$$

$$
M_{d}=v_{d}\left(\begin{array}{ccc}
\hat{\alpha}_{d}^{\prime} & 0 & 0 \\
0 & \hat{\beta}_{d} & 0 \\
0 & 0 & \hat{\gamma}_{d}
\end{array}\right)\left(\begin{array}{ccc}
\tilde{Y}_{3}^{(6)} & \tilde{Y}_{2}^{(6)} & \tilde{Y}_{1}^{(6)} \\
\tilde{Y}_{3}^{(4)} & \tilde{Y}_{2}^{(4)} & \tilde{Y}_{1}^{(4)} \\
Y_{3}^{(2)} & Y_{2}^{(2)} & Y_{1}^{(2)}
\end{array}\right), \quad M_{u}=v_{u}\left(\begin{array}{ccc}
\hat{\alpha}_{u}^{\prime} & 0 & 0 \\
0 & \hat{\beta}_{u} & 0 \\
0 & 0 & \hat{\gamma}_{u}
\end{array}\right)\left(\begin{array}{lll}
\tilde{Y}_{3}^{(8)} & \tilde{Y}_{2}^{(8)} & \tilde{Y}_{1}^{(8)} \\
\tilde{Y}_{3}^{(4)} & \tilde{Y}_{2}^{(4)} & \tilde{Y}_{1}^{(4)} \\
Y_{3}^{(2)} & Y_{2}^{(2)} & Y_{1}^{(2)}
\end{array}\right)
$$

$$
\tilde{Y}_{i}^{(6)}=g_{d} Y_{i}^{(6)}+Y_{i}^{\prime(6)}, \quad \tilde{Y}_{i}^{(8)}=f_{u} Y_{i}^{(8)}+Y_{i}^{\prime(8)}, \quad g_{d} \equiv \alpha_{d} / \alpha_{d}^{\prime} \quad f_{u} \equiv \alpha_{u} / \alpha_{u}^{\prime}
$$

$$
Y_{2}^{2}+2 Y_{1} Y_{3}=0
$$

$$
\begin{gathered}
\mathbf{Y}_{3}^{(2)}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)=\left(\begin{array}{c}
1+12 q+36 q^{2}+12 q^{3}+\ldots \\
-6 q^{1 / 3}\left(1+7 q+8 q^{2}+\ldots\right) \\
-18 q^{2 / 3}\left(1+2 q+5 q^{2}+\ldots\right)
\end{array}\right) \\
q \equiv \exp (2 i \pi \tau)=(p \epsilon)^{3}
\end{gathered}
$$

$$
\epsilon=\exp \left(-\frac{2}{3} \pi \operatorname{Im}[\tau]\right), \quad p=\exp \left(\frac{2}{3} \pi i \operatorname{Re}[\tau]\right)
$$

$$
\begin{array}{ll}
\mathbf{\tau}=\mathbf{i} \infty & \mathbf{Y}_{3}^{(2)}=Y_{0}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),
\end{array} \mathbf{Y}_{3}^{(4)}=Y_{0}^{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \begin{aligned}
& \mathbf{Y}_{3}^{(8)}=Y_{0}^{3}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad Y_{3^{\prime}}^{(6)}=0
\end{aligned}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{Y}_{3^{\prime}}^{(8)}=0, ~ l
$$

kinetic terms

Simplest Modular invariant kinetic terms of matters

$$
\sum_{I} \frac{\left|\partial_{\mu} \psi^{(I)}\right|^{2}}{\langle-i \tau+i \bar{\tau}\rangle^{k_{I}}}
$$

This is not canonical form.
We need overall renomarization

$$
\psi^{(I)} \rightarrow \sqrt{\left(2 \operatorname{Im} \tau_{q}\right)^{k}} \psi^{(I)}
$$

comment

Possible non-minimal additions to Kaehler potential, compatible with the modular symmetry including modular forms Y and \bar{Y} reduces the predictive power of flavor models, and often assumed to be negligible.

Superpotential

$$
W_{d}=\left[\alpha_{d}\left(\mathbf{Y}_{3}^{(6)} Q\right)_{1} d_{1}^{c}+\alpha_{d}^{\prime}\left(\mathbf{Y}_{3^{\prime}}^{(6)} Q\right)_{1} d_{1}^{c}+\beta_{d}\left(\mathbf{Y}_{3}^{(4)} Q\right)_{1^{\prime}} s_{1^{\prime}}^{c}+\gamma_{d}\left(\mathbf{Y}_{3}^{(2)} Q\right)_{1^{\prime \prime}} b_{1^{\prime}}^{c}\right] H_{d}
$$

Kinetic terms

$$
\sum_{I} \frac{\left|\partial_{\mu} \psi^{(I)}\right|^{2}}{\langle-i \tau+i \bar{\tau}\rangle^{k_{I}}}
$$

We renormalize superfields to get canonical kinetic terms

$$
\psi^{(I)} \rightarrow \sqrt{\left(2 \operatorname{Im} \tau_{q}\right)^{k_{I}}} \psi^{(I)}
$$

$$
\begin{array}{ll}
\alpha_{u} \rightarrow \hat{\alpha}_{u}=\alpha_{u} \sqrt{(2 \operatorname{Im} \tau)^{8}}=\alpha_{u}(2 \operatorname{Im} \tau)^{4}, & \alpha_{u}^{\prime} \rightarrow \hat{\alpha}_{u}^{\prime}=\alpha_{u}^{\prime} \sqrt{(2 \operatorname{Im} \tau)^{8}}=\alpha_{u}^{\prime}(2 \operatorname{Im} \tau)^{4}, \\
\beta_{u} \rightarrow \hat{\beta}_{u}=\beta_{u} \sqrt{(2 \operatorname{Im} \tau)^{4}}=\beta_{u}(2 \operatorname{Im} \tau)^{2}, & \gamma_{u} \rightarrow \hat{\gamma}_{u}=\gamma_{u} \sqrt{(2 \operatorname{Im} \tau)^{2}}=\gamma_{u}(2 \operatorname{Im} \tau), \\
\alpha_{d} \rightarrow \hat{\alpha}_{d}=\alpha_{d} \sqrt{(2 \operatorname{Im} \tau)^{6}}=\alpha_{d}(2 \operatorname{Im} \tau)^{3}, & \alpha_{d}^{\prime} \rightarrow \hat{\alpha}_{d}^{\prime}=\alpha_{d}^{\prime} \sqrt{(2 \operatorname{Im} \tau)^{6}}=\alpha_{d}^{\prime}(2 \operatorname{Im} \tau)^{3}, \\
\beta_{d} \rightarrow \hat{\beta}_{d}=\beta_{d} \sqrt{(2 \operatorname{Im} \tau)^{4}}=\beta_{d}(2 \operatorname{Im} \tau)^{2}, & \gamma_{d} \rightarrow \hat{\gamma}_{d}=\gamma_{d} \sqrt{(2 \operatorname{Im} \tau)^{2}}=\gamma_{d}(2 \operatorname{Im} \tau) .
\end{array}
$$

$2 \operatorname{Im} \tau$ is large $\tau \rightarrow i \infty$ compared with the case of at $\tau=\omega$

Down type quark mass matrix

$$
\begin{aligned}
\text { At } \mathbf{\tau}=\mathbf{i} \infty \quad M_{q}=v_{q}\left(\begin{array}{ccc}
g_{q} \hat{\alpha}_{q}^{\prime} & 0 & 0 \\
0 & \hat{\beta}_{q} & 0 \\
0 & 0 & \hat{\gamma}_{q}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)_{R L} \quad \text { rank one } \\
\mathcal{M}_{q}^{2(0)} \equiv M_{q}^{\dagger} M_{q}=v_{q}^{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \left|g_{q}\right|^{2} \hat{\alpha}_{q}^{\prime 2}+\hat{\beta}_{q}^{2}+\hat{\gamma}_{q}^{2}
\end{array}\right)
\end{aligned}
$$

In the vicinity of $\tau=\mathbf{i} \infty \quad\left|\alpha_{q}^{\prime}\right| \sim\left|\beta_{q}\right| \sim\left|\gamma_{q}\right|$

$$
\begin{aligned}
& \mathcal{M}_{q}=v_{q}\left(\begin{array}{ccc}
\hat{\alpha}_{q}^{\prime} & 0 & 0 \\
0 & \hat{\beta}_{q} & 0 \\
0 & 0 & \hat{\gamma}_{q}
\end{array}\right)\left(\begin{array}{ccc}
18(\epsilon p)^{2}\left(4-g_{q}\right) & -6(\epsilon p)\left(2+g_{q}\right) & g_{q} \\
54(\epsilon p)^{2} & 6(\epsilon p) & 1 \\
-18(\epsilon p)^{2} & -6(\epsilon p) & 1
\end{array}\right) \\
& \mathcal{M}_{q}^{2} \sim\left(\begin{array}{ccc}
\epsilon^{4} & \epsilon^{3} p^{*} & \epsilon^{2} p^{* 2} \\
\epsilon^{3} p & \epsilon^{2} & \epsilon p^{*} \\
\epsilon^{2} p^{2} & \epsilon p & 1
\end{array}\right) m_{q 3}: m_{q 2}: m_{q 1} \simeq 1:\left|\frac{12 \epsilon}{I_{\tau} g_{q}}\right|:\left|\frac{12 \epsilon}{I_{\tau} g_{q}}\right|^{2} I_{\tau}=2 \operatorname{Im} \tau \\
& g_{q}>\mathcal{O}(1)
\end{aligned}
$$

Up type quark mass matrix

In order to protect a massless quark, we can consider dimesuion 6 mass operator

$$
\left(u^{c} Q H_{u}\right)\left(H_{u} H_{d}\right) / \Lambda^{2} \text { with } \quad k_{Q}=2-k_{H d}, \quad k_{u^{c}}=6+k_{H d}-k_{H u}
$$

or SUSY breaking by F term F / Λ^{2}
F. Feruglio, V. Gherardi, A. Romanino and A. Titov, JHEP 05 (2021), 242; arXiv:2101.08718

$$
M_{u}=v_{u}\left(\begin{array}{ccc}
\hat{\alpha}_{u}^{\prime} & 0 & 0 \\
0 & \hat{\beta}_{u} & 0 \\
0 & 0 & \hat{\gamma}_{u}
\end{array}\right)\left(\begin{array}{ccc}
\tilde{Y}_{3}^{(8)}\left(1+C_{u 1}\right) & \tilde{Y}_{Y^{(8)}}^{(8)} & \tilde{Y}_{1}^{(8)} \\
\tilde{Y}_{3}^{(4)}\left(1+C_{u 2}\right) & \tilde{Y}_{2}^{(4)} & \tilde{Y}_{1}^{(4)} \\
Y_{3}^{(2)}\left(1+C_{u 3}\right) & Y_{2}^{(2)} & Y_{1}^{(2)}
\end{array}\right)
$$

$$
\begin{aligned}
& m_{t}: m_{c}: m_{u} \simeq\left[1:\left(\frac{12 \epsilon}{I_{\tau} f_{u}} \frac{1}{I_{\tau} f_{u}}\right): \frac{3}{2}\left(\frac{12 \epsilon}{I_{\tau} f_{u}} \frac{1}{I_{\tau} f_{u}}\right)^{2} f_{u}^{3} I_{\tau}\left|C_{u}\right|\right] I_{\tau}^{4} f_{u} \\
& C_{u}=3 f_{u}\left(C_{u 1}-C_{u 2}\right)+\left(-4 C_{u 1}+3 C_{u 2}+C_{u 3}\right) \quad I_{\tau}=2 \operatorname{Im} \tau
\end{aligned}
$$

Down type quark masses $k=2,4,6$ modular forms

$$
m_{q 3}: m_{q 2}: m_{q 1} \simeq 1:\left|\frac{12 \epsilon}{I_{\tau} g_{q}}\right|:\left|\frac{12 \epsilon}{I_{\tau} g_{q}}\right|^{2}
$$

Up type quark masses $k=2,4,8$ modular forms

$$
\begin{gathered}
m_{t}: m_{c}: m_{u} \simeq\left[1:\left(\frac{12 \epsilon}{I_{\tau} f_{u}} \frac{1}{I_{\tau} f_{u}}\right): \frac{3}{2}\left(\frac{12 \epsilon}{I_{\tau} f_{u}} \frac{1}{I_{\tau} f_{u}}\right)^{2} f_{u}^{3} r\left(\mid C_{u}\right)\right] I_{\tau}^{4} f_{u} \\
I_{\tau}=2 \operatorname{Im} \tau
\end{gathered}
$$

$$
\tilde{Y}_{i}^{(6)}=g_{d} Y_{i}^{(6)}+Y_{i}^{\prime(6)}, \quad \tilde{Y}_{i}^{(8)}=f_{u} Y_{i}^{(8)}+Y_{i}^{\prime(8)}, \quad g_{d} \equiv \alpha_{d} / \alpha_{d}^{\prime} \quad f_{u} \equiv \alpha_{u} / \alpha_{u}^{\prime}
$$

A successful numerical result

τ	$\frac{\beta_{d}}{\alpha_{d}^{\prime}}$	$\frac{\gamma_{d}}{\alpha_{d}^{\prime}}$	g_{d}	$\frac{\beta_{u}}{\alpha_{u}^{\prime}}$	$\frac{\gamma_{u}}{\alpha_{u}^{\prime}}$	$\left\|f_{u}\right\|$	$\arg \left[f_{u}\right]$	$C_{u 1}$
$-0.3952+i 2.4039$	3.82	1.17	-0.677	1.72	3.21	1.68	127.39	-0.07147

$$
8 \text { real parameters }+2 \text { phase }
$$

$q=e^{2 \pi i \tau}$

Order 1 parameters, $\beta_{q} / \alpha_{q}, \gamma_{q} / \alpha_{q}, g_{d}, f_{u}$
$C_{u 1} \sim\left(F / \Lambda^{2}\right) / \varepsilon^{2}$

	$\frac{m_{s}}{m_{b}} \times 10^{2}$	$\frac{m_{d}}{m_{b}} \times 10^{4}$	$\frac{m_{c}}{m_{t}} \times 10^{3}$	$\frac{m_{u}}{m_{t}} \times 10^{6}$	$\left\|V_{u s}\right\|$	$\left\|V_{c b}\right\|$	$\left\|V_{u b}\right\|$	$\left\|J_{\mathrm{CP}}\right\|$	δ_{CP}
Fit	1.89	8.78	2.81	5.52	0.2251	0.0390	0.00364	2.94×10^{-5}	70.7°
Exp	1.82	9.21	2.80	5.39	0.2250	0.0400	0.00353	2.8×10^{-5}	66.2°
1σ	± 0.10	± 1.02	± 0.12	± 1.68	± 0.0007	± 0.0008	± 0.00013	${ }_{-0.12}^{+0.14} \times 10^{-5}$	${ }_{-3.6^{\circ}}^{+3 . .^{\circ}}$

8 output \quad No=2.0

5 Summary

- Quark mass hierarchy is obtained at nearby symmetric points $\tau=i^{\infty}$ and ω thanks to the residual symmetry.

Im T is important for $\tau=i^{\infty}$.

- Spontaneous CP violation?
τ is origin of both CP violation and mass hierarchy?
- One modulus or multi-modulei?

Flavor theory with modular forms is developing!
Talks by M. Levy, X. Wang: 6.June,
J. Penedo: 7.June

Back-up slides

Modular forms at $\mathrm{T}=\mathrm{i}$

$$
\mathrm{Z}_{2} \text { symmetry }
$$

$$
\begin{array}{cc}
\rho(S)=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) & \\
\mathbf{\tau}=\mathbf{I} \\
\mathbf{Y}_{3}^{(2)}=\left(\begin{array}{c}
1 \\
1-\sqrt{3} \\
-2+\sqrt{3}
\end{array}\right) & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
\mathbf{k}=\mathbf{4} & \left.\begin{array}{c}
\\
\mathbf{Y}_{3}^{(4)}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
\sqrt{3 / 2}
\end{array}\right) \\
&
\end{array}
$$

F. Feruglio, V. Gherardi, A. Romanino and A. Titov, JHEP 05 (2021), 242; arXiv:2101.08718

Consider effective theories with Γ_{N} symmetry

$$
\begin{aligned}
& \quad \mathcal{L}_{\text {eff }} \in f(\tau) \phi^{(1)} \cdots \phi^{(n)} \quad f(\tau), \phi^{(I)} \text { : non-trivial rep. of } \Gamma_{\mathrm{N}} \\
& \text { Modular form of Level } \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\tau \longrightarrow \tau^{\prime}=\gamma \tau=\frac{a \tau+b}{c \tau+d} \quad \text { Modular transformation } \\
\text { Automorphy factor }
\end{array} \\
& \qquad f_{i}(\tau) \longrightarrow f_{i}(\gamma \tau)=(c \tau+d){ }_{l}^{k} f_{j}(\tau) \\
& \text { modular form of weight } \mathbf{k} \quad \begin{array}{l}
\text { Representation matrix } \\
\text { for finite groups of } \mathrm{N}
\end{array} \\
& \mathrm{k} \text { is modular weight } \begin{array}{l}
\text { Phase for } \mathrm{N}=1 \text { full modular group }
\end{array}
\end{aligned}
$$

Modular transformation of chiral superfields

$$
\left(\phi^{(I)}\right)_{i}(x) \longrightarrow(c \tau+d)^{-k_{I}} \rho(\gamma)_{i j}\left(\phi^{(I)}\right)_{j}(x)
$$

CP invariance and Lepton model

CP transformation in modular invariant theory

P.P.Novichkov, J.T.Penedo, S.T.Petcov, A.V.Titov, JHEP 07(2019)|65 [arXiv:I905.I I970].

$$
\tau \xrightarrow{\mathrm{CP}}-\tau^{*}, \quad \psi(x) \xrightarrow{\mathrm{CP}} \bar{\psi}\left(x_{P}\right), \quad \mathbf{Y}_{\mathrm{r}}^{(\mathrm{k})}(\tau) \xrightarrow{\mathrm{CP}} \mathbf{Y}_{\mathrm{r}}^{(\mathrm{k})}\left(-\tau^{*}\right)=\mathbf{Y}_{\mathrm{r}}^{(\mathrm{k}) *}(\tau)
$$

We can construct CP invariant mass matrices in modular invariant flavor theory.

$$
\begin{array}{l|l}
\text { example } & M_{E}\left(-\tau^{*}\right)=M_{E}(\tau)^{*}, \quad M_{\nu}\left(-\tau^{*}\right)=M_{\nu}(\tau)^{*}
\end{array}
$$

$C P$ violation could be realized by fixing τ.

Modular transformation is the transformation of modulus τ

$$
\tau \longrightarrow \tau^{\prime}=\frac{a \tau+b}{c \tau+d} \quad \begin{aligned}
& S: \tau \longrightarrow-\frac{1}{\tau} \\
& T: \tau \longrightarrow \tau+1
\end{aligned}
$$

weight 2; $\mathbf{k}=\mathbf{2}$
3 modular forms

$$
\begin{gathered}
\mathbf{S}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \mathbf{T}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
f_{i}(\gamma \tau)=(c \tau+d)^{k} \rho(\gamma)_{i j} f_{j}(\tau)
\end{gathered}
$$

S transformation
T transformation

$$
\begin{array}{rl}
\left(\begin{array}{l}
Y_{1}(-1 / \tau) \\
Y_{2}(-1 / \tau) \\
Y_{3}(-1 / \tau)
\end{array}\right) & =\left(\tau^{2} \rho(S)\left(\begin{array}{c}
Y_{1}(\tau) \\
Y_{2}(\tau) \\
Y_{3}(\tau)
\end{array}\right), \quad\left(\begin{array}{l}
Y_{1}(\tau+1) \\
Y_{2}(\tau+1) \\
Y_{3}(\tau+1)
\end{array}\right)=\rho(T)\left(\begin{array}{l}
Y_{1}(\tau) \\
Y_{2}(\tau) \\
Y_{3}(\tau)
\end{array}\right)\right. \\
(c \tau+d)^{k} & \mathbf{c \tau + d}=\boldsymbol{- \tau} \\
\rho(\mathrm{S})=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), \quad \rho(\mathrm{T})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), \quad \omega=\exp \left(i \frac{2}{3} \pi\right)
\end{array}
$$

$$
\mathbf{Y}_{3}^{(2)}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)=\left(\begin{array}{c}
1+12 q+36 q^{2}+12 q^{3}+\ldots \\
-6 q^{1 / 3}\left(1+7 q+8 q^{2}+\ldots\right) \\
-18 q^{2 / 3}\left(1+2 q+5 q^{2}+\ldots\right)
\end{array}\right)
$$

$$
\mathbf{Y}_{3}^{(4)}=\left(\begin{array}{c}
Y_{1}^{(4)} \\
Y_{2}^{(4)} \\
Y_{3}^{(4)}
\end{array}\right)=\left(\begin{array}{l}
Y_{1}^{2}-Y_{2} Y_{3} \\
Y_{3}^{2}-Y_{1} Y_{2} \\
Y_{2}^{2}-Y_{1} Y_{3}
\end{array}\right)
$$

$$
\mathbf{Y}_{3}^{(6)} \equiv\left(\begin{array}{c}
Y_{1}^{(6)} \\
Y_{2}^{(6)} \\
Y_{3}^{(6)}
\end{array}\right)=\left(Y_{1}^{2}+2 Y_{2} Y_{3}\right)\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right), \quad \mathbf{Y}_{3^{\prime}}^{(6)} \equiv\left(\begin{array}{c}
Y_{1}^{\prime(6)} \\
Y_{2}^{\prime(6)} \\
Y_{3}^{\prime(6)}
\end{array}\right)=\left(Y_{3}^{2}+2 Y_{1} Y_{2}\right)\left(\begin{array}{c}
Y_{3} \\
Y_{1} \\
Y_{2}
\end{array}\right)
$$

$$
\mathbf{Y}_{3}^{(8)} \equiv\left(\begin{array}{c}
Y_{1}^{(8)} \\
Y_{2}^{(8)} \\
Y_{3}^{(8)}
\end{array}\right)=\left(Y_{1}^{2}+2 Y_{2} Y_{3}\right)\left(\begin{array}{c}
Y_{1}^{2}-Y_{2} Y_{3} \\
Y_{3}^{2}-Y_{1} Y_{2} \\
Y_{2}^{2}-Y_{1} Y_{3}
\end{array}\right), \quad \mathbf{Y}_{3^{\prime}}^{(8)} \equiv\left(\begin{array}{c}
Y_{1}^{\prime(8)} \\
Y_{2}^{\prime(8)} \\
Y_{3}^{\prime(8)}
\end{array}\right)=\left(Y_{3}^{2}+2 Y_{1} Y_{2}\right)\left(\begin{array}{c}
Y_{2}^{2}-Y_{1} Y_{3} \\
Y_{1}^{2}-Y_{2} Y_{3} \\
Y_{3}^{2}-Y_{1} Y_{2}
\end{array}\right)
$$

$$
\mathbf{Y}_{3}^{(8)}=\left(Y_{1}^{2}+2 Y_{2} Y_{3}\right) \mathbf{Y}_{3}^{(4)}
$$

Modular group

Three matrices construct $\boldsymbol{\gamma}$ (Modular transformation)

$$
\begin{aligned}
& S: \tau \longrightarrow-\frac{1}{\tau}, \quad \boldsymbol{\tau}: \text { modulus } \\
& T: \tau \longrightarrow \tau+1 .
\end{aligned}
$$

$$
S^{2}=1, \quad(S T)^{3}=1 .
$$

generate infinite discrete group PSL(2,Z)

$$
\begin{aligned}
& T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right): f(z+1)=f(z) \quad \mathbf{z} \rightarrow \mathbf{z + 1} \\
& S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right): f\left(\frac{1}{-z}\right)=(-z)^{k} f(z) \quad z \rightarrow-1 / \mathbf{z} \\
& I=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right): f\left(\frac{-z}{-1}\right)=(-1)^{k} f(z) \quad \Rightarrow \quad \mathrm{k}=\text { even }
\end{aligned}
$$

