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Introduction

5D models with branes are very popular
Randall Sundrum 1999
25 years with more than 1 citation per day

Approach to hierarchy problem
Interesting phenomenology

field profiles in 5th dimension crucial for interactions
localization of different fields on different branes

AdS/CFT interpretation
Approach to phase transitions
Dark matter
...

More branes → more possibilities
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5D models with branes
Space-time is a warped product M5 = M4 × S1/Z2

with two orbifold-branes (fixed hyper-planes of Z2)
one (UV) located at y = y1 and another (IR) located at y = y2

and additional brane(s) in between, located at yIi , i = 1, . . .

All fields have well defined parities under Z2

S =

∫
M5

d5x
√

−g

 1

2κ2
R − 1

2
(∇Φ)2 − V (Φ) −

∑
j

δ(y − yj)Uj(Φ)


Φ is the Goldberger-Wise field j = 1, 2, I1, . . . counts all branes

We are interested in background solutions of the form
(conformally flat coordinates)

ds2 = e−2A(y)
(
ηµνdx

µdxν + dy2
)

Φ = ϕ(y)

All results may be easily translated to often used coordinates
ds2 = e−2Ã(z)ηµνdx

µdxν + dz2
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5D models with branes

Bulk equations of motion (for one interbrane section):

A′′ + (A′)2 −
κ2

3
(ϕ′)2 = 0

ϕ′′ − 3A′ϕ′ − e−2A V ′ = 0

(A′)2 −
κ2

12
(ϕ′)2 +

κ2

6
e−2A V = 0

Boundary conditions at j-th brane [f ]j := f(y+
j ) − f(y−

j )

[A′]j =
κ2

3
e−A Uj [ϕ′]j = e−A U ′

j

which at orbifold branes (because of Z2 symmetry) reduce to:

lim
y→y

±
i

A′ = ±κ2

6
e−A Ui lim

y→y
±
i

ϕ′ = ±1

2
e−A U ′

i
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5D models with branes – background solutions

Procedure do obtain background solution satisfying all EoM all BC

Two BC and 3rd bulk EoM at the “first” brane
⇒ A′(y+

1 ), ϕ(y+
1 ) and ϕ′(y+

1 ) (A(y+
1 ) overall normalization)

integration of 2 bulk EoM in the first interbrane section
⇒ A(y) and ϕ(y) in that section
Position of the first intermediate brane, yI1 , is not a free
parameter. A(yI1) and ϕ(yI1) must satisfy the condition:
eA(

4A′UI1(ϕ)−ϕ′U ′
I1(ϕ)

)
+4κ2U2

I1(ϕ)−
1

2
(U ′

I1(ϕ))
2+[V (ϕ)]I1 = 0

⇒ A(yI1), A′(y−
I1
), ϕ(yI1), ϕ′(y−

I1
)

2 BC at this brane ⇒ A′(y+
I1
), ϕ′(y+

I1
)

... same procedure at each intermediate brane ...
two BC to be fulfilled at the “last” brane but only one
parameter to adjust – the position of the “last” brane y2

One tuning of parameters necessary to have any solution
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5D models with branes – background solutions

Background solutions:
A(y) and ϕ(y) which satisfy bulk equations of motion and all
boundary conditions
One tuning of parameters necessary to have any solution

the effective 4D cosmological constant must vanish

For a given background solution positions of all branes are
fixed
⇒

�� ��all distances between branes are fixed

�� ��It is not guaranteed that a given solution is stable

It is necessary to consider perturbations of the solution
All modes of such perturbations must have positive (at least
non-negative) masses squared
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Radions
Scalar perturbations of a given back-ground solution

ds2 = e−2A(y) {[(1 + 2f1(x, y)) ηµν + ∂µ∂νe(x, y)] dx
µdxν

+ (1 + 2f2(x, y)) dy
2
}

Φ = ϕ(y) + f3(x, y)

Most general scalar perturbations (in longitudinal gauge)
e(x, y) must be included in models with intermediate brane(s)

[Pilo, Rattazzi, Zaffaroni 2000; Lee, Nakai, Suzuki 2022]

We expand all 5D perturbations in 4D modes

fk(x, y) =
∑
n

fn(x)F
n
k (y), k = 1, 2, 3

e(x, y) =
∑
n

fn(x)E
n(y)

We consider EoM for 4D mode(s) with mass squared m2

and profile functions F1(y), F2(y), F3(y), E(y)

Marek Olechowski Stability of multibrane models



Radions

Off-diagonal Einstein equations relate the profiles F1, F2, F3, E

2F2 + 4F1 − E′′ + 3A′E′ = 0

3F ′
1 + 3A′F2 + κ2ϕ′F3 = 0

Bulk EoM for E(y) is automatically fulfilled (due to other EoM)

⇒ only one independent scalar bulk perturbation

One tower of scalar 4D KK modes
infinitely many radions (scalar KK modes)

similarly to infinitely many gravitons (tensor KK modes)

the number of radions
does not depend on the number of branes
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Radions
It is convenient to define Q := e−2A

(
F1 + 1

2
A′E′)

Bulk EoM
�� ��−(pQ′)′ + q Q = m2pQ

p :=
3

2κ2

eA

(ϕ′)2

q := eA

Boundary conditions at j-th brane (non-trivial E′ plays role)�
�

�



[
Q′

ϕ′

]
j

=
U ′

j

Uj

[Q]j�
�

�

Bj

(〈
Q′

ϕ′

〉
j

−
[
Q′

ϕ′

]
j

⟨ϕ′⟩j
[ϕ′]j

)
+ m2

[
Q

ϕ′

]
j

= 0

Bj := e−AU ′′
j − [A′]j −

[
ϕ′′

ϕ′

]
j

⟨f⟩j = 1
2

(
f(y−

j ) + f(y+
j )

)
For orbifold branes boundary conditions simplify to

0 = 0
1

2
BiQ

′(y±
i ) ± m2Q(y±

i ) = 0 +(−) for i = 1(2)
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Conditions for stability of multibrane models

Background configuration is stable (unstable)
⇔

the smallest radion mass squared is positive (negative)

Using solution of bulk EoM with m2 = 0 satisfying BC at the
orbifold brane at yi:

Q0(y) = e−2A(y) + 2A′(y)eA(y)

∫ y

yi

e−3A(y′)dy′

Q′
0(y) =

2

3
κ2(ϕ′(y))2eA(y)

∫ y

yi

e−3A(y′)dy′

one can prove that the necessary and sufficient condition for the
existence of at least one massless radion is�



�
	

∏
j Bjϕ

′(y−
j )ϕ

′(y+
j ) = 0

Analogous result for 2-brane models e.g. [Lesgourgues, Sorbo 2004]
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Conditions for stability of multibrane models
It is also possible to show that the smallest radion m2 is given by

m2 = min
Q

∫
p(Q′)2 +

∫
qQ2 +

∑
I q

[Q]2I
[A′]I∫

pQ2 + 2
B1

pQ2
∣∣∣
y
+
1

+ 2
B2

pQ2
∣∣∣
y
−
2

+
∑

I
3eA

2κ2
1
BI

[
Q
ϕ′

]2
I

At least one radion is tachyonic
if any of the following conditions is satisfied

Bj < 0 at any brane
[A′]I ∝ UI < 0 negative tension of any intermediate brane
ϕ′(y) = 0 at any bulk point

The last point is subtle because p = 3eA

2κ2(ϕ′)2
diverges for ϕ′ = 0.

It is necessary to use the Mukhanov-Sasaki variable v(y) satisfying
in this case: Q = λ−1e−2A(ϕ′)2(A′)−1(e3A/2A′(ϕ′)−1v)′

for which bulk EoM is regular also at points at which ϕ′ = 0
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Conditions for stability of multibrane models

Necessary and sufficient conditions
for stability of (multibrane) configuration

each intermediate brane must have positive tension

UIi

(
ϕ(yIi)

)
> 0

at each brane
e−A(yj)U ′′

j

(
ϕ(yj)

)
− [A′]j −

[
ϕ′′

ϕ′

]
j
> 0

everywhere
ϕ′(y) ̸= 0

Background configurations DO NOT depend on quantities U ′′
j

For any given background solution decreasing of any U ′′
j may

result in arbitrarily light radion and finally destabilize the system

Upper bounds on radion(s) masses are obtained in the stiff
potential approximation i.e. U ′′

j → ∞
However, even U ′′

j → ∞ DOES NOT guarantee stability
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Conditions for stability of multibrane models

Example: simple 2-brane model with quadratic potentials

V (Φ) = −6k2

κ2 −1
2
ϵk2Φ2 Ui(Φ) = λi+µi(Φ − vi)

2

ϵ = 0.8 ∃yϕ′(y)=0

⇒ m2<0

e−AU ′′
2

|[A′]2|
≈ 105 ≫ 1

Bj = e−AU ′′
j − [A′]j −

[
ϕ′′

ϕ′

]
j

∼ stiff potential approximation

e−AU ′′
2

|[A′]2|
≈ 20

e−AU ′′
2

|[A′]2|
≈ 10
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Relation between radions and distances

Distance between points A and B with coordinates
(x, yA) and (x, yB) is given by: dAB =

∫ yB

yA

√
g55 dy

In our metric
√
g55 =

√
e−2A(y) (1 + 2f2(x, y)) ≈ e−A(y) (1 + f2(x, y))�



�
	dAB ≈

∫ yB

yA
e−A(y) +

∑
kfk(x)

∫ yB

yA
e−A(y)F k

2 (y)

Excitations of each radion field change distances
between fixed points on two different branes.

Changes depend on t and x⃗

Unless for given k, yA and yB

∫ yB

yA
e−A(y)F k

2 (y) = 0

Typically lighter radions (less zeros of F2(y)) have stronger impact
on distances than heavier radions (more zeros of F2(y))

We should express F2(y) in terms of the radion field Q(y)
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Relation between radions and distances
Excitations of one radion with the profile Qm2(y) change
distances as follows:

∆d12 = −2fm2(t, x⃗)

∫ y2

y1

eA Qm2 dy

∆d1I(I2) = fm2(t, x⃗)

(
−2

∫ yI(y2)

y1(yI)

eA Qm2 dy + (−) eA(yI)
[Qm2 ]I

[A′]I

)

In general, the distance between fixed points on two different
branes is changed by a radion even if (the integral of) its profile
between those branes vanishes
Exception: the total distance between the “end-of-the-world” orbifold branes

eA(yI)
[Qm2 ]I

[A′]I
= e2A(yI)

3[Qm2 ]I

κ2UI

Brane with smaller tension UI is more easy to bend
(distance becomes x-dependent)
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Relation between radions and distances

Non-zero radion field Qm2

F2 ̸= 0
g55 is changed ⇒ distances between branes are affected
F1 ̸= 0 E ̸= 0
gµν is changed ⇒ distances along branes are also affected

Distance between points C and D with coordinates
(t, x1

C , x2, x3, y) and (t, x1
D, x2, x3, y)

dCD ≈ e−A(y)(x1
D − x1

C)

+ e+A(y)

[
Qm2

A′

]
j

[
1

A′

]−1

j

∫ x1
D

x1
C

fm2(t, x⃗) dx1

+
1

2
e−A(y)Em2(y)

∫ x1
D

x1
C

∂xxfm2(t, x⃗) dx1

Excitations of (each) radion field modify distances along branes
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Number of light radions
How many radions may be light?

number of massless radions in 2-brane models:
0
if B1 · B2 · ϕ′(y+

1 ) · ϕ′(y−
2 ) ̸= 0

1
if B1 · B2 · ϕ′(y+

1 ) · ϕ′(y−
2 ) = 0 but at least one of Bi ̸= 0

2
if B1 = B2 = 0

number of massless radions in 3-brane models
0
if B1 · BI · B2 · ϕ′(y+

1 ) · ϕ′(y−
I ) · ϕ′(y+

I ) · ϕ′(y−
2 ) ̸= 0

1
if B1 · BI · B2 · ϕ′(y+

1 ) · ϕ′(y−
I ) · ϕ′(y+

I ) · ϕ′(y−
2 ) = 0

but at least two of Bj ̸= 0
2
if exactly two Bj = 0
one localized in one interbrane space if BI · ϕ′(y±

I ) = 0
4
if B1 = BI = B2 = 0
two localized in interbrane spaces
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Summary
5D multibrane models

one fine tuning necessary for solutions with flat 4D sections
all distances between branes are fixed by a given background
solution – warp factor e−2A(y) and GW scalar ϕ(y)

Radions: 4D modes of scalar perturbations
one more 5D scalar perturbation must be taken into account
(as compared to 2-brane models)
still one (infinite) tower of KK modes – 4D radions

Bulk EoM and especially BC for radions
are generalized in the presence of intermediate branes
Conditions for stability of a given background configuration
UIi > 0 e−AU ′′

j − [A′]j −
[
ϕ′′

ϕ′

]
j
> 0 ϕ′ ̸= 0

background configurations do not depend on U ′′
j

radion(s) may be light or even tachyonic also for U ′′
j → ∞

Each radion field excitation deforms branes
changing distances in all directions: between and along branes

in most cases in a non-trivial way
There may be up to 2N−1 massless (light) radions in a model
with N branes
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