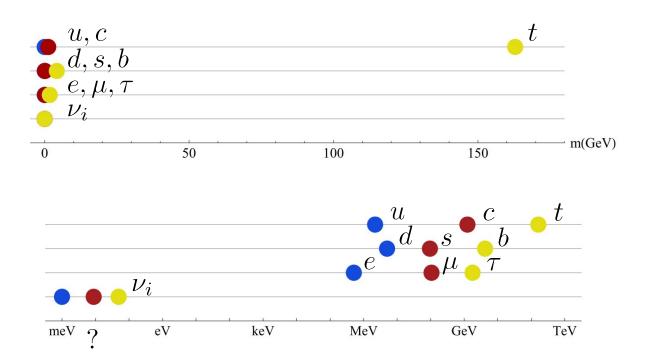
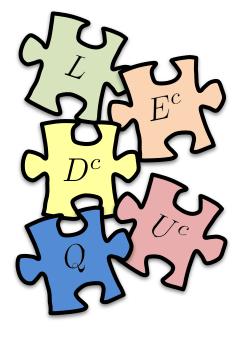
(Finite) modular symmetries and the strong CP problem

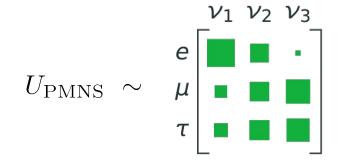
in collaboration with S.T. Petcov [2404.08032]

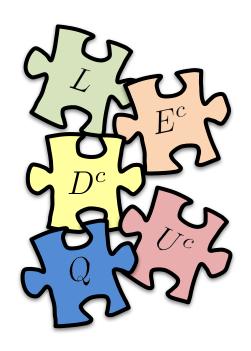
João Penedo (INFN, Roma Tre)

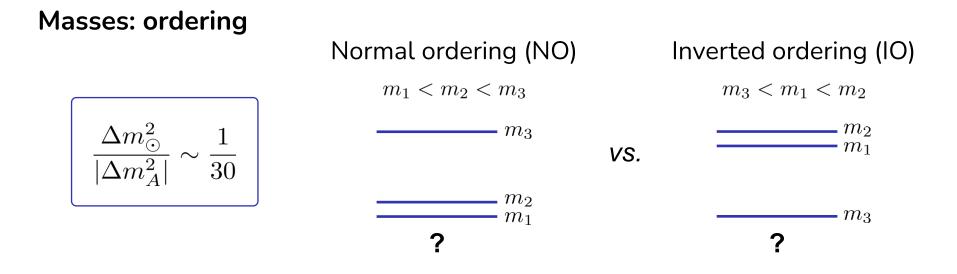




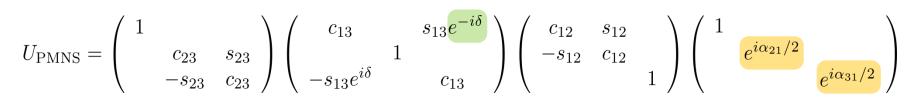
7 June 2024 PLANCK @ Lisbon


The flavour puzzle

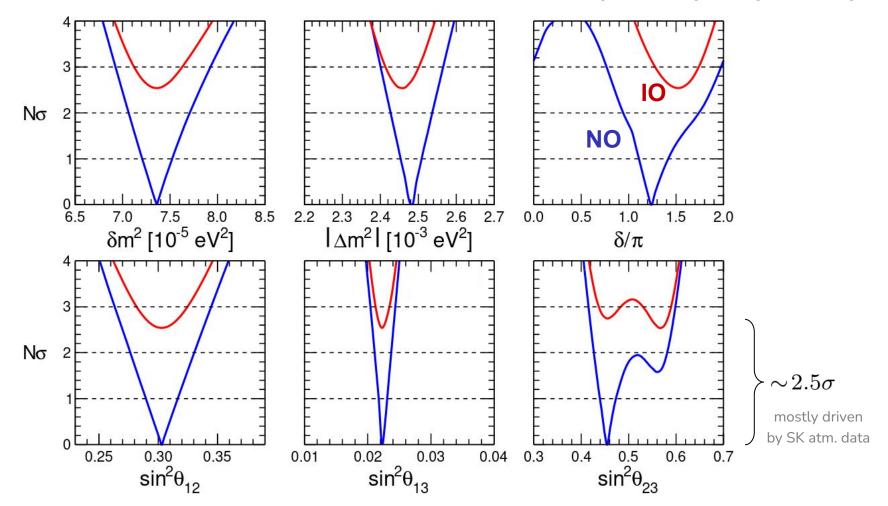



adapted from R. Toorop's PhD thesis

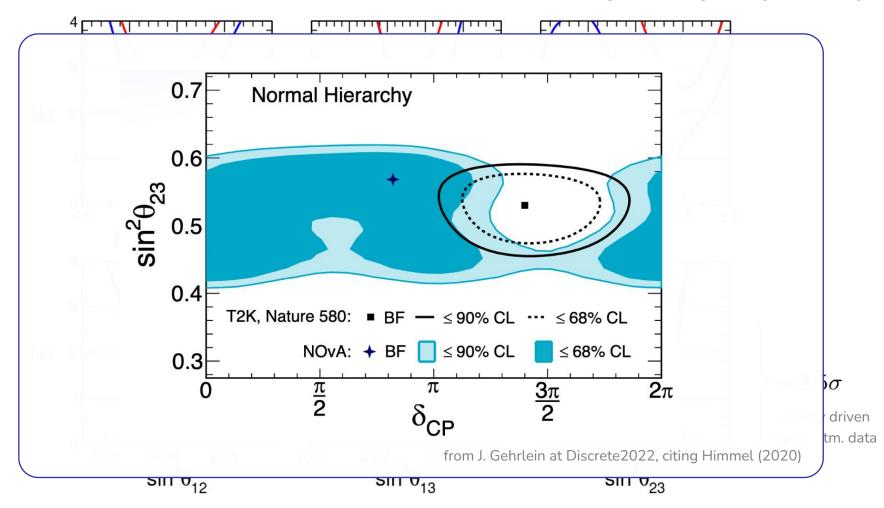
The flavour puzzle

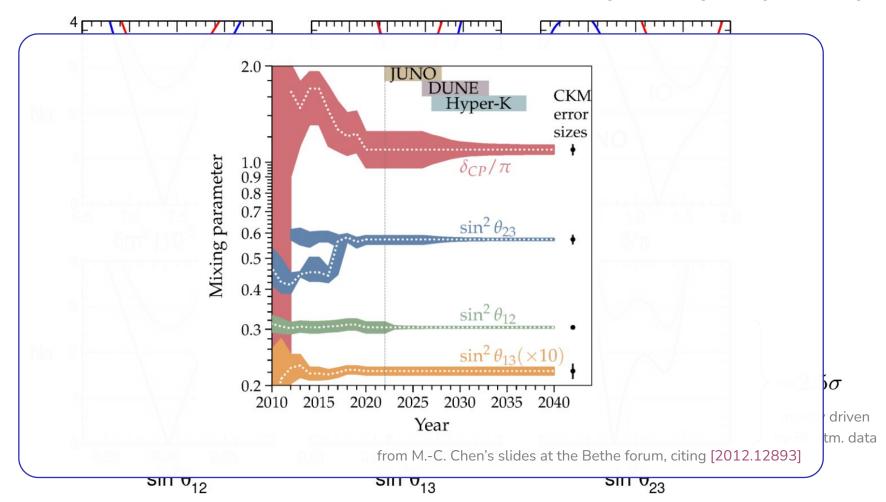


adapted from P. Novichkov's slides at PASCOS 2021



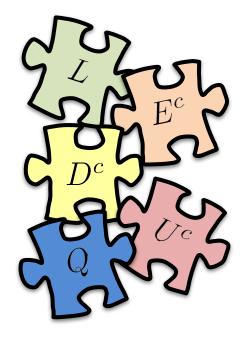
Mixing matrix parameterisation


 $c_{ij} \equiv \cos \theta_{ij}, \, s_{ij} \equiv \sin \theta_{ij}$

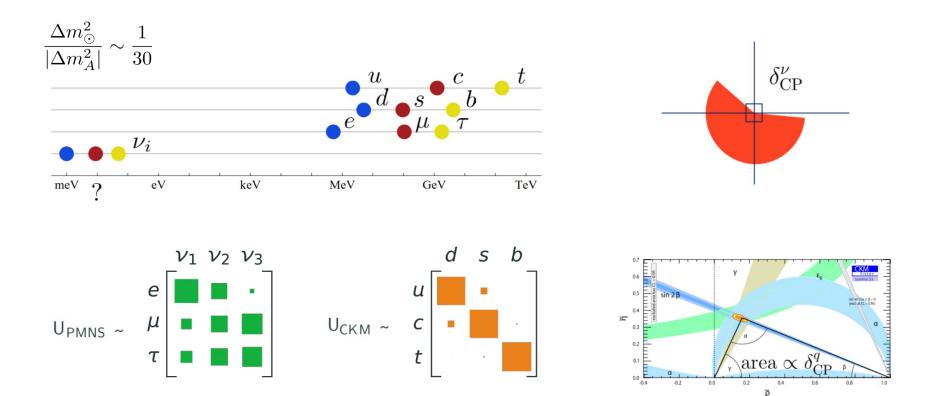

from Capozzi et al. [2107.00532], see also València [2006.11237], NuFIT [2007.14792]


from Capozzi et al. [2107.00532], see also València [2006.11237], NuFIT [2007.14792]

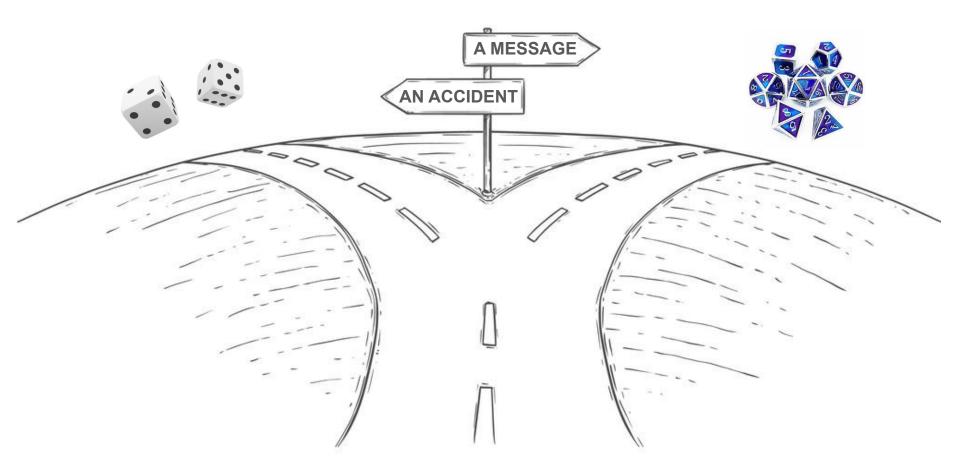
from Capozzi et al. [2107.00532], see also València [2006.11237], NuFIT [2007.14792]



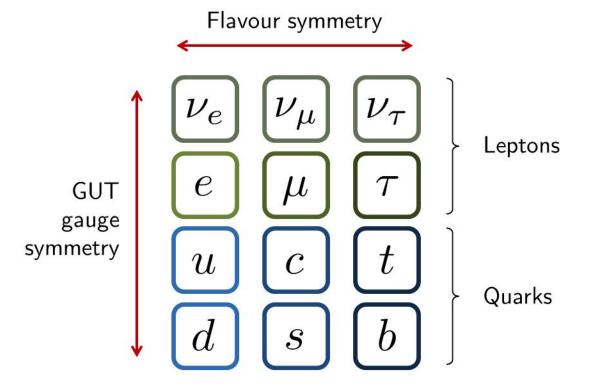
The flavour puzzle



Recall talk by G. Martinelli


adapted from P. Novichkov's slides at PASCOS 2021

Motivation In search of an organising principle...

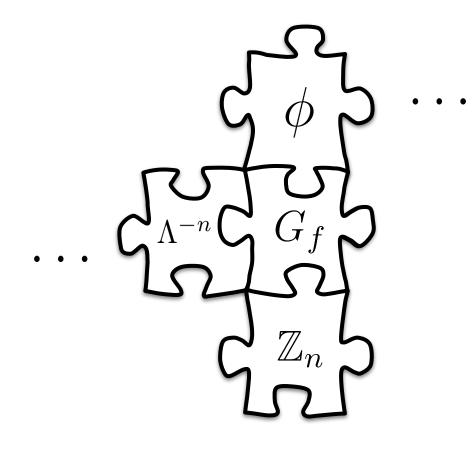


Motivation Is there an organising principle?

Flavour symmetries

For reviews, see: Altarelli and Feruglio (2010), Ishimori et al. (2010), King and Luhn (2013), Petcov (2017), Feruglio and Romanino (2019), Ding and Valle (2024)

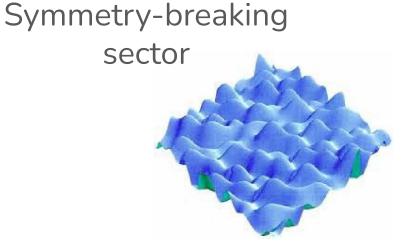
Flavour symmetries



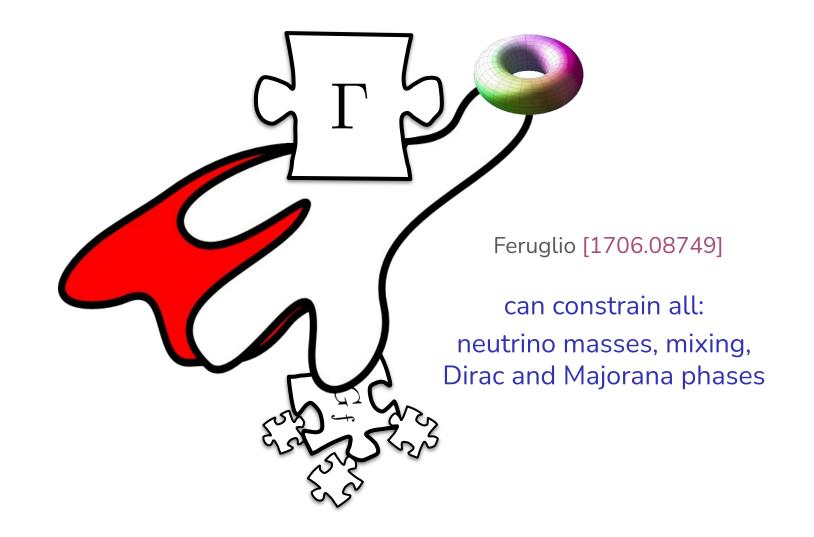
Non-Abelian discrete flavour symmetries

model-independent approaches relying on residual symmetries constrain mixing and the Dirac phase

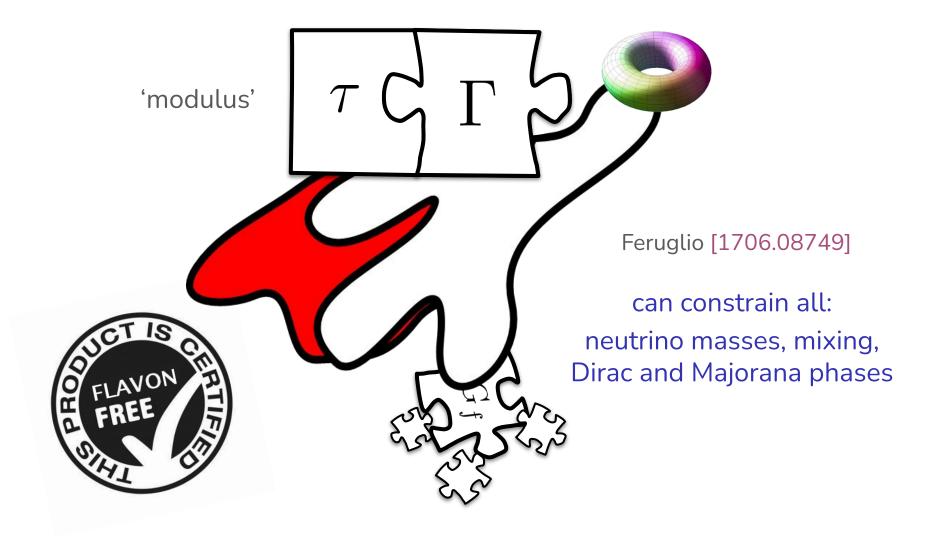
Problems with the usual approach

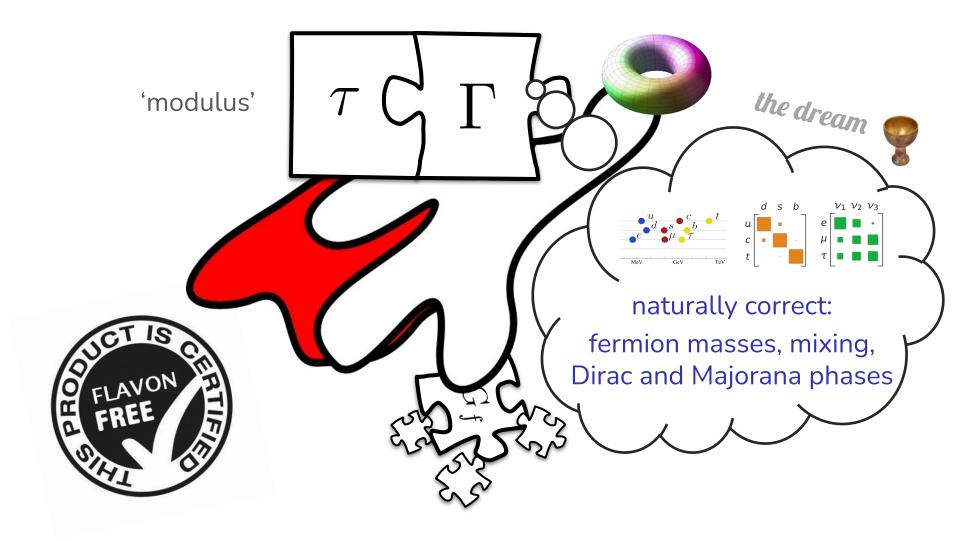

• • •

A reversal of the usual logic



Symmetry group and representations

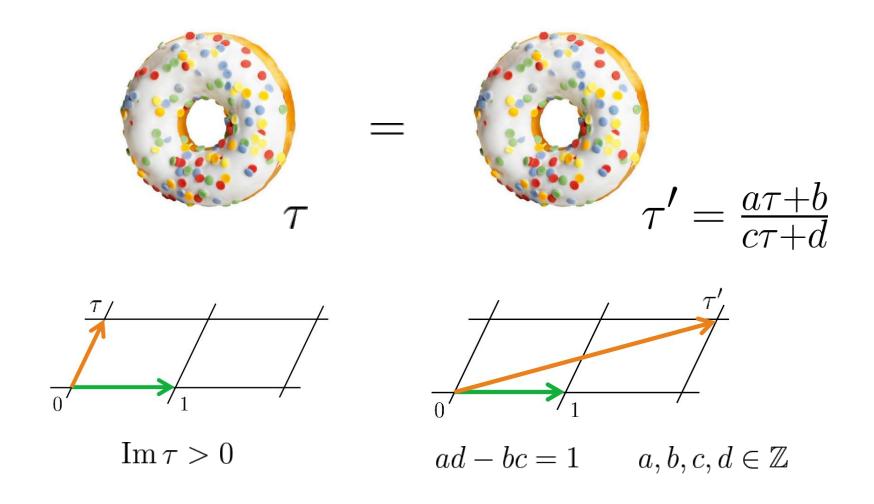


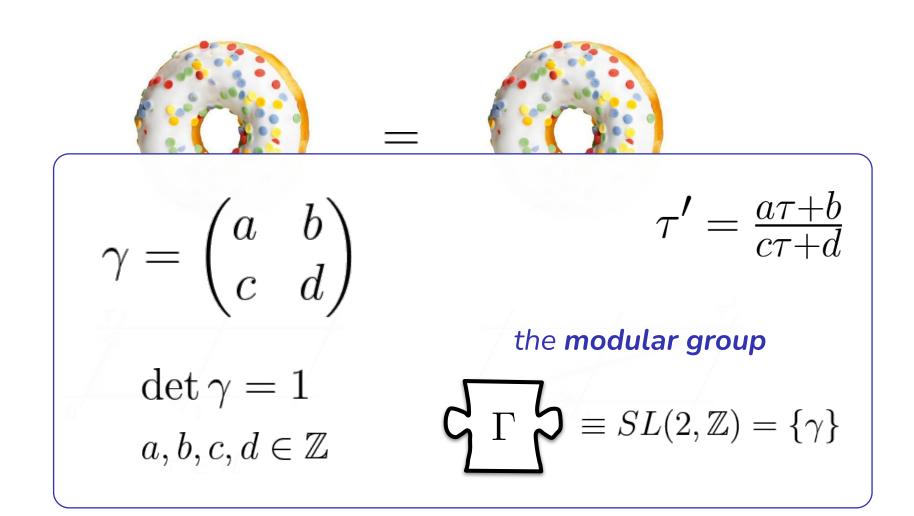


see Feruglio, PoS DISCRETE 2020-2021, 007

Feruglio [1706.08749] can constrain all: neutrino masses, mixing, Dirac and Majorana phases **SUSY** (holomorphicity) required for predictivity ...but see e.g. Ding, Feruglio, Liu [2010.07952], Almumin et al. [2102.11286] Qu, Ding [2406.02527

The (bottom-up) framework


The modulus


T may describe a torus compactification (we assume only 1 unfrozen modulus)

In the **bottom-up** modular approach τ is a dimensionless **spurion**

The modulus

The modulus

The modular group

$$\tau \rightarrow \frac{a\tau + b}{c\tau + d}$$

$$\mathbf{\mathcal{L}} \mathbf{\mathcal{L}} = SL(2, \mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \, \det \gamma = 1 \right\}$$

Presentation in terms of generators S, T, R:

$$S^2 = R, \quad (ST)^3 = R^2 = \mathbb{1}, \quad RT = TR$$

The modular group

$$\tau \rightarrow \frac{a\tau + b}{c\tau + d}$$

$$\mathbf{\mathcal{G}} \Gamma \mathbf{\mathcal{B}} \equiv SL(2, \mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \, \det \gamma = 1 \right\}$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix};$$

$$\tau \to -1/\tau$$

inverSion

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix};$$

$$\tau \to \tau + 1$$

Translation

$$R = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix};$$

$$\tau \to \tau$$

Redundant

but can affect fields...

The modular group

$$\langle \tau \rangle \not\rightarrow \frac{a\tau + b}{c\tau + d}$$

$$\sum SL(2,\mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \det \gamma = 1 \right\}$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} :$$

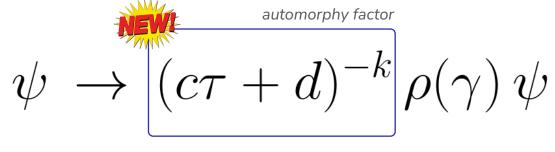
$$\tau \to -1/\tau$$

inverSion

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} :$$

 $\tau \to \tau + 1$

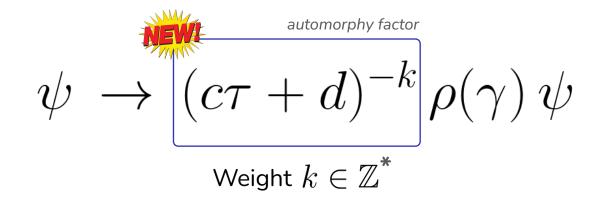
Translation


 $R = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} :$ $\tau \to \tau$ Redundant

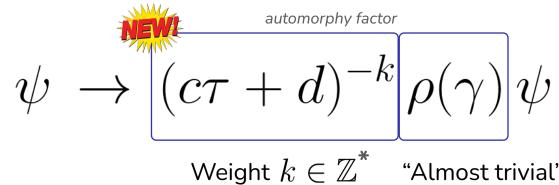
but can affect fields...

The field transformations

 $\psi \to (c\tau + d)^{-k} \rho(\gamma) \psi$

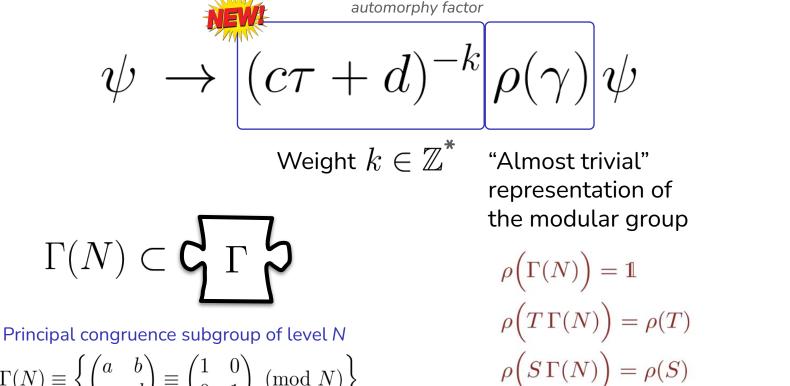

The field transformations

Weight $k \in \mathbb{Z}$


* not necessarily: rare from top-down!

The field transformations

* not necessarily: rare from top-down!


The field transformations

"Almost trivial" representation of the modular group

$$\begin{split} \rho\Big(\Gamma(N)\Big) &= \mathbb{1} \\ \rho\Big(T\,\Gamma(N)\Big) &= \rho(T) \\ \rho\Big(S\,\Gamma(N)\Big) &= \rho(S) \\ \cdots & \text{Feruglio} \left[1706.08749\right] \end{split}$$

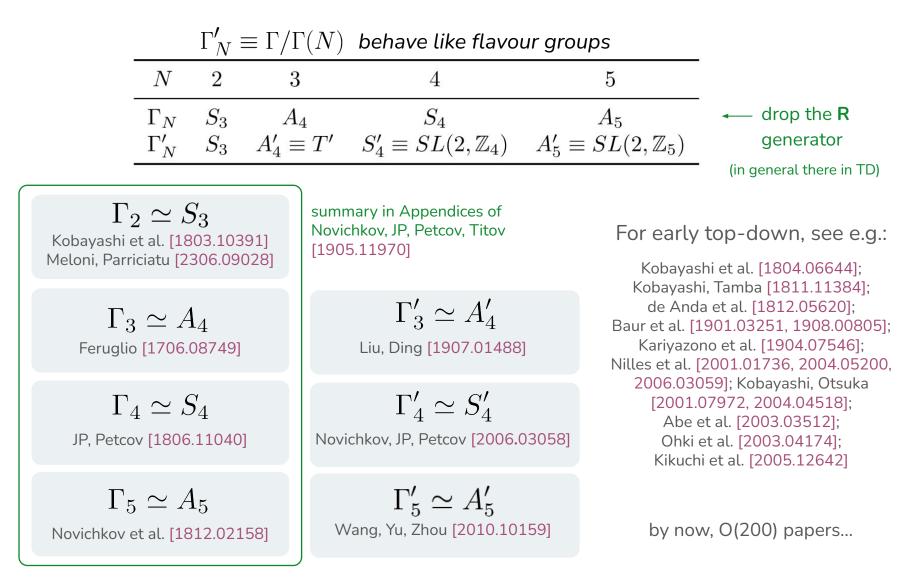
The field transformations

$$\Gamma(N) \equiv \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

is effectively a representation of $\ \Gamma'_N \equiv \Gamma/\Gamma(N)$

other choices are possible: in general, vector-valued modular forms, see e.g. [2112.14761, 2311.10136]

The finite modular groups


$\Gamma_N^\prime \equiv \Gamma/\Gamma(N)~$ behave like flavour groups					
N	2	3	4	5	
Γ_N	S_3	A_4	S_4	A_5	- drop the R
Γ'_N	S_3	$A_4' \equiv T'$	$S'_4 \equiv SL(2,\mathbb{Z}_4)$	$A'_5 \equiv SL(2,\mathbb{Z}_5)$	generator
					(in general there in TD)

Presentation in terms of generators S, T, R:

$$S^2 = R, \quad (ST)^3 = R^2 = \mathbb{1}, \quad RT = TR,$$

$$T^N = 1$$

The finite modular groups

A lot of model building...

- models based on finite modular groups of higher N
- modular models of unification (also without GUTs)
- modular models of leptogenesis
- models with multiple moduli

based on symplectic modular invariance (**Siegel modular group**) and automorphic forms

- models relating modular flavour symmetries and inflation
- models exploring the interplay of modular and gCP symmetries

 $\tau \to \begin{pmatrix} \tau_1 & \tau_3 \\ \tau_3 & \tau_2 \end{pmatrix}$

...and a vast literature...

- models based on finite modular groups of higher *N* [2004.12662, 2108.02181, 2307.01419]
- modular models of unification (also without GUTs) [1906.10341, 2012.01397, 2101.02266, 2101.12724, 2103.02633, 2103.16311, 2108.09655, 2206.14675, 2312.09255]
- modular models of leptogenesis

 $[1909.06520,\,2007.00545,\,2103.07207,\,2201.10429,\,2204.08338,\,2205.08269,\,2206.14675,\,2402.18547,\,2405.09363]$

• models with multiple moduli [1811.04933, 1812.11289, 1906.02208, 1908.02770, 2304.05958]

 $\tau \to \begin{pmatrix} \tau_1 & \tau_3 \\ \tau_3 & \tau_2 \end{pmatrix}$

based on symplectic modular invariance (Siegel modular group) and automorphic forms: Ding, Feruglio, Liu [2010.07952, 2402.14915] From TD, see e.g.: Nilles et al. [2105.08078], Baur et al. [2012.09586], Kikuchi et al. [2305.16709]

- models relating modular flavour symmetries and inflation Recall talk by X. Wang [2208.10086, 2303.02947, 2405.06497, 2405.08924]
- models exploring the interplay of modular and gCP symmetries [1901.03251, 1905.11970, 1910.11553, 2006.03058, 2012.01688, 2012.13390, 2102.06716, 2106.11659]

But how does it work?

 $\psi \sim (\mathbf{r}, k)$

 $W \sim g(\psi_1 \dots \psi_n)_1$

 $\psi \to (c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma) \psi$

Assuming rigid SUSY (W not invariant in SUGRA)

Need modular forms

 $\psi \sim (\mathbf{r}, k)$

 $W \sim g(Y(\tau) \psi_1 \dots \psi_n)_1$

 $\psi \rightarrow (c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma) \psi$

Assuming rigid SUSY (W not invariant in SUGRA)

Need modular forms

 $\psi \sim (\mathbf{r}, k)$

 $W \sim q(Y(\tau) \psi_1 \dots \psi_n)_1$

 $\psi \to (c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma) \psi$ $Y(\tau) \to (c\tau + d)^{k_Y} \rho_Y(\gamma) Y(\tau)$ Modular Forms

Assuming rigid SUSY (W not invariant in SUGRA)

Need modular forms

 $\psi \sim (\mathbf{r}, k)$

$$W \sim g(Y(\tau) \psi_1 \dots \psi_n)_1$$

$$\psi \rightarrow \underbrace{(c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma)}_{V(\tau)} \psi$$

$$Y(\tau) \rightarrow \underbrace{(c\tau + d)^{k_{Y}} \rho_{Y}(\gamma)}_{\{k_{Y} = k_{1} + \ldots + k_{n} \atop \rho_{Y} \otimes \rho_{1} \otimes \ldots \otimes \rho_{n} \supset \mathbf{1}} \psi$$

Assuming rigid SUSY (W not invariant in SUGRA)

Need modular forms

 $\psi \sim (\mathbf{r}, k)$

$$W \sim g(Y(\tau) \psi_1 \dots \psi_n)_1$$

$$\begin{split} \psi &\to (c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma) \psi \\ Y(\tau) &\to \underbrace{(c\tau + d)^{k_Y} \rho_Y(\gamma) Y(\tau)}_{= Y\left(\frac{a\tau + b}{c\tau + d}\right)} \end{split}$$

Assuming rigid SUSY (W not invariant in SUGRA)

N	2	3	4	5	Ι
$\Gamma_N \ \Gamma'_N$	$S_3 \ S_3$	$\begin{array}{c} A_4\\ A_4' \equiv T' \end{array}$	$\begin{array}{c} S_4\\ S_4'\equiv SL(2,\mathbb{Z}_4)\end{array}$	$A_5 = SL(2, \mathbb{Z}_5)$	
$\dim \mathcal{M}_k(\Gamma(N))$	k/2 + 1	-	$\frac{4}{2k+1}$	$\frac{5}{5k+1}$	1

The modular forms

A **finite set** of functions for each ky

	2	3	4 S_4	5	Not so m	any available!
	$S_3\ S_3$	$\begin{array}{c} A_4\\ A_4' \equiv T' \end{array}$	-	$A_5 \equiv SL(2, \mathbb{Z}_5)$	A finite set of functions for each ky	
$\dim \mathcal{M}_k(\Gamma(N))$	k/2 + 1	k+1	2k + 1	5k + 1		
Lowest-weight <i>k</i> modular forms for each group:			$\Gamma_N^{(\prime)}$	$Y^{(k)}_{\mathbf{r}}$	$\Gamma_2 \simeq S_3$	$Y^{(2)}_{2}$
on-singular , unlike modular <i>unctions</i> . Can still have an nterpretation, see Feruglio,			$\Gamma_3' \simeq A_4'$	$Y^{(1)}_{\mathbf{\hat{2}}}$	$\Gamma_3 \simeq A_4$	$Y^{(2)}_{3}$
trumia, Titov [2305.08908] an generalize modular group to .g. the larger metaplectic group nd get half-integer weight forms, ee Liu et al. [2007.13706]		$\Gamma_4' \simeq S_4'$	$Y^{(1)}_{\mathbf{\hat{3}}}$	$\Gamma_4 \simeq S_4$	$Y^{(2)}_{\bf 2}, Y^{(2)}_{\bf 3'}$	
		$\Gamma_5' \simeq A_5'$	$Y^{(1)}_{\mathbf{\hat{6}}}$	$\Gamma_5 \simeq A_5$	$\begin{array}{c} Y^{(2)}_{\bf 3}, Y^{(2)}_{{\bf 3'}}, \\ Y^{(2)}_{{\bf 5}} \end{array}$	

The modular forms

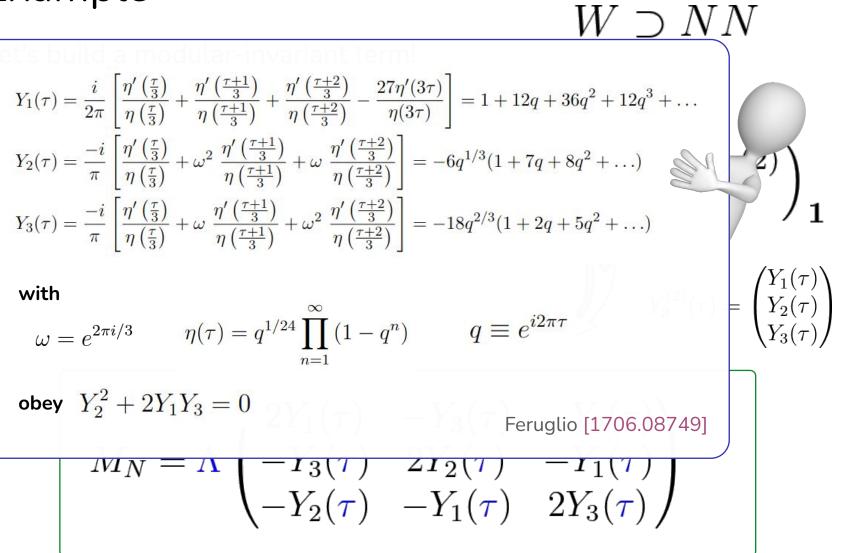
 $W \supset NN$

Let's build a modular-invariant term!

 $W \supset NN$

Let's build a modular-invariant term!

$$\Gamma_3 \simeq A_4$$
$$N \sim (\mathbf{3}, 1)$$


Let's build a modular-invariant term!

 $W \supset NN$

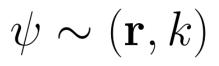
Let's build a modular-invariant term!

 $W \supset NN$

$$M_N = \Lambda \begin{pmatrix} 2Y_1(\tau) & -Y_3(\tau) & -Y_2(\tau) \\ -Y_3(\tau) & 2Y_2(\tau) & -Y_1(\tau) \\ -Y_2(\tau) & -Y_1(\tau) & 2Y_3(\tau) \end{pmatrix}$$

Let's build a modular-invariant term!

 $W \supset NN$


$$M_N = \Lambda \begin{pmatrix} 2Y_1(\tau) & -Y_3(\tau) & -Y_2(\tau) \\ -Y_3(\tau) & 2Y_2(\tau) & -Y_1(\tau) \\ -Y_2(\tau) & -Y_1(\tau) & 2Y_3(\tau) \end{pmatrix}$$

so now we can build models...

Example: an S4 lepton model

Novichkov, JP, Petcov, Titov [1811.04933]

Ingredients: Choose group, field content

Example: an S4 lepton model

Novichkov, JP, Petcov, Titov [1811.04933]

 $N^{c} \sim (\mathbf{3'}, 0), \quad L \sim (\mathbf{3}, 2)$ $E^{c} \sim (\mathbf{1'}, 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1'}, 2)$

Ingredients: Choose group, field content

$$\psi \sim ({\bf r},k)$$

$$\begin{split} W &= \alpha \left(E_1^c L \, Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_d + \beta \left(E_2^c L \, Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_d + \gamma \left(E_3^c L \, Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_d \\ &+ g \left(N^c L \, Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_u + g \left(N^c L \, Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_u + \Lambda \left(N^c N^c \right)_{\mathbf{1}} , \\ &\in \mathbb{C} \quad \text{only physical phase} \end{split}$$

<u>Procedure</u>: Fit couplings and *t*

 $\min \chi^2(\tau,\,g'/g,\,g^2/\Lambda,\,\alpha,\beta,\gamma)$

Example: an S4 lepton model

Novichkov, JP, Petcov, Titov [1811.04933]

 $N^{c} \sim (\mathbf{3'}, 0), \quad L \sim (\mathbf{3}, 2)$ $E^{c} \sim (\mathbf{1'}, 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1'}, 2)$

Ingredients: Choose group, field content

$$\psi \sim ({\bf r},k)$$

$$W = \alpha \left(E_{1}^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{d} + \beta \left(E_{2}^{c} L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_{d} + \gamma \left(E_{3}^{c} L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_{d} + g \left(N^{c} L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_{u} + g' \left(N^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{\mathbf{1}} ,$$

<u>Procedure</u>: Fit couplings and *t*

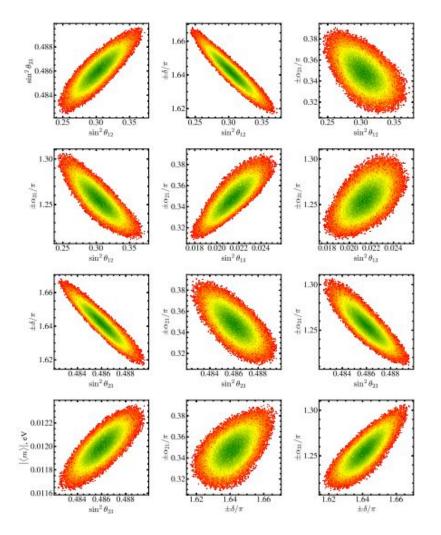
 $\min \chi^2(\tau, g'/g, g^2/\Lambda, \alpha, \beta, \gamma)$

$$gCP \Rightarrow g' \in \mathbb{R}$$

Novichkov, JP, Petcov, Titov [1905.11970]

r can be the only source of CPV

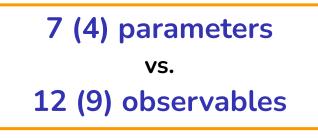
Example: an S4 lepton model (results)


Novichkov, JP, Petcov, Titov [1811.04933, 1905.11970]

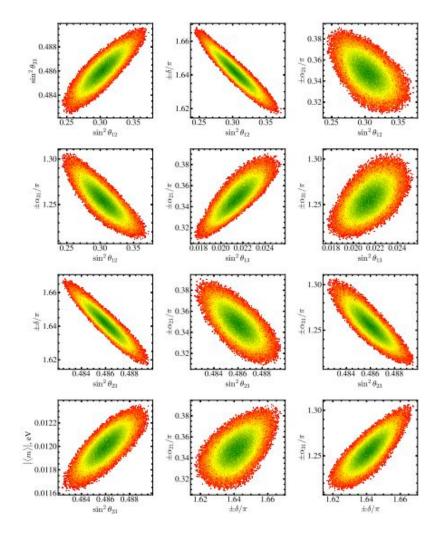
 $\sin^2 \theta_{23} \sim 0.49$ $\delta \sim 1.6\pi$ $\alpha_{21} \sim 0.3\pi$ $\alpha_{31} \sim 1.3\pi$

 $|\langle m \rangle|_{\beta\beta} \sim 12 \text{ meV}$ $\sum_i m_i \sim 0.08 \text{ eV}$

Minimal model found with one less parameter: Ding, Liu, Yao [2211.04546]

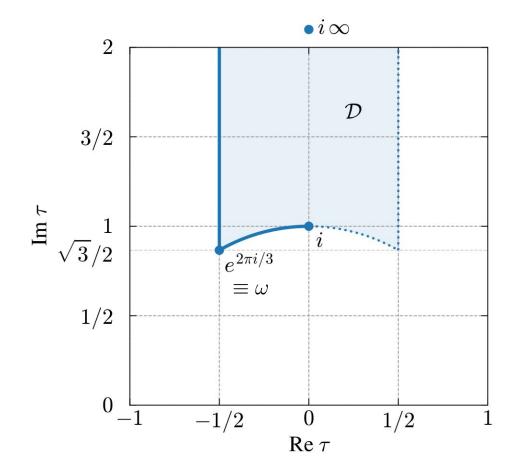


Example: an S4 lepton model (results)


Novichkov, JP, Petcov, Titov [1811.04933, 1905.11970]

 $\sin^2 \theta_{23} \sim 0.49$ $\delta \sim 1.6\pi$ $\alpha_{21} \sim 0.3\pi$ $\alpha_{31} \sim 1.3\pi$

 $|\langle m \rangle|_{\beta\beta} \sim 12 \text{ meV}$ $\sum_i m_i \sim 0.08 \text{ eV}$



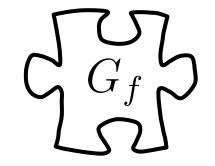
Minimal model found with one less parameter: Ding, Liu, Yao [2211.04546]

...and one does not need to consider the whole 1/2 plane

The fundamental domain

- Any **r** breaks the full modular symmetry
- To fit a model which is invariant under the full modular group, it is enough to scan *t* in the fundamental domain

In some cases, can avoid fit by looking at invariants see Chen et al. [2211.04546]


...and one does not need to consider the whole 1/2 plane

CP violation

Image credit: www.davidharber.co.uk

1-4-AX AF CA

Flavour symmetries + gCP (generalized CP)

 $\psi(x) \to \rho_{\mathbf{r}}(g) \psi(x)$

 $\psi(x) \to X_{\mathbf{r}}^{\mathrm{CP}} \overline{\psi}(x_{\mathrm{P}})$

Branco, Lavoura, Rebelo (1986) Harrison, Scott (2002) Grimus, Lavoura (2003) Farzan, Smirnov (2006) Ferreira et al. (2012)

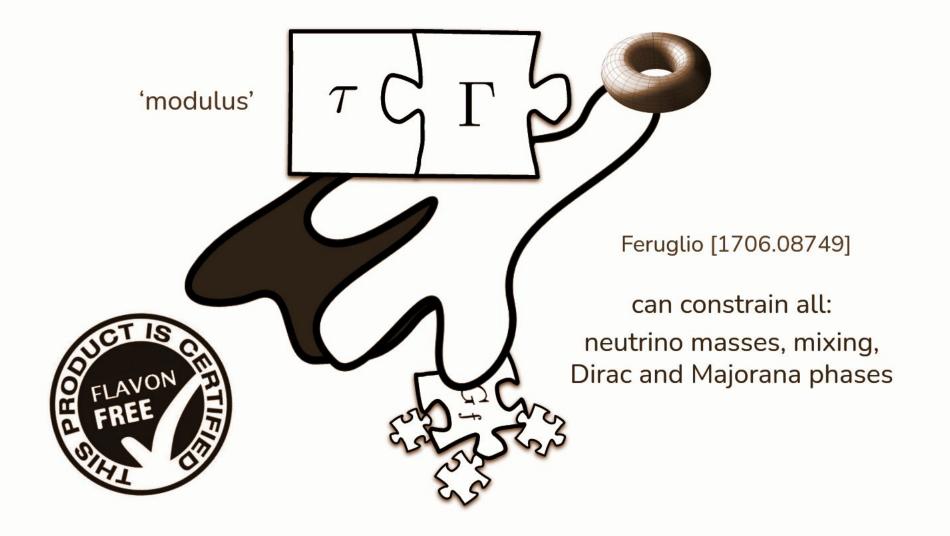
. . .

 $\psi(x) \to \rho_{\mathbf{r}}(g) \psi(x)$

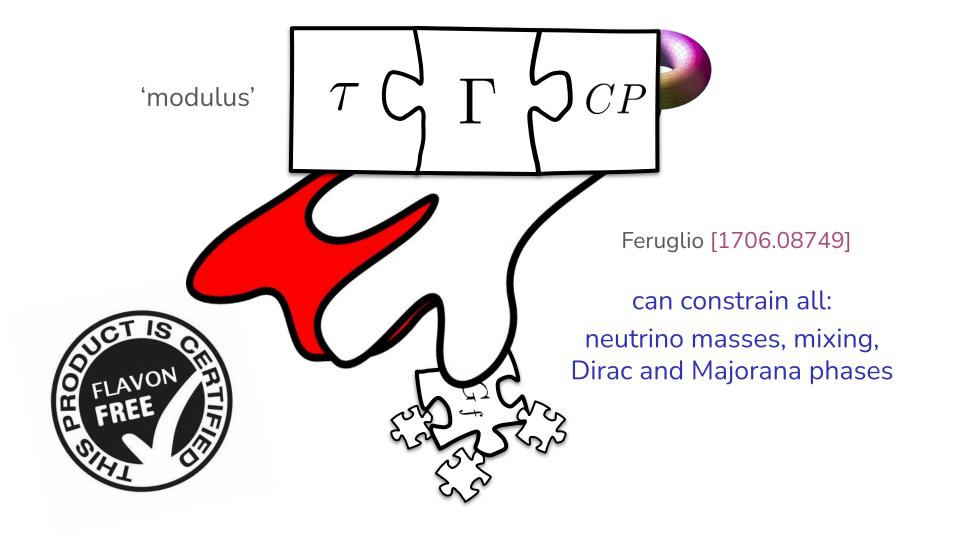
Flavour symmetries + gCP (generalized CP)

$$G_f D_{CP}$$

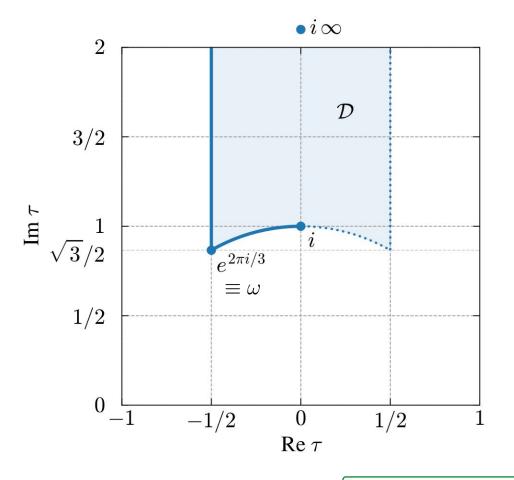
$$\psi(x) \to X_{\mathbf{r}}^{\mathrm{CP}} \,\overline{\psi}(x_{\mathrm{P}})$$


can constrain mixing, the Dirac and the Majorana phases

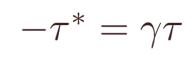
Consistency condition [Feruglio et al. (2012), Holthausen et al. (2012)]


$$X_{\mathbf{r}}^{\mathrm{CP}} \rho_{\mathbf{r}}^{*}(g) \left(X_{\mathbf{r}}^{\mathrm{CP}} \right)^{-1} = \rho_{\mathbf{r}}(u(g))$$

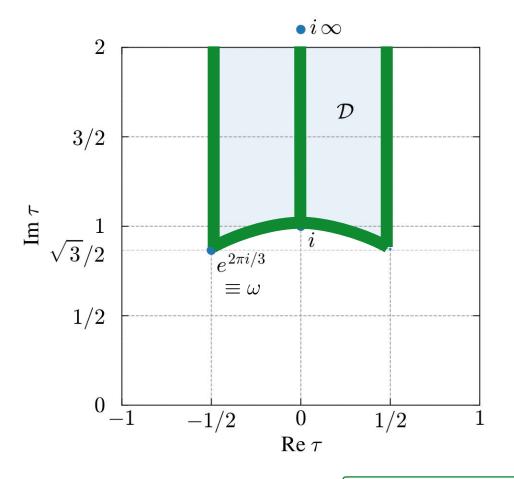
u is a class-inverting outer automorphism [Chen et al. (2014)]


Modular symmetry to the rescue!

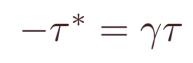
Modular symmetry + gCP



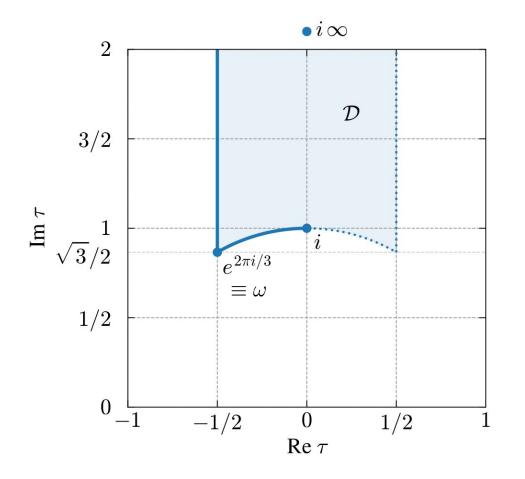
$Modular\ symmetry\ +\ gCP\ (back\ to\ the\ fundamental\ domain)$


- Any au breaks the full modular symmetry
- Special values of τ preserve the CP symmetry
- The modulus can be the only source of CP violation! (recall the S4 model of slide 50...)

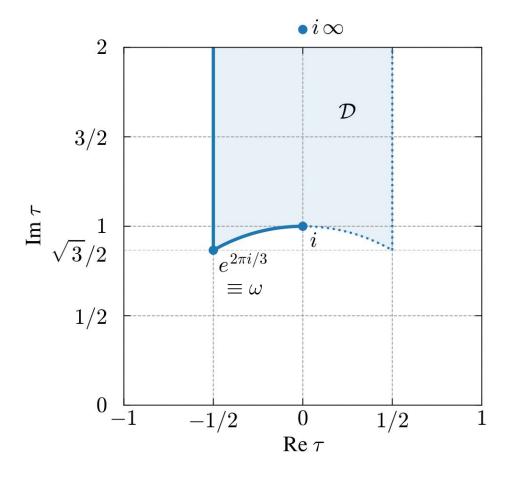
• CP is violated by the modulus unless


special regions of the fundamental domain

$Modular\ symmetry\ +\ gCP\ (back\ to\ the\ fundamental\ domain)$


- Any au breaks the full modular symmetry
- Special values of τ preserve the CP symmetry
- The modulus can be the only source of CP violation! (recall the S4 model of slide 50...)

• CP is violated by the modulus unless

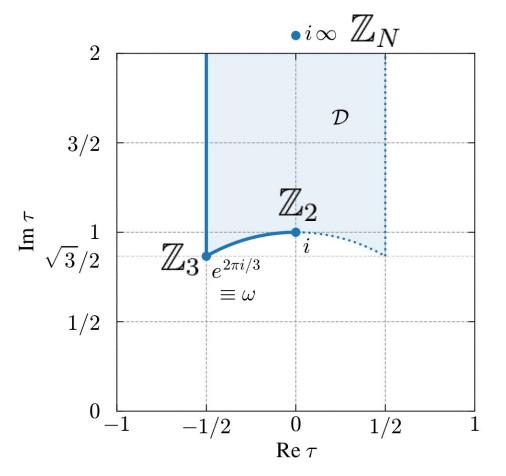

special regions of the fundamental domain

Intermezzo: Residual modular symmetries

Recall talks by M. Tanimoto, M. Levy

Intermezzo: Residual modular symmetries

• At special values of τ , some residual symmetry remains


see e.g. Novichkov et al. [1811.04933]; Novichkov et al.' [1812.11289]

• Near them, these symmetries are linearly realized

see e.g. Feruglio [2302.11580]

Recall talks by M. Tanimoto, M. Levy

Intermezzo: Residual modular symmetries

Recall talks by M. Tanimoto, M. Levy

if the base symmetry is smaller, more stabilizers arise, see e.g. Varzielas, Levy, Zhou [2008.05329]

At special values of τ, some residual symmetry remains

see e.g. Novichkov et al. [1811.04933]; Novichkov et al.' [1812.11289]

• Near them, these symmetries are linearly realized

see e.g. Feruglio [2302.11580]

Key idea for hierarchies:

some couplings vanish as we approach a symmetric point

Novichkov, JP, Petcov [2102.07488]

Strong CP

Image credit: art by D. Dominguez / CERN

$$\mathcal{L}_{\text{QCD}} = \bar{q}(i\not\!\!D - M_q)q - \frac{1}{4}G^{a\,\mu\nu}G^a_{\mu\nu} + \theta \frac{g_s^2}{32\pi^2}G^{a\,\mu\nu}\tilde{G}^a_{\mu\nu}$$

$$\mathcal{L}_{\text{QCD}} = \bar{q}(i\not\!\!D - M_q)q - \frac{1}{4}G^{a\,\mu\nu}G^a_{\mu\nu} + \theta \frac{g_s^2}{32\pi^2}G^{a\,\mu\nu}\tilde{G}^a_{\mu\nu}$$
The physical quantity: $\bar{\theta} = \theta_{\text{QCD}} + \arg \det M_u M_d$

O(1) a priori

$$\mathcal{L}_{\text{QCD}} = \bar{q}(i\not{D} - M_q)q - \frac{1}{4}G^{a\,\mu\nu}G^a_{\mu\nu} + \theta \frac{g_s^2}{32\pi^2}G^{a\,\mu\nu}\tilde{G}^a_{\mu\nu}$$
The physical quantity:

$$\bar{\theta} = \theta_{\text{QCD}} + \arg \det M_u M_d$$

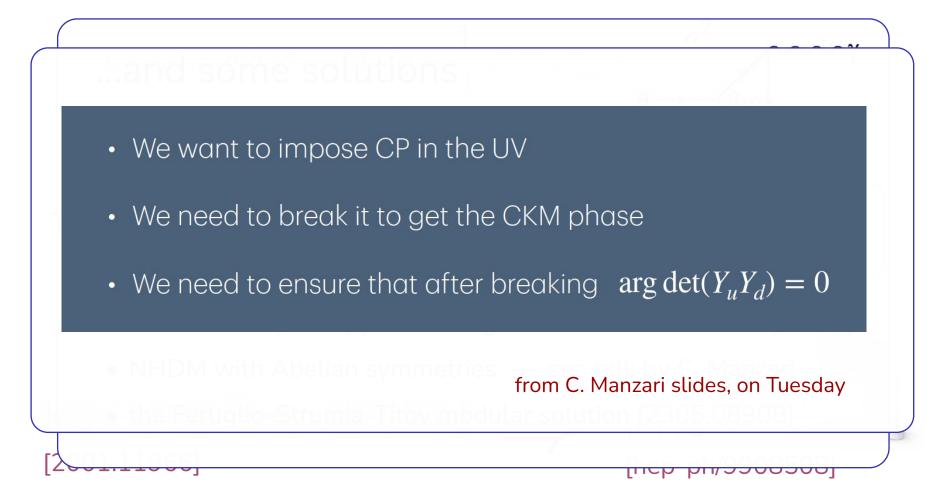
$$O(1) \text{ a priori}$$

$$|\bar{\theta}| \leq 10^{-10}$$

$$|\bar{\theta}| \lesssim 10^{-10}$$

$$|\text{hep-ph/9908508]}$$

The problem...



Promotion to a dynamical field: the (invisible) **axion** Peccei and Quinn [1977], Wilczek, Weinberg [1978]

Solutions with **spontaneously broken CP symmetry**

- Nelson-Barr [1984] (minimal e.g.: Bento-Branco-Parada [1991])
- NHDM with Abelian symmetries see talk by C. Manzari
- the Feruglio-Strumia-Titov modular solution [2305.08908]

g_{aγγ}

Promotion to a dynamical field: the (invisible) **axion** Peccei and Quinn [1977], Wilczek, Weinberg [1978]

Solutions with **spontaneously broken CP symmetry**

- Nelson-Barr [1984] (minimal e.g.: Bento-Branco-Parada [1991])
- NHDM with Abelian symmetries see talk by C. Manzari
- the Feruglio-Strumia-Titov modular solution [2305.08908]

g_{aγγ}

The modular idea by Feruglio, Strumia, Titov [2305.08908]

- No axions! see instead [2002.06931, 2402.02071] for a modular origin of the axion
- Need to produce quark CPV phase in the CKM mixing matrix
- Need to **suppress**:

$$ar{ heta} = heta_{ ext{QCD}} + rg \det M_u M_d$$
/
vanishes due to
vanishes due to
vanishes due to

imposed gCP

special structure

The modular idea by Feruglio, Strumia, Titov [2305.08908]

- No axions! see instead [2002.06931, 2402.02071] for a modular origin of the axion
- Need to **produce quark CPV phase** in the CKM mixing matrix
- Need to **suppress**:

• It turns out to be holomorphic \rightarrow insensitive to Kähler!

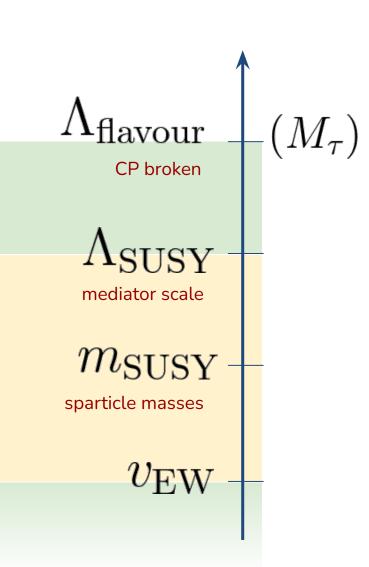
• Relies on the fact that mass matrix **determinants are modular forms**

already noted e.g. in Ding, Liu, Yao [2211.04546] derivation in app. A of JP, Petcov [2404.08032] ...its quality...

Separation of scales also needed to trust model predictions

see Feruglio and Criado [1807.01125]

see also A. Titov slides @ Cosmic WISPers 2024


...its quality...

- No more operators in the limit of unbroken SUSY
- SUSY non-renormalization theorems
- gluino mass real if SUSY-breaking sector is CP conserving w/ zero modular charges
- assume gauge or anomaly mediation: controls dangerous threshold corrections
- consistency will automatically give real µ term
- SM contribution is **negligible** (4 loops)

Separation of scales also needed to trust model predictions

see Feruglio and Criado [1807.01125]

see also A. Titov slides @ Cosmic WISPers 2024

• The determinants have weights
$$k_{
m det}^q = 3k_{H_q} + \sum_i k_i + k_i^c$$

$$Q_i \xrightarrow{\gamma} (c\tau + d)^{-k_i} \rho_{ij}(\gamma) Q_j$$
$$q_i^c \xrightarrow{\gamma} (c\tau + d)^{-k_i^c} \rho_{ij}^c(\gamma) q_j^c$$

$$Q_i \xrightarrow{\gamma} (c\tau + d)^{-k_i} \rho_{ij}(\gamma) Q_j$$
$$q_i^c \xrightarrow{\gamma} (c\tau + d)^{-k_i^c} \rho_{ij}^c(\gamma) q_j^c$$

• The determinants have weights

$$k_{\text{det}}^q = 3k_{H_q} + \sum_i k_i + k_i^c$$

• To avoid massless quarks, must have k

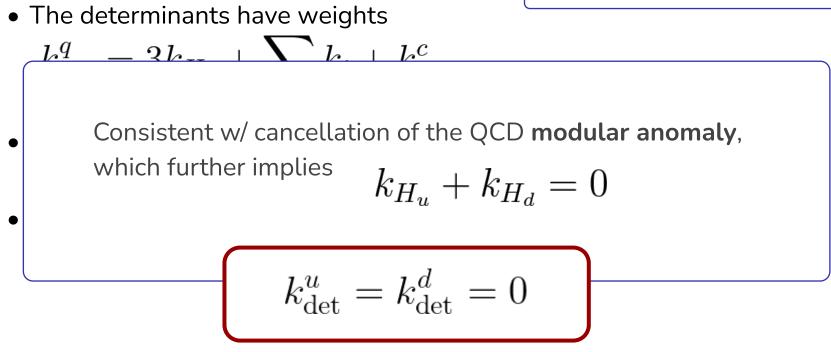
$$k_{\text{det}}^q \ge 0$$

$$Q_i \xrightarrow{\gamma} (c\tau + d)^{-k_i} \rho_{ij}(\gamma) Q_j$$
$$q_i^c \xrightarrow{\gamma} (c\tau + d)^{-k_i^c} \rho_{ij}^c(\gamma) q_j^c$$

• The determinants have weights

$$k_{\text{det}}^q = 3k_{H_q} + \sum_i k_i + k_i^c$$

ullet To avoid massless quarks, must have $~k_{
m d}^q$

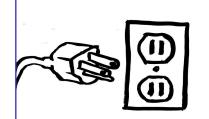

$$k_{\text{det}}^q \ge 0$$

• Then, to make $rg \det M_u M_d$ vanish we require

$$k_{\rm det}^u = k_{\rm det}^d = 0$$

so that both determinants are τ -independent **constants** (weight 0) and **real**, due to the imposed gCP!

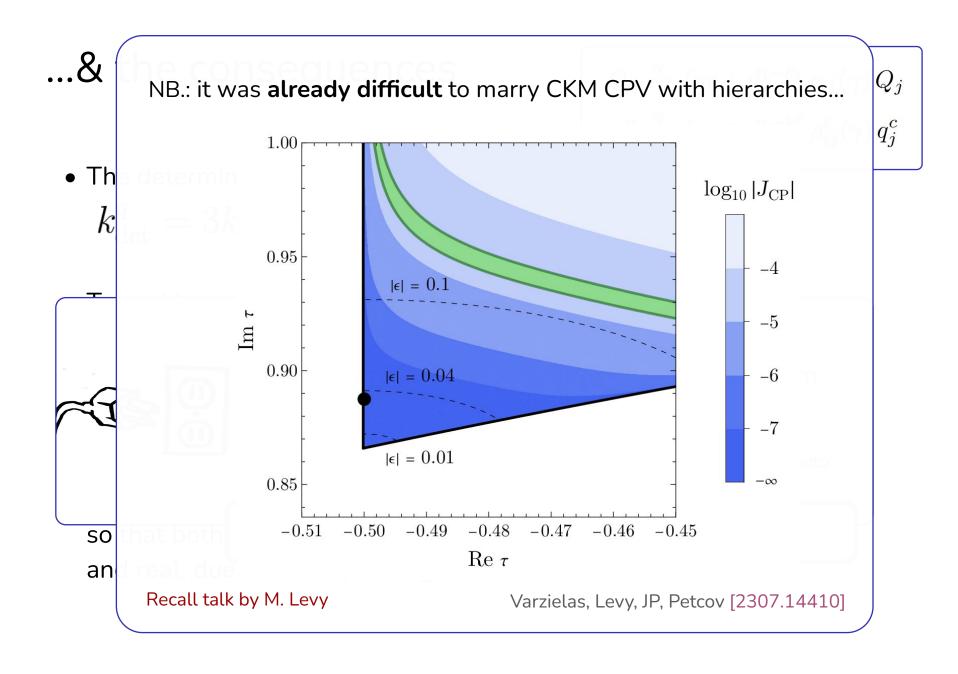
$$Q_i \xrightarrow{\gamma} (c\tau + d)^{-k_i} \rho_{ij}(\gamma) Q_j$$
$$q_i^c \xrightarrow{\gamma} (c\tau + d)^{-k_i^c} \rho_{ij}^c(\gamma) q_j^c$$



so that both determinants are τ -independent **constants** (weight 0) and **real**, due to the imposed gCP!

• The determinants have weights

 $k_{\rm det}^q = 3k_{H_q} + \sum k_i + k_i^c$


$$Q_i \xrightarrow{\gamma} (c\tau + d)^{-k_i} \rho_{ij}(\gamma) Q_j$$
$$q_i^c \xrightarrow{\gamma} (c\tau + d)^{-k_i^c} \rho_{ij}^c(\gamma) q_j^c$$

incompatible w/ modular hierarchy mechanism of Novichkov, JP, Petcov [2102.07488] :(

Recall talk by M. Tanimoto

so that both determinants are τ -independent **constants** (weight 0) and **real**, due to the imposed gCP!

(weight structures)

$$M : \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} \qquad k_{ij} = k_i + k_j^c$$

 $k_{\text{det}} = k_{11} + k_{22} + k_{33} = k_{12} + k_{23} + k_{31} = \dots \stackrel{!}{=} 0$

(weight structures)

$$M : \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} \qquad k_{ij} = k_i + k_j^c$$

$$k_{\text{det}} = k_{11} + k_{22} + k_{33} = k_{12} + k_{23} + k_{31} = \dots \stackrel{!}{=} 0$$

(weight structures)

$$M : \begin{pmatrix} k+k' & k' & 0 \\ k & 0 & -k' \\ 0 & -k & -k-k' \end{pmatrix}$$

at least one of k, k' non-zero

(weight structures)

$$M : \begin{pmatrix} k+k' & k' & 0 \\ k & 0 & -k' \\ 0 & -k & -k-k' \end{pmatrix} \xrightarrow{\text{e.g. } k. k' < 0} M = v_q \begin{pmatrix} 0 & 0 & \alpha_{13} \\ 0 & \alpha_{22} & \alpha_{23} \mathcal{Y}_1^{(|k'|)} \\ \alpha_{31} & \alpha_{32} \mathcal{Y}_2^{(|k|)} & \alpha_{33} \mathcal{Y}_3^{(|k+k'|)} \end{pmatrix}$$

at least one of k, k' non-zero

$$\det M = -v_q^3 \,\alpha_{13}\alpha_{22}\alpha_{31}$$

(weight structures in both sectors)

$$M_u: egin{pmatrix} k+k' & k' & 0\ k & 0 & -k'\ 0 & -k & -k-k' \end{pmatrix} \ M_d: egin{pmatrix} k+k' & k' & 0\ k & 0 & -k'\ 0 & -k' & -k' \end{pmatrix}$$

at least one of k, k' non-zero

up to **simultaneous** permutations from the left and independent permutations from the right (weak basis transformations)

Which irreps work?

- Irreps beyond 1D imply extra relations between weights
- Cannot have triplet irreps
- Potentially viable non-singlet case: 2+1

$$Q \sim (\mathbf{2}_{Q}, k_{2}) \oplus (\mathbf{1}_{Q}, k_{1}),$$

$$u^{c} \sim (\overline{\mathbf{2}_{Q}}, -k_{2}) \oplus (\overline{\mathbf{1}_{Q}}, -k_{1}),$$

$$M_{q} \propto \begin{pmatrix} |\alpha_{1}^{q}/\beta_{q}| & 0 & \cos\theta_{q} e^{i\phi_{1}^{q}} \\ 0 & |\alpha_{1}^{q}/\beta_{q}| & \sin\theta_{q} e^{i\phi_{2}^{q}} \\ 0 & 0 & |\alpha_{2}^{q}/\beta_{q}| \end{pmatrix}^{(1)}$$

$$M_{q} \propto \begin{pmatrix} |\alpha_{1}^{q}/\beta_{q}| & \sin\theta_{q} e^{i\phi_{2}^{q}} \\ 0 & 0 & |\alpha_{2}^{q}/\beta_{q}| \end{pmatrix}^{(1)}$$

(T)

(weight structures in both sectors)

$$M_u: egin{pmatrix} k+k' & k' & 0\ k & 0 & -k'\ 0 & -k & -k-k' \end{pmatrix} \ M_d: egin{pmatrix} k+k' & k' & 0\ k & 0 & -k'\ 0 & -k' & -k' \end{pmatrix}$$

at least one of k, k' non-zero

up to **simultaneous** permutations from the left and independent permutations from the right (weak basis transformations)

(weight structures in both sectors)

$$M_u: egin{pmatrix} k+k' & k' & 0 \ k & 0 & -k' \ 0 & -k & -k-k' \end{pmatrix} \ M_d: egin{pmatrix} k+k' & k' & 0 \ k & 0 & -k' \ 0 & -k & -k-k' \end{pmatrix}$$

at least one of k, k' non-zero

up to **simultaneous** permutations from the left and independent permutations from the right (weak basis transformations)

Which irreps work?

- Irreps beyond 1D imply extra relations between weights
- Cannot have triplet irreps
- Potentially viable non-singlet case: 2+1

$$Q \sim (\mathbf{2}_{Q}, k_{2}) \oplus (\mathbf{1}_{Q}, k_{1}),$$

$$u^{c} \sim (\overline{\mathbf{2}_{Q}}, -k_{2}) \oplus (\overline{\mathbf{1}_{Q}}, -k_{1}),$$

$$M_{q} \propto \begin{pmatrix} |\alpha_{1}^{q}/\beta_{q}| & 0 & \cos\theta_{q} e^{i\phi_{1}^{q}} \\ 0 & |\alpha_{1}^{q}/\beta_{q}| & \sin\theta_{q} e^{i\phi_{2}^{q}} \\ 0 & 0 & |\alpha_{2}^{q}/\beta_{q}| \end{pmatrix}^{(T)}$$

$$M_{q} \propto \begin{pmatrix} |\alpha_{1}^{q}/\beta_{q}| & \sin\theta_{q} e^{i\phi_{2}^{q}} \\ 0 & 0 & |\alpha_{2}^{q}/\beta_{q}| \end{pmatrix}^{(T)}$$

Which irreps work?

- Irreps beyond 1D imply extra relations between weights
- Cannot have triplet irreps
- Potentially viable non-singlet case: 2+1

$$Q \sim (\mathbf{2}_{Q}, k_{2}) \oplus (\mathbf{1}_{Q}, k_{1}),$$

$$u^{c} \sim (\overline{\mathbf{2}_{Q}}, -k_{2}) \oplus (\overline{\mathbf{1}_{Q}}, -k_{1}),$$

$$M_{q} \propto \begin{pmatrix} |\alpha_{1}^{q}/\beta_{q}| & 0 & \cos\theta_{q} e^{i\phi_{1}^{q}} \\ 0 & |\alpha_{1}^{q}/\beta_{q}| & \sin\theta_{q} e^{i\phi_{2}^{q}} \\ 0 & 0 & |\alpha_{2}^{q}/\beta_{q}| \end{pmatrix}^{(T)}$$

$$M_{q} \propto \begin{pmatrix} |\alpha_{1}^{q}/\beta_{q}| & \sin\theta_{q} e^{i\phi_{2}^{q}} \\ 0 & 0 & |\alpha_{2}^{q}/\beta_{q}| \end{pmatrix}^{(T)}$$

too much strain on the model, does not work \rightarrow quarks must furnish 1D irreps

$$k_2 > k_1$$

in the interval [0, 1], implying the upper bound $|V_{us}| \lesssim m_u/m_c \simeq 0.002$. This is two orders of magnitude smaller than the value $|V_{us}| \simeq 0.225$ [45] required by quark data. By a similar procedure, one can also show that

$$\left| |V_{ub}| - \frac{m_d}{m_s} \right| \lesssim \frac{m_u}{m_c} \,, \tag{41}$$

i.e. that $|V_{ub}| \in [0.048, 0.053]$, again in contradiction with the data, which requires the much smaller $|V_{ub}| \simeq 0.003$.

$k_2 < k_1$

once again leading to an upper bound on the magnitude of a mixing matrix element. In this case one has $|V_{cb}| \lesssim m_s/m_b \simeq 0.014$, while data requires $|V_{cb}| \simeq 0.036$, a value more than twice as large.

JP, Petcov [2404.08032]

What can we do with 1D?

$$\begin{aligned} Q &\sim (\mathbf{1}_{Q_1}, k_1) \oplus (\mathbf{1}_{Q_2}, k_2) \oplus (\mathbf{1}_{Q_3}, k_3), \\ u^c &\sim (\overline{\mathbf{1}_{Q_1}}, -k_1) \oplus (\overline{\mathbf{1}_{Q_2}}, -k_2) \oplus (\overline{\mathbf{1}_{Q_3}}, -k_3) \\ d^c &\sim (\overline{\mathbf{1}_{Q_1}}, -k_1) \oplus (\overline{\mathbf{1}_{Q_2}}, -k_2) \oplus (\overline{\mathbf{1}_{Q_3}}, -k_3) \end{aligned}$$

$$k \equiv k_2 - k_3, \quad k' \equiv k_1 - k_2$$

What can we do with 1D?

Ι:	$egin{pmatrix} lpha_1^q & 0 \ 0 & lpha_2^q \ 0 & 0 \ \end{pmatrix}$	$ \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k+k')} \\ \\ \tilde{\alpha}_{23}^{q} \mathcal{Y}_{q,23}^{(k)} \\ \\ \\ \alpha_{3}^{q} \end{array} \right) , \ k > 0, \ k' \ge 0 , $
II :	$\begin{pmatrix} \alpha_1^q & \tilde{\alpha}_{12}^q \mathcal{Y}_{q,12}^{(k')} \\ 0 & \alpha_2^q \\ 0 & 0 \end{pmatrix}$	$ \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k+k')} \\ 0 \\ \alpha_{3}^{q} \end{array} \right) , k \ge 0, k' > 0 , \label{eq:alpha_state}$
III :	$\begin{pmatrix} \alpha_1^q & \tilde{\alpha}_{12}^q \mathcal{Y}_{q,12}^{(k')} \\ 0 & \alpha_2^q \\ 0 & 0 \end{pmatrix}$	$ \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k+k')} \\ \\ \tilde{\alpha}_{23}^{q} \mathcal{Y}_{q,23}^{(k)} \\ \\ \\ \alpha_{3}^{q} \end{array} \right) , \ k,k' > 0 , $
IV :	$ \begin{pmatrix} \alpha_{11}^{q} & \alpha_{12}^{q} \\ \alpha_{21}^{q} & \alpha_{22}^{q} \\ 0 & 0 \end{pmatrix} $	$ \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k)} \\ \tilde{\alpha}_{23}^{q} \mathcal{Y}_{q,23}^{(k)} \\ \alpha_{3}^{q} \end{array} \right) , \ k > 0 , $
V :	$\begin{pmatrix} \alpha_1^q & \tilde{\alpha}_{12}^q \mathcal{Y}_{q,12}^{(k')} \\ 0 & \alpha_{22}^q \\ 0 & \alpha_{32}^q \end{pmatrix}$	$ \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k')} \\ \alpha_{23}^{q} \\ \alpha_{33}^{q} \end{array} \right) , k' > 0 , $

$$Q \sim (\mathbf{1}_{Q_1}, k_1) \oplus (\mathbf{1}_{Q_2}, k_2) \oplus (\mathbf{1}_{Q_3}, k_3),$$
$$u^c \sim (\overline{\mathbf{1}_{Q_1}}, -k_1) \oplus (\overline{\mathbf{1}_{Q_2}}, -k_2) \oplus (\overline{\mathbf{1}_{Q_3}}, -k_3)$$
$$d^c \sim (\overline{\mathbf{1}_{Q_1}}, -k_1) \oplus (\overline{\mathbf{1}_{Q_2}}, -k_2) \oplus (\overline{\mathbf{1}_{Q_3}}, -k_3)$$

$$k \equiv k_2 - k_3, \quad k' \equiv k_1 - k_2$$

- New irreps and forms beyond Γ
- Zeros from non-trivial 1D or missing form
- Several forms may contribute to each entry

$$\mathcal{Y}_{q,ij}^{(w)} \equiv \sum_{n=1} g_n^q Y_{\mathbf{1}_{ij},n}^{(w)}$$

• Canonical rescaling may help with hierarchies

$$\tilde{\alpha}_{ij}^q \equiv \alpha_{ij}^q \, (2 \,\mathrm{Im}\,\tau)^{k_{ij}/2}$$

• Forms are related, so getting CPV is tricky!

How "minimal" can we be?

Ι:	$\begin{pmatrix} \alpha_1^q \\ 0 \\ 0 \end{pmatrix}$	$\begin{array}{c} 0\\ \alpha_2^q\\ 0 \end{array}$	$ \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k+k')} \\ \tilde{\alpha}_{23}^{q} \mathcal{Y}_{q,23}^{(k)} \\ \alpha_{3}^{q} \end{array} \right) $, k > 0, k' ≥ 0, ≥6 params.
II :	$\begin{pmatrix} \alpha_1^q \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{c} \tilde{\alpha}_{12}^q \mathcal{Y}_{q,12}^{(k')} \\ \alpha_2^q \\ 0 \end{array} $	$ \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k+k')} \\ 0 \\ \alpha_{3}^{q} \end{array} \right) $, k ≥ 0, k' > 0, ≥6 params.
III :	$\begin{pmatrix} \alpha_1^q \\ 0 \\ 0 \end{pmatrix}$	$ \tilde{\alpha}_{12}^q \mathcal{Y}_{q,12}^{(k')} \\ \alpha_2^q \\ 0 $	$ \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k+k')} \\ \tilde{\alpha}_{23}^{q} \mathcal{Y}_{q,23}^{(k)} \\ \alpha_{3}^{q} \end{array} \right) $, k, k' > 0,≥7 params.
IV :	$\begin{pmatrix} \alpha_{11}^q \\ \alpha_{21}^q \\ 0 \end{pmatrix}$	$\begin{array}{c} \alpha_{12}^{q} \\ \alpha_{22}^{q} \\ 0 \end{array}$	$ \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k)} \\ \tilde{\alpha}_{23}^{q} \mathcal{Y}_{q,23}^{(k)} \\ \alpha_{3}^{q} \end{array} \right) $, k > 0, ≥8 params.
V :	$\begin{pmatrix} \alpha_1^q \\ 0 \\ 0 \end{pmatrix}$	$\tilde{\alpha}_{12}^q \mathcal{Y}_{q,12}^{(k')}$ α_{22}^q α_{32}^q	$\left. \begin{array}{c} \tilde{\alpha}_{13}^{q} \mathcal{Y}_{q,13}^{(k')} \\ \alpha_{23}^{q} \\ \alpha_{33}^{q} \end{array} \right)$, k' > 0, ≥8 params.

 $Q \sim (\mathbf{1}_{Q_1}, k_1) \oplus (\mathbf{1}_{Q_2}, k_2) \oplus (\mathbf{1}_{Q_3}, k_3),$ $u^c \sim (\overline{\mathbf{1}_{Q_1}}, -k_1) \oplus (\overline{\mathbf{1}_{Q_2}}, -k_2) \oplus (\overline{\mathbf{1}_{Q_3}}, -k_3)$ $d^c \sim (\overline{\mathbf{1}_{Q_1}}, -k_1) \oplus (\overline{\mathbf{1}_{Q_2}}, -k_2) \oplus (\overline{\mathbf{1}_{Q_3}}, -k_3)$

$$k \equiv k_2 - k_3, \quad k' \equiv k_1 - k_2$$

- New irreps and forms beyond Γ
- Zeros from non-trivial 1D or missing form
- Several forms may contribute to each entry

$$\mathcal{Y}_{q,ij}^{(w)} \equiv \sum_{n=1} g_n^q Y_{\mathbf{1}_{ij},n}^{(w)}$$

• Canonical rescaling may help with hierarchies

$$\tilde{\alpha}_{ij}^q \equiv \alpha_{ij}^q \, (2 \,\mathrm{Im}\,\tau)^{k_{ij}/2} \; \in \; \mathbb{R}$$

• Forms are related, so getting CPV is **tricky**! need more params. then naively expected

The minimal & next-to-minimal landscapes

params. = 6+6+2 = 14

params. = 7+7+2 = 16

(k,k')	Minimal models (I and II)	Next-to-minimal models (I and II)	Next-to-minimal models (III)
All Γ'_N	(10, 12), (12, 14), (14, 16)	(16, 18), (18, 20), (20, 22)	(4,8), (4,14), (6,6), (6,10), (6,14), (8,8), (8,10), (8,14), (10,10)
S_3 only	$ \begin{array}{l} (10',12),(10,18'),(10',18),(12,12'),\\ (12,14'),(12,16'),(12',16),(12,20'),\\ (12',20),(14',16),(14,18'),(14',18),\\ (14,22'),(14',22),(16,16'),(16',18),\\ (16',18'),(16,20'),(16',20),(18,20'),\\ (18',20'),(20,20'),(20',22),(20',22') \end{array}$	$ \begin{array}{l} (16,18'), (16,24'), (16',24), (18,18'), \\ (18',20), (18,22'), (18',22), (18,26'), \\ (18',26), (20,22'), (20,24'), (20',24), \\ (20,28'), (20',28), (22,22'), (22,24'), \\ (22',24'), (22,26'), (22',26), (24',26), \\ (24',26'), (26,26'), (26,28'), (26',28') \end{array} $	$ \begin{array}{l} (4,14'),(4,20'),(6',6'),(6',10'),(6,12'),\\ (6',12'),(6',14'),(6,16'),(6',16'),\\ (6,20'),(6',20'),(8,10'),(8,14'),(8,16'),\\ (8,20'),(10',10'),(10,12'),(10',12'),\\ (10,14'),(10',14),(10,16'),(10',16'),\\ (12',14),(12',14'),(14,14') \end{array} $
A'_4 only	$\begin{array}{c} (8',12),(8',18),(10',12),(10,16'),\\ (10',16),(10,20''),(10',20),(12,12'),\\ (12,12''),(12,14'),(12,14''),(12,16''),\\ (12',16),(12'',16'),(12,18'),(12,18''),\\ (12',18),(12'',18),(12,22''),(12',22),\\ (12'',22'),(14,16'),(14',16),(14',16'),\\ (14'',16),(14'',16'),(14',18),(14,20'),\\ (14,20''),(14',20),(14',20''),(14'',20),\\ (14'',20'),(14,24''),(14'',24'),(16,16''),\\ (16',16''),(16,18'),(16,18''),(16',18'),\\ (16',18''),(16'',18),(16'',22),(16'',22'),\\ (16'',26'),(18,18'),(18,18''),(18',20),\\ (18',20''),(18,22''),(18'',20),(18'',20'),\\ (18'',20''),(18,22''),(18'',22),(18'',22'),\\ (18'',24''),(18'',24'),(20,22''),(20',22''),\\ (20'',22''),(22'',24''),(22'',26')\end{array}$	$\begin{array}{l} (14',24),(16,16'),(16',18),(16,20''),\\ (16',20),(16,22'),(16',22),(16,26''),\\ (16',26),(18,20'),(18,20''),(18,24'),\\ (18,24''),(18',24),(18'',24),(18,28''),\\ (18',28),(18'',28'),(20,20'),(20,20''),\\ (20',20''),(20,22'),(20',22),(20',22'),\\ (20'',22),(20'',22'),(20,24''),(20'',24'),\\ (20,26'),(20,26''),(20',26),(20',26''),\\ (20'',26),(20'',26'),(20,30''),(20'',30'),\\ (22,22'),(22,24'),(22,24''),(22',24'),\\ (22',24''),(22'',24),(22,26''),(22',28),\\ (22',32'),(24',28''),(22'',28),(22'',28),\\ (22'',32'),(24',24''),(24',26),(24',26'),\\ (24'',26''),(24'',26),(24'',26'),\\ (24'',26''),(24',30''),(24'',30') \end{array}$	$ \begin{array}{c} (4',8''), (4,12'), (4',12''), (4',14''), \\ (4,16''), (4',16''), (4,18'), (4',18''), \\ (4,22''), (4',22''), (6,10'), (6,14'), \\ (6,14''), (6,18'), (6,18''), (6,22''), (8,8'), \\ (8',8''), (8'',8''), (8'',10'), (8,12'), \\ (8,12''), (8',12'), (8',12''), (8'',12'), \\ (8'',12''), (8,14'), (8',14), (8',14''), \\ (8'',14'), (8'',14''), (8,16''), (8'',16''), \\ (8'',14'), (8'',14''), (8,16''), (8'',18''), \\ (8'',18'), (8,18''), (8,22''), (8'',22''), \\ (10,10'), (10',10'), (10,12'), (10',12''), \\ (10,16''), (10',16''), (10,18''), (10',18'), \\ (12',14''), (12'',14'), (12'',14'), \\ (12'',14''), (12',18'), (12'',18''), \\ (14,14''), (14',14'), (14,16''), (14'',16'') \end{array}$

listed all 462 one can get with *I'N*

The minimal & next-to-minimal landscapes

params. = 7+7+2 = 16

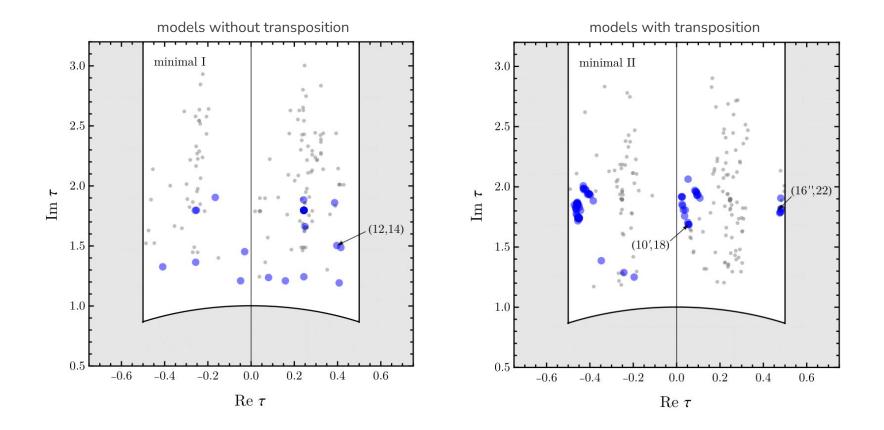
(k,k')	Minimal models (I and II)	Next-to-minimal models (I and II)	Next-to-minimal models (III)
All Γ'_N	(10, 12), (12, 14), (14, 16)	(16, 18), (18, 20), (20, 22)	(4,8), (4,14), (6,6), (6,10), (6,14), (8,8), (8,10), (8,14), (10,10)
S_3	(10', 12), (10, 18'), (10', 18), (12, 12'),	(16, 18'), (16, 24'), (16', 24), (18, 18'),	(4, Feruglio, Strumia, Titov ,
only	(12, 14'), (12, 16'), (12', 16), (12, 20'),	(18', 20), (18, 22'), (18', 22), (18, 26'),	[2305.08908]
	(12', 20), (14', 16), (14, 18'), (14', 18),	(18', 26), (20, 22'), (20, 24'), (20', 24),	(6,
	(14, 22'), (14', 22), (16, 16'), (16', 18),	(20, 28'), (20', 28), (22, 22'), (22, 24'),	$(\overline{8,20'}), (10',10'), (10,12'), (10',12'),$
	(16', 18'), (16, 20'), (16', 20), (18, 20'),	(22', 24'), (22, 26'), (22', 26), (24', 26),	(10, 14'), (10', 14), (10, 16'), (10', 16'),
	(18', 20'), (20, 20'), (20', 22), (20', 22')	(24', 26'), (26, 26'), (26, 28'), (26', 28')	(12', 14), (12', 14'), (14, 14')
A'_4	(8', 12), (8', 18), (10', 12), (10, 16'),	(14', 24), (16, 16'), (16', 18), (16, 20''),	(4', 8''), (4, 12'), (4 Potcov, Tanima
only	(10', 16), (10, 20''), (10', 20), (12, 12'),	(16', 20), (16, 22'), (16', 22), (16, 26''),	(4, 8, (4, 12), (4, 12), (4, 16), (4,
	(12, 12''), (12, 14'), (12, 14''), (12, 16''),	(16', 26), (18, 20'), (18, 20''), (18, 24'),	(4,22"), (4',22"), [2404.00858]
	(12', 16), (12'', 16'), (12, 18'), (12, 18''),	(18, 24''), (18', 24), (18'', 24), (18, 28''),	(6, 14''), (6, 18'), (6, 1)
	(12', 18), (12'', 18), (12, 22''), (12', 22),	(18', 28), (18'', 28'), (20, 20'), (20, 20''),	(8', 8''), (8'', 8''), (8'', 10'), (8, 12'),
	(12'', 22'), (14, 16'), (14', 16), (14', 16'),	(20', 20''), (20, 22'), (20', 22), (20', 22'),	(8, 12''), (8', 12'), (8', 12''), (8'', 12'),
	(14'', 16), (14'', 16'), (14', 18), (14, 20'),	(20'', 22), (20'', 22'), (20, 24''), (20'', 24'),	
	(14, 20''), (14', 20), (14', 20''), (14'', 20),	(20, 26'), (20, 26''), (20', 26), (20', 26''),	(8'', 14'), (8'', 14''), (8, 16''), (8'', 16''),
	(14'', 20'), (14, 24''), (14'', 24'), (16, 16''),	(20'', 26), (20'', 26'), (20, 30''), (20'', 30'),	
	(16', 16''), (16, 18'), (16, 18''), (16', 18'),	(22, 22'), (22, 24'), (22, 24''), (22', 24'),	(8'', 18'), (8'', 18''), (8, 22''), (8'', 22''),
	(16', 18''), (16'', 18), (16'', 20'), (16, 22''),	(22', 24''), (22'', 24), (22, 26''), (22', 26),	(10, 10'), (10', 10'), (10, 12'), (10', 12''),
	(16', 22''), (16'', 22), (16'', 22'),	(22, 28''), (22', 28''), (22'', 28), (22'', 28'),	
	(16'', 26'), (18, 18'), (18, 18''), (18', 20),	(22'', 32'), (24', 24''), (24', 26), (24', 26'),	
	(18', 20'), (18', 20''), (18'', 20), (18'', 20'),	(24', 26''), (24'', 26), (24'', 26'),	(12', 12'), (12'', 12''), (12', 14), (12', 14'),
	(18'', 20''), (18, 22''), (18', 22), (18'', 22'),	(24'', 26''), (24', 30''), (24'', 30')	(12', 14''), (12'', 14), (12'', 14'),
	(18', 24''), (18'', 24'), (20, 22''), (20', 22''),	Assessed From the Assessed Providence of the Assessed of the Providence of the Provi	(12'', 14''), (12', 18'), (12'', 18''),
	(20'', 22''), (22, 22''), (22', 22''),		(14, 14''), (14', 14'), (14, 16''), (14'', 16'')
	(22'', 24'), (22'', 24''), (22'', 26')		
		• • •	

listed all 462 one can get with **\Gamma'_N**

[#] params. = 6+6+2 = 14

The minimal & next-to-minimal landscapes

 S'_4 only

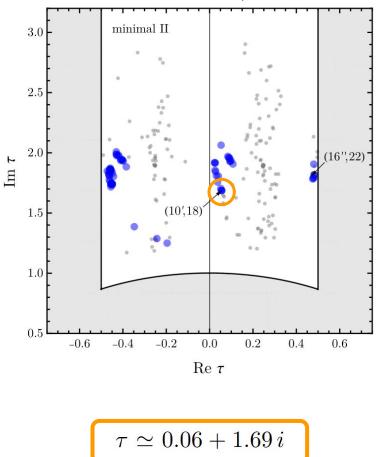

 $(\widehat{7}', 12), (\widehat{7}', 18), (\widehat{9}', 12), (\widehat{9}', 16), (\widehat{9}', 20),$ $(10', 12), (10, \widehat{15}'), (10', \widehat{15}'), (10, 18'),$ $(10', 18), (10, \widehat{21}), (10', \widehat{21}'), (\widehat{11}', 12),$ $(\widehat{11}', 16), (\widehat{11}', 18), (\widehat{11}', 22), (12, 12'),$ $(12, \widehat{13}), (12, \widehat{13}'), (12, 14'), (12, \widehat{15}),$ $(12', \widehat{15}'), (12, 16'), (12', 16), (12, \widehat{17}),$ $(12, \widehat{17}'), (12, \widehat{19}), (12', \widehat{19}'), (12, 20'),$ $(12', 20), (12, \widehat{23}), (12', \widehat{23}'), (\widehat{13}, \widehat{15}'),$ $(\widehat{13}', \widehat{15}'), (\widehat{13}', 16), (\widehat{13}, 18), (\widehat{13}, 18'),$ $(\widehat{13}', 18), (\widehat{13}', 18'), (\widehat{13}', 20), (\widehat{13}, \widehat{21}'),$ $(\widehat{13}', \widehat{21}), (\widehat{13}, 24'), (14, \widehat{15}'), (14', \widehat{15}'),$ $(14', 16), (14, 18'), (14', 18), (14, \widehat{19}'),$ $(14', \widehat{19}'), (14, \widehat{21}), (14', \widehat{21}'), (14, 22'),$ $(14', 22), (14, \widehat{25}), (14', \widehat{25}'), (\widehat{15}, \widehat{15}'),$ $(\widehat{15}, 16), (\widehat{15}', 16'), (\widehat{15}', \widehat{17}), (\widehat{15}', \widehat{17}'),$ $(\widehat{15}, 18'), (\widehat{15}, \widehat{19}'), (\widehat{15}', \widehat{19}), (\widehat{15}, 20),$ $(\widehat{15}', 20'), (\widehat{15}, 22'), (\widehat{15}, \widehat{23}'), (\widehat{15}', \widehat{23}),$ $(\widehat{15}, 26'), (16, 16'), (16, \widehat{17}), (16, \widehat{17}'),$ $(16', 18), (16', 18'), (16, \widehat{19}), (16', \widehat{19}'),$ $(16, 20'), (16', 20), (16', \widehat{21}), (16', \widehat{21}'),$ $(16, \widehat{23}), (16', \widehat{23}'), (\widehat{17}, 18), (\widehat{17}, 18'),$ $(\widehat{17}', 18), (\widehat{17}', 18'), (\widehat{17}, \widehat{19}'), (\widehat{17}', \widehat{19}'),$ $(\widehat{17}', 20), (\widehat{17}, \widehat{21}'), (\widehat{17}', \widehat{21}), (\widehat{17}, 22),$ $(\widehat{17}, 22'), (\widehat{17}', 22), (\widehat{17}', 22'), (\widehat{17}, 24'),$ $(\widehat{17}, \widehat{25}'), (\widehat{17}', \widehat{25}), (\widehat{17}, 28'), (18, \widehat{19}),$ $(18', \widehat{19}), (18, 20'), (18', 20'), (18, \widehat{23}),$ $(18', \widehat{23}), (\widehat{19}, \widehat{19}'), (\widehat{19}, 20), (\widehat{19}', 20'),$ $(\widehat{19}, \widehat{21}), (\widehat{19}, \widehat{21}'), (\widehat{19}, 22'), (\widehat{19}, \widehat{23}'),$ $(\widehat{19}', \widehat{23}), (\widehat{19}, 24'), (\widehat{19}, 26'), (20, 20'),$ $(20', \widehat{21}), (20', \widehat{21}'), (20', 22), (20', 22'),$ $(20, \widehat{23}), (20', \widehat{23}'), (20', \widehat{25}), (20', \widehat{25}'),$ $(\widehat{21}, \widehat{23}), (\widehat{21}', \widehat{23}), (22, \widehat{23}), (22', \widehat{23}),$ $(\widehat{23}, \widehat{23}'), (\widehat{23}, 24'), (\widehat{23}, \widehat{25}), (\widehat{23}, \widehat{25}'),$ $(\widehat{23}, 26'), (\widehat{23}, 28')$

 $(\widehat{13}', 24), (\widehat{15}', 16), (\widehat{15}', 18), (\widehat{15}', 20),$ $(\widehat{15}', 22), (\widehat{15}', 26), (16, 18'), (16, \widehat{21}),$ $(16, \widehat{21}'), (16, 24'), (16', 24), (16, \widehat{27}),$ $(16', \widehat{27}'), (\widehat{17}', 24), (\widehat{17}', 28), (18, 18'),$ $(18, \widehat{19}'), (18', \widehat{19}'), (18', 20), (18, \widehat{21}),$ $(18', \widehat{21}'), (18, 22'), (18', 22), (18, \widehat{23}'),$ $(18', \widehat{23}'), (18, \widehat{25}), (18', \widehat{25}'), (18, 26'),$ $(18', 26), (18, \widehat{29}), (18', \widehat{29}'), (\widehat{19}', 20),$ $(\widehat{19}', \widehat{21}), (\widehat{19}', \widehat{21}'), (\widehat{19}', 22), (\widehat{19}, 24),$ $(\widehat{19}', 24'), (\widehat{19}', 26), (\widehat{19}, \widehat{27}'), (\widehat{19}', \widehat{27}),$ $(\widehat{19}, 30'), (20, \widehat{21}), (20, \widehat{21}'), (20, 22'),$ $(20, 24'), (20', 24), (20, \widehat{25}), (20, \widehat{25}'),$ $(20, \widehat{27}), (20', \widehat{27}'), (20, 28'), (20', 28),$ $(20, \widehat{31}), (20', \widehat{31}'), (\widehat{21}, \widehat{21}'), (\widehat{21}, 22),$ $(\widehat{21}, 22'), (\widehat{21}', 22), (\widehat{21}', 22'), (\widehat{21}, \widehat{23}'),$ $(\widehat{21}', \widehat{23}'), (\widehat{21}, 24'), (\widehat{21}, \widehat{25}'), (\widehat{21}', \widehat{25}),$ $(\widehat{21}, 26), (\widehat{21}, 26'), (\widehat{21}', 26), (\widehat{21}', 26'),$ $(\widehat{21}, 28'), (\widehat{21}, \widehat{29}'), (\widehat{21}', \widehat{29}), (\widehat{21}, 32'),$ $(22, 22'), (22, \widehat{23}'), (22', \widehat{23}'), (22, 24'),$ $(22', 24'), (22, \widehat{25}), (22', \widehat{25}'), (22, 26'),$ $(22', 26), (22, \widehat{27}), (22', \widehat{27}), (22, \widehat{29}),$ $(22', \widehat{29}'), (\widehat{23}, 24), (\widehat{23}', 24'), (\widehat{23}', \widehat{25}),$ $(\widehat{23}', \widehat{25}'), (\widehat{23}', 26), (\widehat{23}, \widehat{27}'), (\widehat{23}', \widehat{27}),$ $(\widehat{23}, 28), (\widehat{23}', 28'), (\widehat{23}, 30'), (\widehat{23}, \widehat{31}'),$ $(\widehat{23}', \widehat{31}), (\widehat{23}, 34'), (24', \widehat{25}), (24', \widehat{25}'),$ $(24', 26), (24', 26'), (24', \widehat{29}), (24', \widehat{29}'),$ $(\widehat{25}, \widehat{25}'), (\widehat{25}, 26), (\widehat{25}, 26'), (\widehat{25}', 26),$ $(\widehat{25}', 26'), (\widehat{25}, \widehat{27}), (\widehat{25}', \widehat{27}), (\widehat{25}, 28'),$ $(\widehat{25}, \widehat{29}'), (\widehat{25}', \widehat{29}), (\widehat{25}, 32'), (26, 26'),$ $(26, \widehat{27}), (26', \widehat{27}), (26, 28'), (26', 28'),$ $(26, \widehat{29}), (26', \widehat{29}'), (26, \widehat{31}), (26', \widehat{31}),$ $(\widehat{27}, 28'), (\widehat{27}, \widehat{29}), (\widehat{27}, \widehat{29}'), (\widehat{27}, 32'),$ $(28', \widehat{29}), (28', \widehat{29}'), (\widehat{29}, \widehat{29}'), (\widehat{29}, \widehat{31}),$ $(\widehat{29}', \widehat{31}), (\widehat{29}, 32'), (\widehat{31}, 32')$

 $(\widehat{3}', \widehat{9}), (\widehat{3}', \widehat{13}), (\widehat{3}', \widehat{15}), (\widehat{3}', \widehat{17}), (\widehat{3}', \widehat{19}),$ $(\widehat{3}', \widehat{23}), (4, \widehat{11}'), (4, 14'), (4, \widehat{17}), (4, \widehat{17}'),$ $(4, 20'), (4, \widehat{23}), (6', 6'), (6, \widehat{9}'), (6', \widehat{9}),$ $(6', 10'), (6, 12'), (6', 12'), (6, \widehat{13}'),$ $(6', \widehat{13}), (6', 14'), (6, \widehat{15}), (6', \widehat{15}), (6, 16'),$ $(6', 16'), (6, \widehat{17}'), (6', \widehat{17}), (6, \widehat{19}), (6', \widehat{19})), (6', \widehat{19}), (6', \widehat{19})), (6', \widehat{19}), (6', \widehat{19})), (6', \widehat{19})))$ $(6, 20'), (6', 20'), (6, \widehat{23}), (6', \widehat{23}), (\widehat{7}', 8),$ $(\hat{7}', \hat{9}), (\hat{7}', \hat{11}'), (\hat{7}', \hat{13}), (\hat{7}', 14), (\hat{7}', 14'),$ $(\widehat{7}', \widehat{15}), (\widehat{7}', \widehat{17}'), (\widehat{7}', \widehat{19}), (\widehat{7}', 20'),$ $(8, 10'), (8, \widehat{11}'), (8, \widehat{13}), (8, \widehat{13}'), (8, 14'),$ $(8, 16'), (8, \widehat{17}), (8, \widehat{17}'), (8, \widehat{19}), (8, 20'),$ $(8, \widehat{23}), (\widehat{9}, \widehat{9}), (\widehat{9}, \widehat{9}'), (\widehat{9}', \widehat{9}'), (\widehat{9}, 10'),$ $(\widehat{9}', 10), (\widehat{9}, \widehat{11}'), (\widehat{9}, 12'), (\widehat{9}', 12'), (\widehat{9}, \widehat{13}),$ $(\widehat{9},\widehat{13}'), (\widehat{9}',\widehat{13}), (\widehat{9}',\widehat{13}'), (\widehat{9},14'), (\widehat{9}',14),$ $(\widehat{9}, \widehat{15}), (\widehat{9}, 16'), (\widehat{9}', 16'), (\widehat{9}, \widehat{17}), (\widehat{9}, \widehat{17}'),$ $(\widehat{9}', \widehat{17}), (\widehat{9}', \widehat{17}'), (\widehat{9}, \widehat{19}), (\widehat{9}, 20'), (\widehat{9}', 20'),$ $(\widehat{9}, \widehat{23}), (10', 10'), (10, \widehat{11}'), (10', \widehat{11}'),$ $(10, 12'), (10', 12'), (10, \widehat{13}'), (10', \widehat{13}),$ $(10, 14'), (10', 14), (10, \widehat{15}), (10', \widehat{15}),$ $(10, 16'), (10', 16'), (10, \widehat{17}), (10', \widehat{17}'),$ $(10, \widehat{19}), (10', \widehat{19}), (\widehat{11}', \widehat{11}'), (\widehat{11}', \widehat{13}'),$ $(\widehat{11}', 14), (\widehat{11}', 14'), (\widehat{11}', \widehat{15}), (\widehat{11}', 16'),$ $(\widehat{11}', \widehat{17}'), (\widehat{11}', 20'), (12', \widehat{13}), (12', \widehat{13}'),$ $(12', 14), (12', 14'), (12', \widehat{17}), (12', \widehat{17}'),$ $(\widehat{13}, \widehat{13}), (\widehat{13}, \widehat{13}'), (\widehat{13}', \widehat{13}'), (\widehat{13}, 14),$ $(\widehat{13}', 14'), (\widehat{13}, \widehat{15}), (\widehat{13}, 16'), (\widehat{13}', 16'),$ $(\widehat{13}, \widehat{19}), (14, 14'), (14, \widehat{15}), (14', \widehat{15}),$ $(14, \widehat{17}), (14', \widehat{17}'), (\widehat{15}, \widehat{17})$

fin

A peek into the minimal model landscape



Moduli selection from the minimization of **parameter hierarchies** (log spread), using the normalization proposal in Petcov [2311.04185]

An S4' benchmark

- Quark mass hierarchies and mixing angles can be reproduced by O(1) parameters Also in FST [2305.08908]
- Overall tendency: parametric hierarchies mostly in downs

$$\begin{split} &\alpha_2^u \simeq 1.00 \,\alpha_1^u \,, \quad \alpha_3^u \simeq 1.65 \,\alpha_1^u \,, \quad \alpha_{12}^u \simeq 1.27 \,\alpha_1^u \,, \\ &\alpha_{13,1}^u \simeq 1.47 \,\alpha_1^u \,, \quad \alpha_{13,2}^u \simeq 1.61 \,\alpha_1^u \,, \\ &\alpha_2^d \simeq 0.48 \,\alpha_1^d \,, \quad \alpha_3^d \simeq 0.05 \,\alpha_1^d \,, \quad \alpha_{12}^d \simeq 7.92 \,\alpha_1^d \,, \\ &\alpha_{13,1}^d \simeq -7.90 \,\alpha_1^d \,, \quad \alpha_{13,2}^d \simeq 0.05 \,\alpha_1^d \,, \end{split}$$

models with transposition

13

Extra! Extra! Read all about it!

Feruglio, Parriciatu, Strumia, Titov [2406.01689] 🧃

- can use lower weights if we forego minimality
- can get non-Abelian irreps if we add vector-like quarks
- consider models with level N > 1, either using Γ_N or $\Gamma(N)$ instead of Γ

		S	M quarks	3	Extra vector-like quarks				
		Q	D^{c}	U^c	$D^{\prime c}$	D'	$U^{\prime c}$	U'	
2:	$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$	$2_{1/6}$	$1_{1/3}$	$1_{-2/3}$	$1_{1/3}$	$1_{-1/3}$	$1_{-2/3}$	$1_{2/3}$	
	Flavour symmetry Γ_2	$2\oplus1_0$	${f 2} \oplus {f 1}_1$	$2 \oplus 1_0$	$2\oplus1_0$	${f 2} \oplus {f 1}_1$	$2\oplus1_0$	$2\oplus1_0$	
	Modular weights k_{Φ}	-2	-2	-2	+2	+2	+2	+2	

		SM quarks			Extra vector-like quarks			
		Q	D^{c}	U^{c}	$D^{\prime c}$	D'	$U^{\prime c}$	U'
•	$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$	$2_{1/6}$	$1_{1/3}$	$1_{-2/3}$	$1_{1/3}$	$1_{-1/3}$	$1_{-2/3}$	$1_{2/3}$
	Flavour symmetry Γ_3	3	3	3	3	3	3	3
	Modular weights k_{Φ}	-1	± 1	± 1	+1	∓ 1	+1	7 1

+ modifications to the minimal Kähler

To close, I hope I have convinced you that...

Modular symmetries can...

...offer a **predictive framework** for flavour

...provide an origin for **CP violation** (CPV)

...help solve the strong CP problem

Modular symmetries can...

...offer a predictive framework for flavour

...provide an origin for **CP violation** (CPV)

...help solve the strong CP problem

they can arise from stringy constructions...

Parting words (i.e. what next?)

- modular symmetry breaking as the only source of CPV?
- natural origin of mass hierarchies?
- hints of universality?
- use TD to fix Kähler, irreps, weights?
- pheno beyond masses and mixing?

Parting words (i.e. what next?)

- modular symmetry breaking as the only source of CPV?
- natural origin of mass hierarchies?
- hints of universality?
- use TD to fix Kähler, irreps, weights!
- pheno beyond masses and mixing?

State of the art

See next talk, by H. P. Nilles

Obrigado!

1

-Ji

X

1.I

1.2

A

H I H

4

11

- (1

-

Panets a

Backup slides

Modular-invariant SUSY actions

Ferrara et al, '89

$$W(\psi;\tau) = \sum_{n} \sum_{\{i_1,\dots,i_n\}} \sum_{s} g_{i_1\dots i_n,s} \left(Y_{i_1\dots i_n,s}(\tau) \psi_{i_1}\dots \psi_{i_n} \right)_{1,s}$$
$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} \, K(\psi,\overline{\psi};\tau,\overline{\tau}) + \int d^4x \, d^2\theta \, W(\psi;\tau) + \text{h.c.}$$

τ is a dimensionless spurion: once its value is fixed, it **parameterizes all** modular sym. breaking

One may argue that Y's play the role of flavons, but structures are **completely fixed** given the modulus VEV

SUSY breaking effects?

- **RGEs & threshold corrections** need to be considered, depend on tan β and unknown SUSY spectrum
- **SUSY-breaking** corrections can be made negligible via separation of scales (power counting argument)
- Under reasonable conditions, predictions may be unaffected

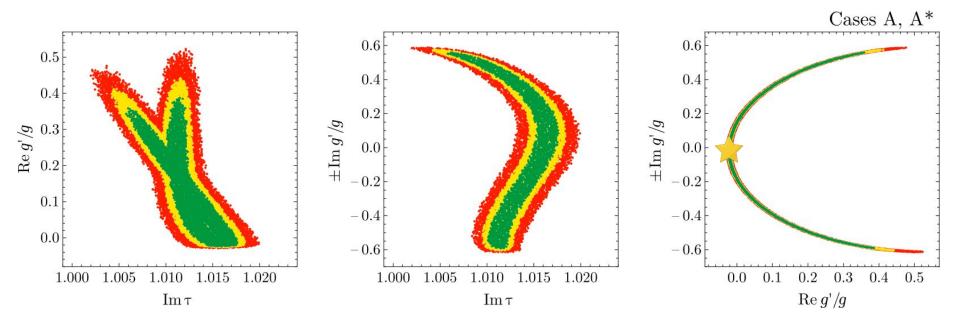
Feruglio and Criado [1807.01125]

What about... the Kähler?

- Not holomorphic: unconstrained by the symmetry!
- Under a modular transformation, invariant up to: $K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) \rightarrow K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) + f(\chi_i; \tau) + f(\overline{\chi}_i; \overline{\tau})$
- Minimal choice:

$$K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) = -h \Lambda_0^2 \log(-i(\tau - \overline{\tau})) + \sum_i \frac{|\chi_i|^2}{(-i(\tau - \overline{\tau}))^{k_i}}$$

impacts pheno \rightarrow should be justified from the top-down


Chen, Ramos-Sánchez and Ratz [1909.06910]

• Further constraints may arise from the (unavoidable...) combination of modular + traditional flavour symmetries

Nilles, Ramos-Sanchez, Vaudrevange [2004.05200]

Correlations between parameters in the first S4 example model

Novichkov, JP, Petcov, Titov [1811.04933]

The QCD angle is holomorphic

Furthermore, extra non-minimal kinetic terms are possible, because the 3×3 kinetic matrices $Z_f(\tau, \tau^{\dagger})$ of fermions $f = \{u_R, d_R, Q\}$ are not holomorphic in τ , and modular invariance allows them to depend on the CP-violating parameters τ, τ^{\dagger} in new ways. These non-minimal kinetic terms reduce the predictive power of flavour models based on modular symmetries [28, 41–43] and are often assumed to be negligible.

Such extra complex terms are not a problem for our proposed interpretation of the QCD problem, $\bar{\theta} = 0$. Indeed each kinetic matrix Z_f can be brought to canonical form via a general linear transformation of the three generations of $f_{1,2,3}$ quarks: a linear transformation affects both arg det M_q and $\theta_{\rm QCD}$ (via the anomaly) but leaves the physical combination $\bar{\theta}$ invariant. Furthermore, these linear transformations can be chosen in ways that leave arg det M_q and $\theta_{\rm QCD}$ separately invariant, by decomposing each kinetic matrix Z_f either as $Z_f = H_f^{\dagger}H_f$ (where H_f is an hermitian matrix, see e.g. [44]) or as $Z_f = V_f^{\dagger}\Delta_f^2 V_f$ (where Δ_f is a diagonal matrix with real positive entries and V_f is a product of 3 complex rotations with unit determinant). The consequent linear transformation of quark fields affects their masses and mixings (including the CKM phase) without affecting arg det M_q .

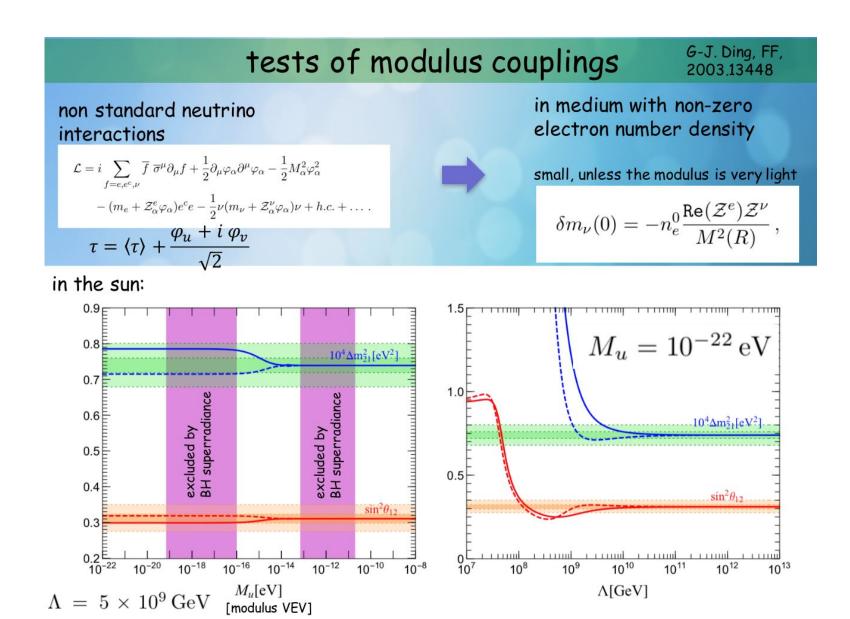
This discussion shows that, unlike fermion masses and mixing angles, the physical $\bar{\theta}$ angle is a holomorphic quantity completely insensitive to the Kähler potential and can be effectively constrained by modular invariance alone, at least in the limit of unbroken supersymmetry.

Modular anomalies

Canonical normalisation

$$K \supset \frac{\Phi^{\dagger} \Phi}{(-i\tau + i\tau^{\dagger})^{k_{\Phi}}} = \Phi_{\text{can}}^{\dagger} \Phi_{\text{can}} \qquad \Phi_{\text{can}} = \{\phi_{\text{can}}, \psi_{\text{can}}\}$$
$$\psi_{\text{can}} \rightarrow \left(\frac{c\tau + d}{c\tau^{\dagger} + d}\right)^{-\frac{k_{\Phi}}{2}} \psi_{\text{can}} = e^{-ik_{\Phi}\alpha(\tau)}\psi_{\text{can}} \qquad \alpha(\tau) = \arg(c\tau + d)$$

Modular symmetry acts on canonically normalised fields as a τ -dependent phase rotation (with $\tau = \tau(x)$)

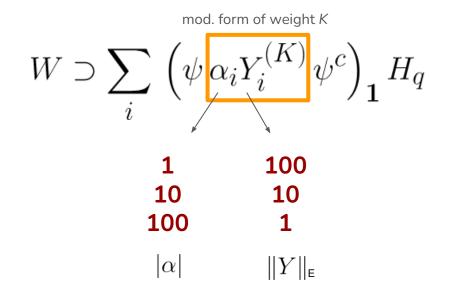

Conditions for modular-gauge anomaly cancellation

$$SU(3)_{C}: A \equiv \sum_{i=1}^{3} \left(2k_{Q_{i}} + k_{u_{R_{i}}} + k_{d_{R_{i}}} \right) = 0$$

$$SU(2)_{L}: \sum_{i=1}^{3} \left(3k_{Q_{i}} + k_{L_{i}} \right) + k_{H_{u}} + k_{H_{d}} = 0$$

$$U(1)_{Y}: \sum_{i=1}^{3} \left(k_{Q_{i}} + 8k_{u_{R_{i}}} + 2k_{d_{R_{i}}} + 3k_{L_{i}} + 6k_{e_{R_{i}}} \right) + 3\left(k_{H_{u}} + k_{H_{d}} \right) = 0$$

from Arsenii Titov's slides at Cosmic WISPers 2024



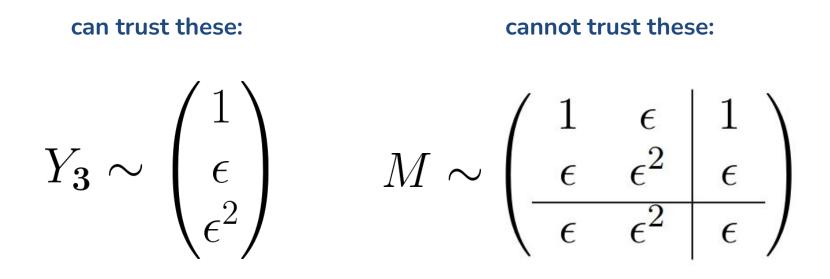
from Feruglio's slides at Bethe Workshop, citing [2003.13448]

A comment on normalizations

$$W \supset \sum_{i} \left(\psi \alpha_{i} Y_{i}^{(K)} \psi^{c} \right)_{1} H_{q}$$

A comment on normalizations

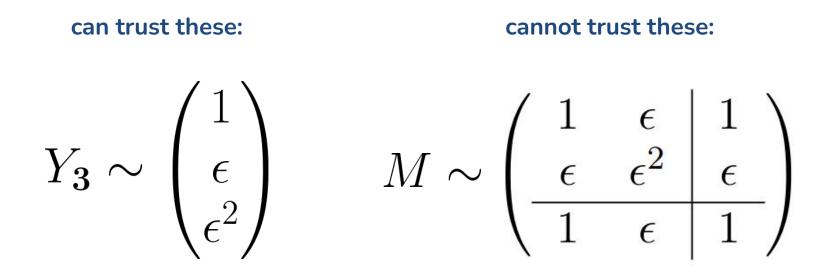
Same model predictions!


how can we discuss natural α 's?

how do we interpret a hierarchy between α 's?

how can we claim modular symmetries are responsible for hierarchies, not α 's?

(norms of Y's are not fixed by group theory)

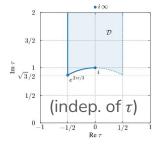

A comment on normalizations

how can we claim modular symmetries are responsible for hierarchies, not α 's?

discussion in Varzielas, Levy, JP, Petcov [2307.14410]

A comment on normalizations

how can we claim modular symmetries are responsible for hierarchies, not α 's?


discussion in Varzielas, Levy, JP, Petcov [2307.14410]

A normalization proposal / choice

Petcov [2311.04185], D. Zagier (1981)

A "global" normalisation based on the Petersson inner product

$$\mathbf{N}\left[Y^{(K)}\right]^2 \equiv \iint_{\mathcal{D}} \sum_{i} \left|Y_i^{(K)}(x+iy)\right|^2 (2y)^K \frac{dx \, dy}{y^2} \stackrel{!}{=} 1$$

different prescription for non-cusp forms (yet another if K=1)

- Is there a general top-down recipe?
- Basis ambiguity if there are several forms of the same weight and irrep

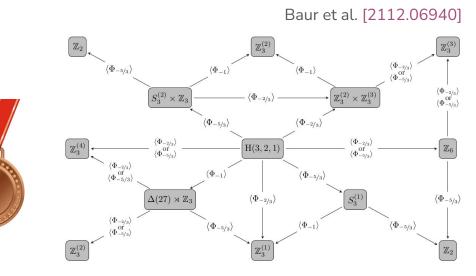
see [1901.03251, 1908.00805, 2001.01736, **2004.05200**, 2006.03059, 2112.06940] and Nilles, Ramos-Sánchez [2404.16933] for a recent summary

- There is no possible scheme with just modular flavor symmetries
- Also discrete R-symmetries seem unavoidable
- A limited type of groups appear (e.g. T)

nature of symmetry		outer automorphism of Narain space group	flavor groups					
eclectic	modular	rotation S \in SL $(2, \mathbb{Z})_T$	\mathbb{Z}_4	<i>T'</i>				
		rotation T \in SL $(2, \mathbb{Z})_T$	\mathbb{Z}_3					
	traditional flavor	translation A	\mathbb{Z}_3	$\Delta(27)$			$\Omega(2)$	
		translation B	\mathbb{Z}_3	$\Delta(27)$ $\Delta(54)$		$\Delta'(54,2,1)$	32(2)	
		rotation $C = S^2 \in SL(2, \mathbb{Z})_T$	\mathbb{Z}_2^R					
		rotation $\mathrm{R} = \gamma_{\scriptscriptstyle{(3)}} \in \mathrm{SL}(2,\mathbb{Z})_U$		\mathbb{Z}_9^R				

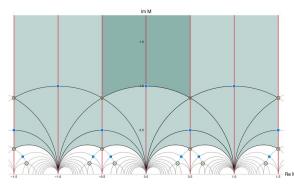
Nilles, Ramos-Sanchez, Vaudrevange [2006.03059]

see [1901.03251, 1908.00805, 2001.01736, **2004.05200**, 2006.03059, 2112.06940] and Nilles, Ramos-Sánchez [2404.16933] for a recent summary


- There is no possible scheme with just modular flavor symmetries
- Also discrete R-symmetries seem unavoidable
- A limited type of groups appear (e.g. T)
- Only some weights and irreps available at low energy
- Weights (typically fractional) correlated with irreps

	matter	eclectic flavor group $\Omega(2)$								
sector	fields	modular T' subgroup			traditional $\Delta(54)$ subgroup					
ç	Φ_n	irrep s	$\rho_{\boldsymbol{s}}(S)$	$\rho_{s}(T)$	n	irrep r	$\rho_{\boldsymbol{r}}(\mathbf{A})$	$\rho_{\boldsymbol{r}}(\mathbf{B})$	$\rho_{\boldsymbol{r}}(\mathbf{C})$	R
bulk	Φ_0	1	1	1	0	1	1	1	$^{+1}$	0
	$\Phi_{\scriptscriptstyle -1}$	1	1	1	$^{-1}$	1'	1	1	-1	3
θ	$\Phi_{-2/3}$	$2' \oplus 1$	$\rho(S)$	$\rho(T)$	-2/3	3_2	$\rho(A)$	$\rho(B)$	$+\rho(C)$	1
	$\Phi_{-5/3}$	$\mathbf{2'} \oplus 1$	ho(S)	$ ho({ m T})$	-5/3	3_1	ho(A)	$ ho({ m B})$	$- ho(\mathrm{C})$	-2
θ^2	$\Phi_{-1/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	$^{-1/3}$	$ar{3}_1$	$ ho(\mathrm{A})$	$(\rho(B))^*$	$-\rho(C)$	2
	$\Phi_{+2/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	+2/3	$ar{3}_2$	$\rho(A)$	$(\rho(B))^*$	$+\rho(C)$	5
super- potential	W	1	1	1	-1	1′	1	1	-1	3

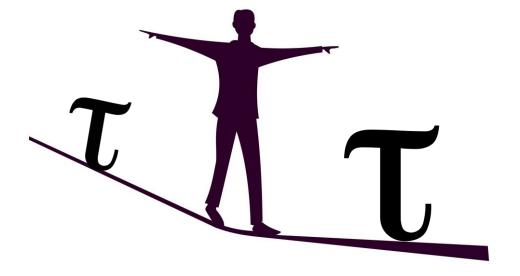
Nilles, Ramos-Sanchez, Vaudrevange [2004.05200]


see [1901.03251, 1908.00805, 2001.01736, **2004.05200**, 2006.03059, 2112.06940] and Nilles, Ramos-Sánchez [2404.16933] for a recent summary

- There is no possible scheme with just modular flavor symmetries
- Also discrete R-symmetries seem unavoidable
- A limited type of groups appear (e.g. T)
- Only some weights and irreps available at low energy
- Weights (typically fractional) correlated with irreps
- Breaking reintroduces flavons :(


see [1901.03251, 1908.00805, 2001.01736, **2004.05200**, 2006.03059, 2112.06940] and Nilles, Ramos-Sánchez [**2404.16933**] for a recent summary

- There is no possible scheme with just modular flavor symmetries
- Also discrete R-symmetries seem unavoidable
- A limited type of groups appear (e.g. T)
- Only some weights and irreps available at low energy
- Weights (typically fractional) correlated with irreps
- Breaking reintroduces flavons :(
- Both Kähler and superpotential play a crucial role
- Larger fundamental domains (Γ(N) instead of Γ?)

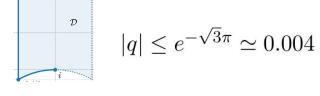

see [1901.03251, 1908.00805, 2001.01736, **2004.05200**, 2006.03059, 2112.06940] and Nilles, Ramos-Sánchez [2404.16933] for a recent summary

- There is no possible scheme with just modular flavor symmetries
- Also discrete R-symmetries seem unavoidable
- A limited type of groups appear (e.g. T)
- Only some weights and irreps available at low energy
- Weights (typically fractional) correlated with irreps
- Breaking reintroduces flavons :(
- Both Kähler and superpotential play a crucial role
- Larger fundamental domains (Γ(N) instead of Γ?)
- Top-down and bottom-up do not yet meet

Moduli stabilization

early attempts: [1909.05139, 1910.11553]

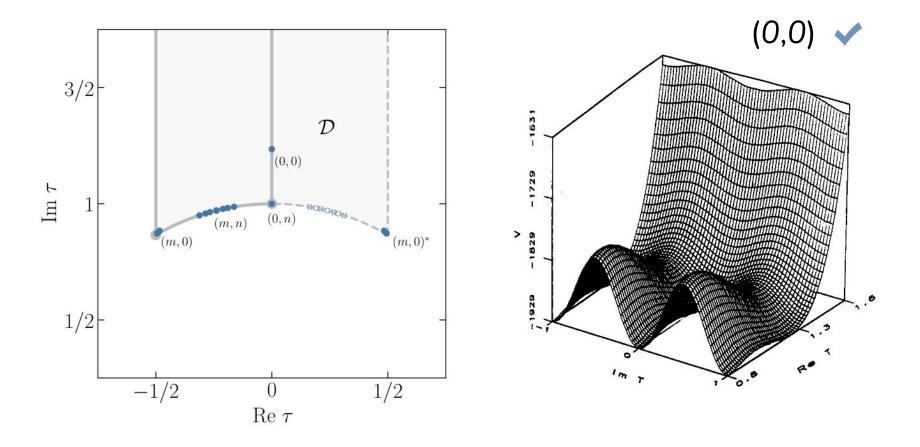
Simplest modular-invariant potentials?

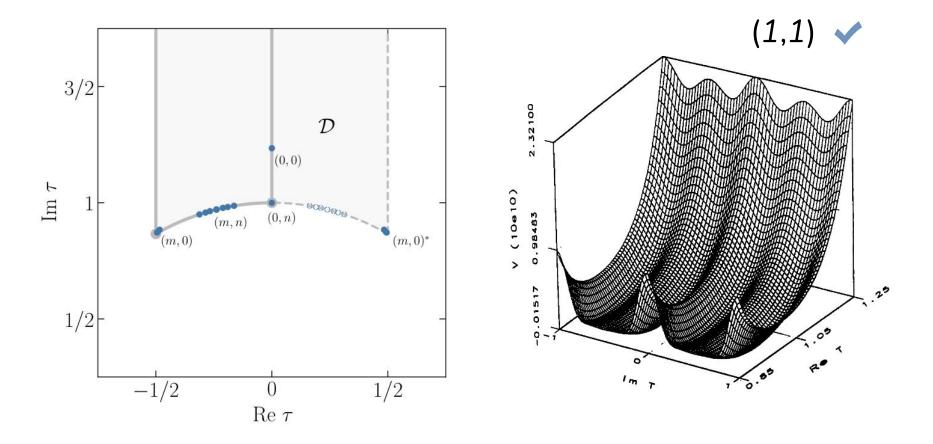

- Studied by Cvetič, Font, Ibáñez, Lüst and Quevedo (1991) $\mathcal{N}=1~\text{SUGRA}$

$$V(\tau, \overline{\tau}) = \frac{\Lambda_V^4}{8(\operatorname{Im} \tau)^3 |\eta|^{12}} \left[\frac{4}{3} \left| iH' + \frac{3}{2\pi} H \hat{G}_2 \right|^2 (\operatorname{Im} \tau)^2 - 3|H|^2 \right]$$
$$H(\tau) = (j(\tau) - 1728)^{m/2} j(\tau)^{n/3} \qquad W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^6}$$

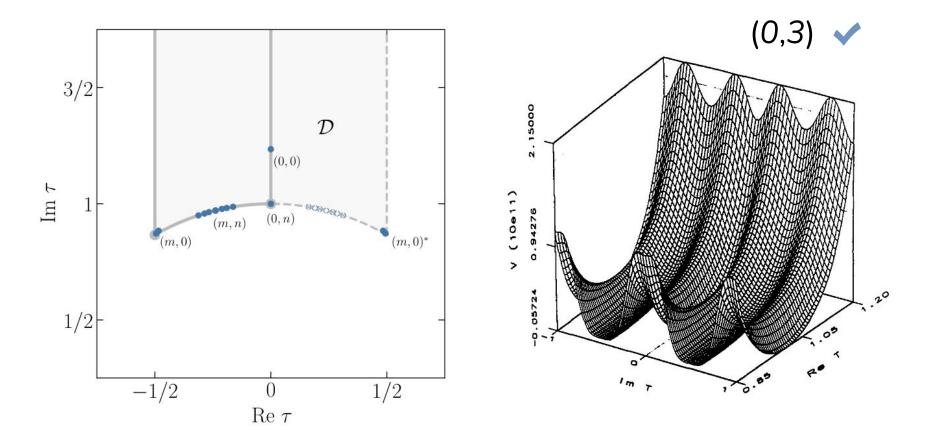
 $m, n = 0, 1, 2, \dots$

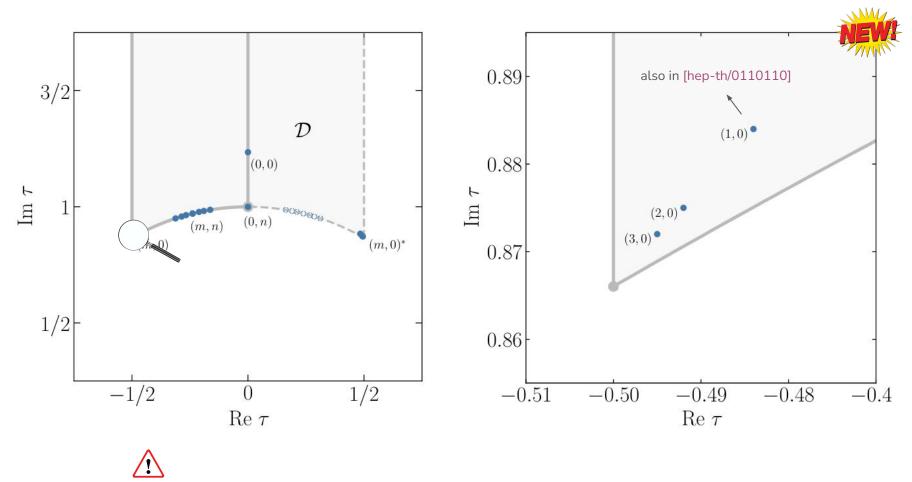
- This potential is **modular** and **CP-invariant**
- Simplified model, independent of the level N


q- and u-expansions of
$$\eta$$

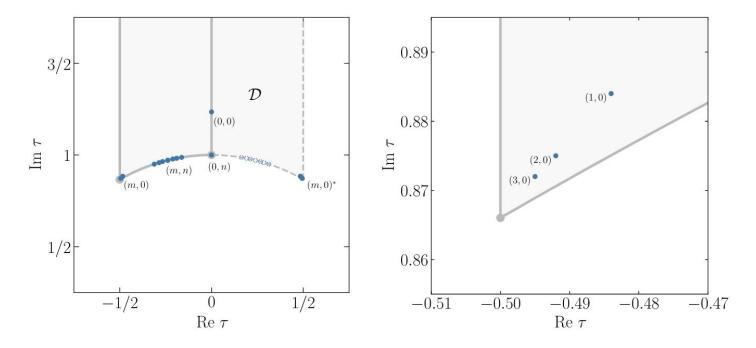

$$\eta = q^{1/24} \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{3n^2 - n}{2}} = q^{1/24} \left(1 - q - q^2 + q^5 + q^7 - q^{12} - q^{15} + \mathcal{O}(q^{22}) \right)$$

$$\begin{split} u &\equiv \frac{\tau - \omega}{\tau - \omega^2} & \tilde{\eta}(u) \equiv \frac{\eta(u)}{\sqrt{1 - u}} \\ u &\xrightarrow{ST} \omega^2 u & \tilde{\eta}(u) \xrightarrow{ST} \tilde{\eta}(u) \end{split}$$


$$\begin{split} \tilde{\eta}(u) &\simeq e^{-i\pi/24} \left(0.800579 - 0.573569 u^3 - 0.780766 u^6 - 0.150007 u^9 \right) + \mathcal{O}(u^{12}) \\ &\equiv e^{-i\pi/24} \left(\tilde{\eta}_0 + \tilde{\eta}_3 u^3 + \tilde{\eta}_6 u^6 + \tilde{\eta}_9 u^9 \right) + \mathcal{O}(u^{12}) \,, \end{split}$$


"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.

"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.

"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.

these results later confirmed by Leedom, Righi, Westphal [2212.03876]

(0,0) is a single minimum at $\tau \simeq 1.2i$ on the imaginary axis, corresponding to the case m = n = 0;

(0, n) is a single minimum at the symmetric point $\tau = i$ attained when $m = 0, n \neq 0$;

- (m, 0) and $(m, 0)^*$ are a pair of degenerate minima for each $m \neq 0$ and n = 0: (m, 0) is located in the vicinity of the left cusp $\tau = \omega$, approaching this symmetric point as m increases, while $(m, 0)^*$ is its CP-conjugate;
- (m, n) is a series of minima on the unit arc, corresponding to $m \neq 0$, $n \neq 0$; these minima shift towards $\tau = \omega$ ($\tau = i$) along the arc as m (n) grows.

The (m,0) family of potentials

m

• *u*-expand (*m*,0) potentials to analyse them near the left cusp

$$V_{m,0} = \Lambda_V^4 \frac{1728^m}{\sqrt{3} \tilde{\eta}_0^{12}} \left\{ -1 - 2 |u|^2 + (A_m^2 - 3) |u|^4 \right\} + \mathcal{O}(|u|^6)$$

"Mexican"-hat potential
(cusp is a maximum!)

$$A_m \equiv \frac{864 |\tilde{\eta}_3|^3}{\pi^6 \tilde{\eta}_0^{27}} m + \frac{6 |\tilde{\eta}_3|}{\tilde{\eta}_0}$$

$$\simeq 68.78 m + 4.30$$

$$|u|_{\min} \simeq (A_m^2 - 3)^{-1/2}$$

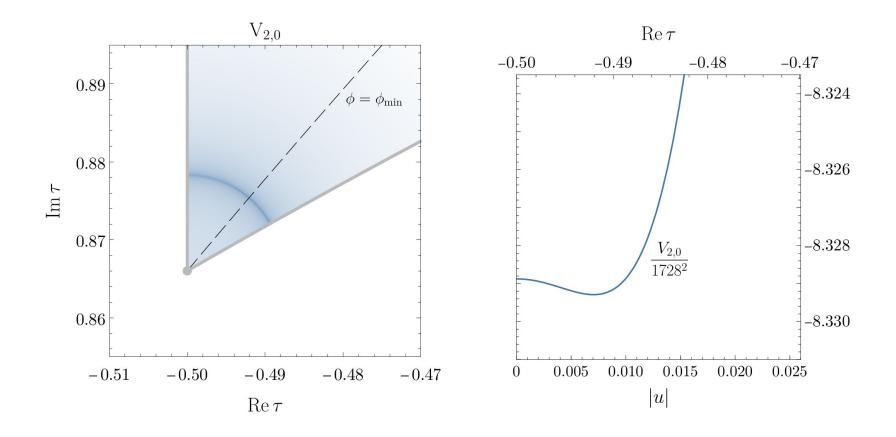
$$\simeq A_m^{-1} = \frac{0.0145}{m + 0.0625}$$

The (m,0) family of potentials $u=|u|e^{i\phi}$ (phase dependence)

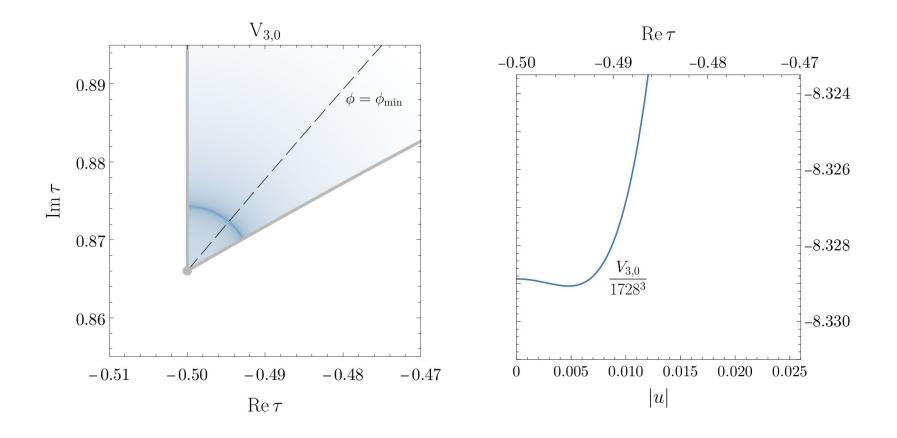
• *u*-expanding to higher order shows dependence on $\phi \in [-\pi/3, 0]$

$$V_{m,0} \propto -1 - 2 |u|^{2} + (A_{m}^{2} - 3) |u|^{4} + (-4 + 2A_{m}^{2} + B_{m}^{2} \cos 6\phi) |u|^{6} + 2A_{m}B_{m}^{2} \cos 3\phi |u|^{7} + (-5 + 3A_{m}^{2} + 2B_{m}^{2} \cos 6\phi) |u|^{8} + \mathcal{O}(|u|^{9}) B_{m}^{2} \equiv \frac{864 |\tilde{\eta}_{3}|^{3}}{\pi^{6} \tilde{\eta}_{0}^{27}} m \left[\frac{864 |\tilde{\eta}_{3}|^{3}}{\pi^{6} \tilde{\eta}_{0}^{27}} (m - 2) + \frac{3 (31 \tilde{\eta}_{3}^{2} - 10 \tilde{\eta}_{0} \tilde{\eta}_{6})}{\tilde{\eta}_{0} |\tilde{\eta}_{3}|}\right] + \frac{6 (7 \tilde{\eta}_{3}^{2} - 2 \tilde{\eta}_{0} \tilde{\eta}_{6})}{\tilde{\eta}_{0}^{2}} \simeq 4730.60 m^{2} - 2069.73 m + 33.26.$$

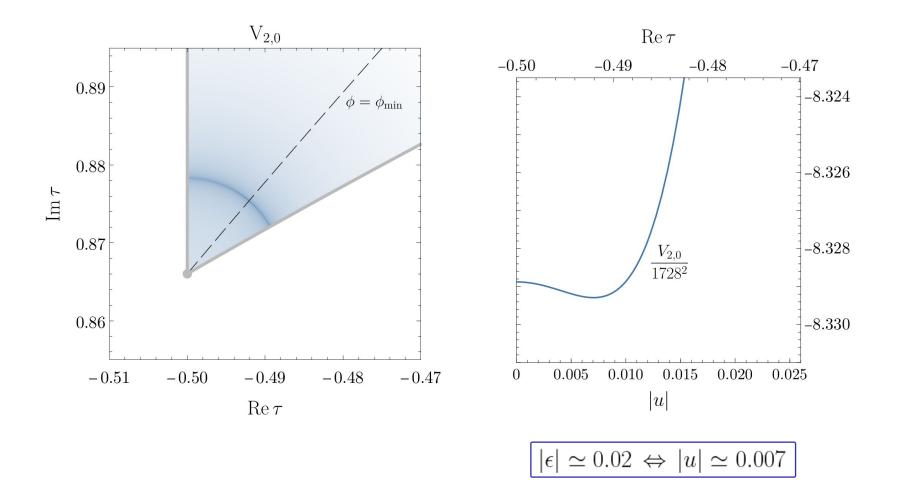
• Phase of u mostly determined by $|u|^6$ and $|u|^7$ terms

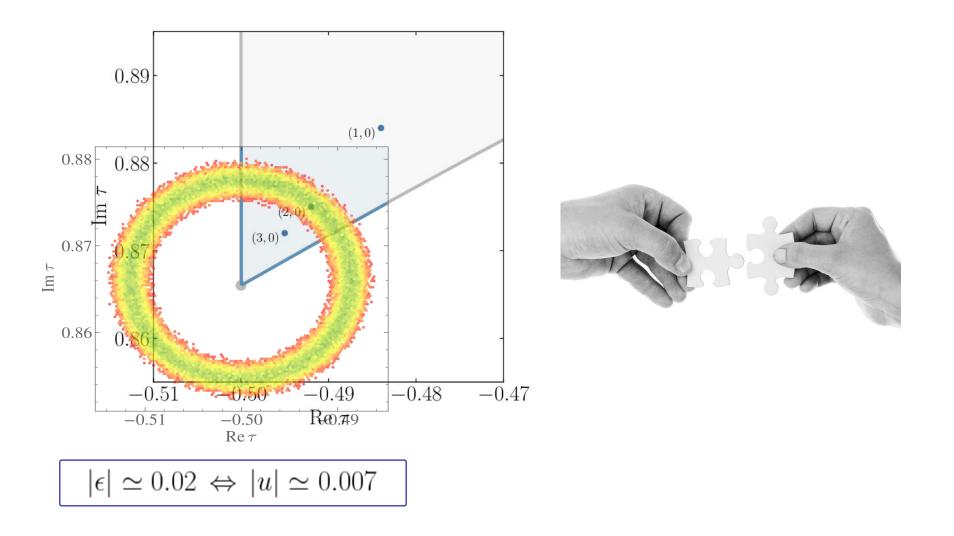

$$\phi_{\min} \simeq -\frac{2\pi}{9} = -40^{\circ}$$

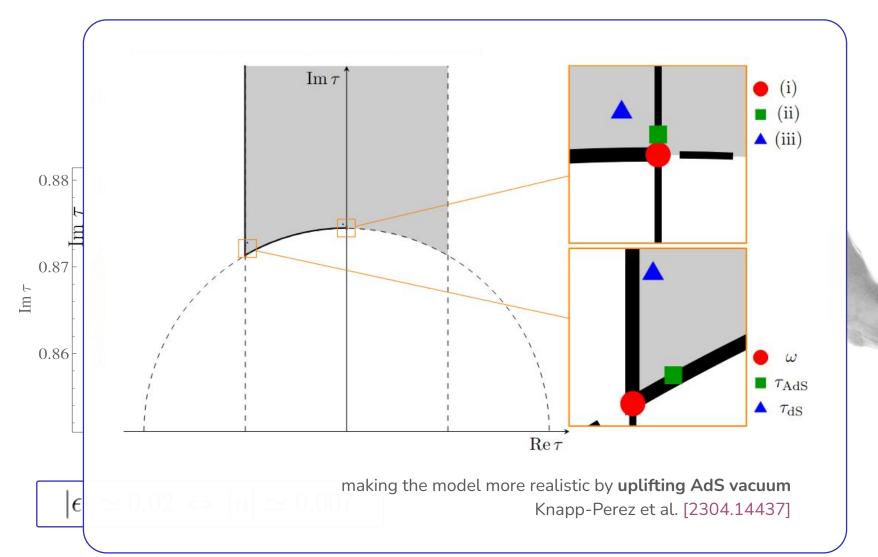
The (m,0) family of potentials (m = 1)



"Mexican"-hat potential


The (m,0) family of potentials (m = 2)


The (m,0) family of potentials (m = 3)

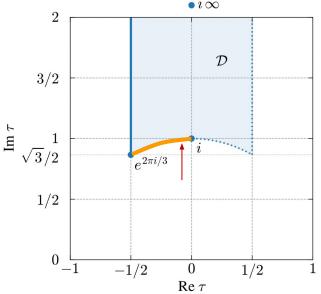

The (m,0) family of potentials (m = 2)

Matching puzzle pieces?

Matching puzzle pieces?

No, there is no tuning in choosing this form of the superpotential (arguably)

$$H(\tau) \propto (J(\tau) - 1)^{m/2}$$


Subset of all possible $H(\tau)$ which vanish only at the symmetric point $\tau=i$ (itself distinguished by modular symmetry)

 $J(\tau) \equiv j(\tau)/1728$

The global SUSY limit (a comment)

$$\mathbf{n} = \kappa^2 \Lambda_K^2 \to 0 \qquad \begin{array}{c} K(\tau, \overline{\tau}) = -\Lambda_K^2 \log(2 \operatorname{Im} \tau) \\ \kappa^2 = 8\pi/M_P^2 \end{array}$$
$$W(\tau) = \Lambda_W^3 H(\tau) \qquad H(\tau) = (j(\tau) - 1728)^{m/2} j(\tau)^{n/3} \mathcal{P}(j(\tau)) \end{aligned}$$
$$V(\tau, \overline{\tau}) = \frac{4\Lambda_K^6}{\Lambda_K^2} (\operatorname{Im} \tau)^2 \left| H'(\tau) \right|^2 \qquad 2 \overset{ic}{\left| \int_{-\infty}^{\infty} \frac{1}{2\pi T_K^2} \left(\operatorname{Im} \tau \right)^2 \left| H'(\tau) \right|^2 \right|}$$

- Global minima are zeros of *H*'
- non-trivial $\mathcal{P}(j)$ can be engineered to produce minima at arbitrary points in the fundamental domain

