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Starting point

In an inflationary scenario, primordial density inhomogeneities due to unavoidable quantum fluctuations of
the inflaton field, are the seed of later primary (temperature) CMB anisotropies, as well as of the large scale

structure of our observable universe today.

Commonly, temperature anisotropies are mainly attributed to the scalar modes of the inflaton field, while

tensor modes are expected to contribute to a quite lesser extent, hardly distinguishable from the former.

Hence, common wisdom dictates that polarization of the CMB remains as the main hope to detect
primordial gravitational waves produced in the very early universe as only tensor modes -and not scalar

modes- can produce B-modes of polarization.

Here we first focus on the expected small but maybe observational effect of the tensor modes on the CMB

temperature correlations especially at large angle (low multipoles), as a way of searching for PGW.

At the end we examine the effect of tensor modes on the quadrupole and octupole contributions to the BB

power spectrum of the CMB
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Years after the Big Bang
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Cosmic Microwave Background: maximum angular correlation
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Image from: Introduction to Cosmology expected “pixel” size of temperature
Matts Roos Biep, anisotropies in the CMB without inflation

Horizon problem

co-moving
space

N-point angular correlation functions provide a tool

to get rich information from the original temperature rawdata

Omax =~ 22 An inflationary epoch in the very early universe is required
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Analogy with high-energy collisions (“artistic” view)

pp collisions Final-state particles
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Correlation function vs power spectrum

The information contained in the angular power spectrum
is basically the same as in the correlation function but the
latter highlights the behaviour at large angles (small /)
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Unexpected lack of large angle (> 60-702) 2-point correlations
in the CMB observed by COBE, WMAP & Planck mission
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Next let us examine 2-point correlations

in more detail using Planck 2018 datawo
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Planck2018 dataset
delicate balance

at large-angle

LCDM
Chi2 (reduced) = 18

very very bad fit -' —— '
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downwards tail odd

An (even small) odd-even imbalance in the Legendre polynomials leads at large angles to

C(f;) = Ceven(g) +Cndd(g) —
ds tail (even-parity dominance
upwards tail (even-parity ' ) 1 (20 + 1) Cy Py(cos ) + 1 Y (2¢+1) Cy Py(cos®).
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Introducing a single infrared cutoff k., into the scalar power spectrum

original proposal
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M.A.S.L, F.Melia, M.Lopez-Corredoira and N.Sanchis-Gual _
to Planck datapoints

Astron.Astrophys. 660 (2022) A121 [arXiv:2202.10987] related to parity-imbalance



Is our Universe (parity) odd?

Nature is parity violating e.g. in the electroweak sector

of the Standard Model of particles and interactions

never odd or even

We restrict our discussion to the question of a possible odd-even parity imbalance in the

2-point angular correlation function of the CMB

o0

C(cos8) = (T (fi,) T (i) = 4i S (2¢+1) C, P,(cos)
T

(=2

determined using a cosmological model + fit to data

There are other anomalies/tensions of the Cosmological SM not considered in this talk



Eodd

2 & D,
Parity asymmetry statistic = QUmd =y 2. 5

0. >3 onlyodd integers

Aluri & Jain, MNRAS 2012, 419, 3378
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Next step: two infrared cutoffs instead of one
in the primordial power spectrum

affecting odd and even multipoles, respectively

M.A. Sanchis-Lozano, Universe 8 (2022) 8, 396 [arXiv:2205.13257]

M.A. Sanchis-Lozano and V. Sanz, Phys.Rev. D 109 (2024) 6, 063529 [arXiv:2312.02740]
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Assumption of a KK extra-dimension in the very early universe (GUT era)

leads yo a set of two infrared cutoffs for both scalar and tensor modes

Dirichlet and Neumann boundary conditions when applied on an extra spatial dimension:
lead to the following ratio of infrared cutoffs in the scalar and tensor power spectra
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Including Primordial Gravitational Waves Q(Imax)
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T T ~ j{% (u)
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min

Mukhanov, V. F., Physical Foundations of Cosmology; Cambridge
University Press: Cambridge, UK, 2005.

remember: ueven/0dd(T) = 2y even/odd(§)

only one extra fit parameter: N7 !

constrained by the tensor-to-scalar ratio r

Excellent fits!
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scalar
modes
only
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Q(lmax) Last but not least remark

1.0F main tensor modes contribution
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Final remark:

the observed parity imbalance in angular correlations can be associated with the detection of PGW
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Checking some inflation parameters obtained from our fits:

T
C
r~ 0.68 <C—g> ~ 0.027 + 0.007
t110<¢ <30
] Uncertainties due to theoretical approximations
Ratio of tensor-to-scalar power spectra and modelling dependence are not included

consistency relation:

r=16 - = 0.0017



BB correlations Very preliminary

Dy = (1/210) £ (£+1) €,/ (hK?)
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i —— 1k min J. Liu and F. Melia,Phys.Lett.B 853 (2024) 138645
0.0025 [arXiv:2404.08170]
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Conclusions

Anomalies/tensions from astrophysical/cosmological data somewhat question the Standard Cosmological Model

In our approach the odd-parity preference (ultimately breaking isotropy from the cosmological principle)

observed in angular correlations of CMB by COBE, WMAP and Planck missions leads to two infrared cut-offs

uev_en ke\_/en

in the scalar power spectrum — % =" ~ 2
UO- koc_id
min min

This phenomenological result can be theoretically motivated by Dirichlet/Neumann boundary conditions

imposed on a KK extra-dimension of the early universe affecting primordial scalar and tensor modes

Once primordial tensor modes from PGW are incorporated into the analysis of the temperature correlations

the fits of the correlation function C(3) and the statistic Q(€ ... ) improve significantly

max

Further checks using polarization of the CMB should be applied, e.g. looking at the ratio of

guadrupole and octupole modes in the BB power spectrum might be a clear signal of PWG

Muito obrigado/many thanksl!! 24



BACK-UP



<

30

25

20

15

10

Figure 4. Histogram of u

=

L
l Umin

2

3

4

odd_
min,i
Let us point out that the condition u

5

(left) and u

even
min,i

6

even
min,i
= 24°dd

b e

(right), both showing approximate Gaussian shapes.

min, 7

8

[ | even
[ odd

- was required throughout the data analysis.

26



TWO INFRARED CUT-OFFs TWO different BOUNDARY CONDITIONS

based on causality

Periodic and antiperiodic boundary conditions

Ple+2m) = P(p) Apmx =27R,
Plo+2m) = —¢(@) = Ple+4m) =¢v(9) A =47R,

The angular Fourier expansion of ¢(¢) for the periodic condition|reads:

P(p) = Y an e
INTEGERS

For the|antiperiodic conditions, the Fourier expansion reads

p(e) = an ",
@eZ7+1/2)  HALF-INTEGERS

ko4 — 27 (t) /A%, kEVEM — Dra(ty) /ASYSR

geven jeven
min __ min __ .
odd — jodd 2 comoving scales

min min 27



The angular Fourier expansion of §(¢) for the periodic condition reads:

plo) = Y aye™? (15)
He 2
and for a real function, _
P(¢) =2 ) Reane”?, (16)
nezZ

so that only cos (11¢) terms appear in the Fourier expansion.
Let us define now a correlation function as in [36]

2 dq;
| v@) vio+89) 32 17)
For random Gaussian Fourier coefficients, if we define 6 = ﬁcpf 2, one finds

ClAg) =2 Z Cycos (nAg) — C(0) =4 Z C, cos® (nf) —2, (18)
neZt neZ+

with C; = {apay;) and 6 € [[}, JT] to be identified with the angle appearing as the argument
of the two-point correlation function C(@).
For the antiperiodic conditions, the Fourier expansion reads

po)= ¥ ane™, (19)

neZ+t41/2

which guarantees that it changes sign when ¢ — @ + 2. Therefore,

C(6)=4 ) Cpcos’(nf)—2 (20)
ncZ+t41/2
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