Searching for primordial gravitational waves in angular correlations of the CMB

Miguel-Angel Sanchis-Lozano

IFIC \& Department of Theoretical Physics
University of Valencia-CSIC, Spain
Miguel.Angel.Sanchis@ific.uv.es

Based on:

M.A. Sanchis-Lozano, F. Melia, M. López-Corredoira and N. Sanchis-Gual Astron.Astrophys. 660 (2022) A121 [arXiv:2202.10987]
M.A. Sanchis-Lozano

Universe 8 (2022) 8, 396 [arXiv:2205.13257]
M.A. Sanchis-Lozano and V. Sanz, Phys.Rev. D 109 (2024) 6, 063529 [arXiv:2312.02740]

Starting point

In an inflationary scenario, primordial density inhomogeneities due to unavoidable quantum fluctuations of the inflaton field, are the seed of later primary (temperature) CMB anisotropies, as well as of the large scale structure of our observable universe today.

Commonly, temperature anisotropies are mainly attributed to the scalar modes of the inflaton field, while tensor modes are expected to contribute to a quite lesser extent, hardly distinguishable from the former.

Hence, common wisdom dictates that polarization of the CMB remains as the main hope to detect primordial gravitational waves produced in the very early universe as only tensor modes -and not scalar modes- can produce B -modes of polarization.

Here we first focus on the expected small but maybe observational effect of the tensor modes on the CMB temperature correlations especially at large angle (low multipoles), as a way of searching for PGW.

At the end we examine the effect of tensor modes on the quadrupole and octupole contributions to the BB power spectrum of the CMB
comoving scales
 of the inflaton field
\boldsymbol{k} : comoving wavenumber of the Fourier expansion
$\frac{k}{a}=\frac{2 \pi}{\lambda_{k}} \quad$ physical

Cosmic Microwave Background CMB

Temperature anisotropies from the sky as a snapshot of the early universe and the seeds of the formation of LSS of the universe today

Inflation stretches physical scales out the Hubble radius (in yellow) which remains fixed during inflation

Inflation is a phase of accelerated expansion taking place in the very early Universe. It solves the fine tuning puzzles of the standard model of cosmology

horizon
flatness
monopole

Cosmic Microwave Background: maximum angular correlation

Image from: Introduction to Cosmology Matts Roos
expected "pixel" size of temperature

Horizon problem

N -point angular correlation functions provide a tool
to get rich information from the original temperature rawdata

$$
\theta_{\max } \approx 2
$$

An inflationary epoch in the very early universe is required

Analogy with high-energy collisions ("artistic" view)

pp collisions

$c t \approx \frac{E}{Q_{0}{ }^{2}}, \quad E=$ energy of the initial parton, $Q_{0}=$ final virtuality

Equivalent to recombination in cosmology

Inflation + early universe expansion

$$
c t_{\mathrm{QCD}}=\frac{\Lambda_{\mathrm{h}}}{\Lambda_{\mathrm{QCD}}^{2}}(\approx \text { severalfm })
$$

Final-state particles

QCD cascade
M.A.S.L. and E. Sarkisyan-Grinbaum

Not to scale

Correlation function vs power spectrum

$D_{\ell}=\ell(\ell+1) C_{\ell} / 2 \pi$

The information contained in the angular power spectrum is basically the same as in the correlation function but the latter highlights the behaviour at large angles (small ℓ)
$C(\cos \theta) \equiv\left\langle\delta T\left(\vec{n}_{1}\right) \delta T\left(\vec{n}_{2}\right)\right\rangle=\frac{1}{4 \pi} \sum_{\ell=2}^{\infty}(2 \ell+1) C_{\ell} P_{\ell}(\cos \theta)$ $\cos \theta=\vec{n}_{1} \cdot \vec{n}_{2}$
Power-law spectrum and assuming $n_{s} \approx 1$

$$
C_{\ell} \propto \int_{0}^{\infty} d k k^{n_{s}-2} j_{\ell}^{2}\left(k r\left(t_{d}\right)\right) \propto \int_{0}^{\infty} \frac{j_{\ell}^{2}(u)}{u} d u
$$

Spherical Bessel function $\quad u=k r_{d}$

$$
r_{d} \text { comoving distance to LSS }
$$

$$
C_{\ell}=\frac{6}{\ell(\ell+1)} C_{2} \quad \ell \leq 30
$$

Sachs-Wolfe plateau $\ell(\ell+1) C_{\ell}=$ constant

- 180

-----Significant deviations!
the lower limit of the integral will be soon modified becoming different from zero!!!

Unexpected lack of large angle (> 60-70ㅇ) 2-point correlations in the CMB observed by COBE, WMAP \& Planck mission

HOWEVER

Two-point correlation function of measured CMB temperature
fluctuations in Planck2015 dataset

Next let us examine 2-point correlations
in more detail using Planck 2018 dataio

An (even small) odd-even imbalance in the Legendre polynomials leads at large angles to

$$
\begin{aligned}
C(\theta)= & C_{\text {even }}(\theta)+C_{\text {odd }}(\theta)= \\
& \frac{1}{4 \pi} \sum_{\ell_{\text {even }}}(2 \ell+1) C_{\ell} P_{\ell}(\cos \theta)+\frac{1}{4 \pi} \sum_{\ell_{\text {odd }}}(2 \ell+1) C_{\ell} P_{\ell}(\cos \theta) .
\end{aligned}
$$

Introducing a single infrared cutoff $k_{\text {min }}$ into the scalar power spectrum

original proposal
Melia \& Lopez-Corredoira: arXiv: 1712.07847 Astronomy \& Astrophysics, Volume 610 (2018) A87

$$
C_{\ell} \propto \int_{k_{\min }}^{\infty} d k k^{n_{s}-2} j_{\ell}^{2}\left(k r\left(t_{d}\right)\right) \propto \int_{u_{\min }}^{\infty} \frac{j_{\ell}^{2}(u)}{u} d u
$$

$$
\text { If } k_{\min }=0 \rightarrow C_{\ell} \propto \frac{1}{\ell(\ell+1)} \quad \ell \leq 20
$$

M.A.S.L, F.Melia, M.López-Corredoira and N.Sanchis-Gual Astron.Astrophys. 660 (2022) A121 [arXiv:2202.10987]

This tail is not reproduced at all! related to parity-imbalance

Obtained from a best fit to Planck datapoints

Is our Universe (parity) odd?

Nature is parity violating e.g. in the electroweak sector of the Standard Model of particles and interactions

We restrict our discussion to the question of a possible odd-even parity imbalance in the
2-point angular correlation function of the CMB

$$
C(\cos \theta) \equiv\left\langle\delta T\left(\vec{n}_{1}\right) \delta T\left(\vec{n}_{2}\right)\right\rangle=\frac{1}{4 \pi} \sum_{\ell=2}^{\infty}(2 \ell+1) C_{\ell} P_{\ell}(\cos \theta)
$$

determined using a cosmological model + fit to data
There are other anomalies/tensions of the Cosmological SM not considered in this talk

Parity asymmetry statistic

$Q\left(\ell_{\text {max }}\right)=\frac{2}{\ell_{\text {max }}^{\text {odd }}-1} \sum_{\ell=3}^{\text {tama }_{\text {ald }}} \frac{D_{\ell-1}}{D_{\ell}}, \ell_{\text {max }} \geq 3 \quad$ only odd integers
Aluri \& Jain, MNRAS 2012, 419, 3378

Notice that adding an infrared cutoff into the scalar power spectrum

Improvement but not really satisfactory yet
breaks parity balance

Next step: two infrared cutoffs instead of one in the primordial power spectrum

affecting odd and even multipoles, respectively
M.A. Sanchis-Lozano, Universe 8 (2022) 8, 396 [arXiv:2205.13257]
M.A. Sanchis-Lozano and V. Sanz, Phys.Rev. D 109 (2024) 6, 063529 [arXiv:2312.02740]

Assumption of a KK extra-dimension in the very early universe (GUT era)

 leads yo a set of two infrared cutoffs for both scalar and tensor modesDirichlet and Neumann boundary conditions when applied on an extra spatial dimension: lead to the following ratio of infrared cutoffs in the scalar and tensor power spectra

$$
\frac{u_{\min }^{\text {even }}}{u_{\min }^{\text {odd }}}=\frac{k_{\min }^{\text {even }}}{k_{\min }^{\text {odd }}}=2
$$

"magic number"

$$
\text { for both scalar \& tensor modes with } \quad u^{\text {even /odd }}(T)=2 u^{\text {even } / o d d ~}(S)
$$

$$
k_{\min }{ }^{\text {even } / o d d ~} \approx \text { few } 10^{-4} \mathrm{Mpc}^{-1} \rightarrow \underbrace{k_{\min }^{\text {even } / \mathrm{odd}} / \mathrm{a}\left(\mathrm{t}_{\mathrm{extra}}\right)}_{\text {physical }} \approx 10^{14-16} \mathrm{GeV}
$$

$$
\begin{aligned}
C(\theta)= & C_{\text {even }}(\theta)+C_{\mathrm{odd}}(\theta)= \\
& \frac{1}{4 \pi} \sum_{\ell_{\mathrm{even}}}(2 \ell+1) C_{\ell} P_{\ell}(\cos \theta)+\frac{1}{4 \pi} \sum_{\ell_{\mathrm{odd}}}(2 \ell+1) C_{\ell} P_{\ell}(\cos \theta)
\end{aligned}
$$

Temperature scalar multipole coefficients

$$
\begin{aligned}
C_{\ell_{\text {even/odd }}}=N & \int_{u_{\min }^{\text {even/odd }}}^{\infty} d u \frac{j_{\ell}^{2}(u)}{u} \\
& u_{\min }^{\text {even }}=2 u_{\min }^{\text {odd }}
\end{aligned}
$$

M.A. Sanchis-Lozano, Universe 8 (2022) 8, 396, 2205.13257

$$
C_{\ell_{\text {even/odd }}}=N \int_{u_{\mathrm{min}}^{\mathrm{even} / \mathrm{odd}}}^{\infty} d u \frac{j_{\ell}^{2}(u)}{u}
$$

Scalar modes: Sachs-Wolfe effect

$$
u_{\mathrm{min}}^{\mathrm{odd}}=2.67 \pm 0.31 ; u_{\mathrm{min}}^{\mathrm{even}}=5.34 \pm 0.62
$$

$$
\frac{u_{\min }^{\text {even }}}{u_{\min }^{\mathrm{odd}}}=\frac{k_{\min }^{\text {even }}}{k_{\min }^{\mathrm{odd}}}=\mathbf{2}
$$

(remains fixed in our fits)

Including Primordial Gravitational Waves

remember: uev $^{\text {en } / o d d}(T)=2 u^{\text {even } / o d d}(S)$
only one extra fit parameter: N^{T} ! constrained by the tensor-to-scalar ratio r

Mukhanov, V. F. , Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005.

Excellent fits!

Note that the effect of a lower cut-off $u_{\text {min }}$ becomes noticeable at $l \gtrsim u_{\text {min }}$

Final remark:

the observed parity imbalance in angular correlations can be associated with the detection of PGW

Checking some inflation parameters obtained from our fits:

$$
\mathrm{r} \approx 0.68\left\langle\frac{C_{\ell}^{T}}{c_{\ell}^{S}}\right\rangle_{10 \leq \ell \leq 30} \approx 0.027 \pm 0.007
$$

Ratio of tensor-to-scalar power spectra

Uncertainties due to theoretical approximations and modelling dependence are not included
consistency relation:

$$
r=16 \varepsilon \rightarrow \varepsilon \approx 0.0017
$$

BB correlations

Very preliminary

Conclusions

Anomalies/tensions from astrophysical/cosmological data somewhat question the Standard Cosmological Model In our approach the odd-parity preference (ultimately breaking isotropy from the cosmological principle) observed in angular correlations of CMB by COBE, WMAP and Planck missions leads to two infrared cut-offs in the scalar power spectrum $\rightarrow \frac{u_{\min }^{\text {even }}}{u_{\text {min }}^{\text {odd }}}=\frac{k_{\min }^{\text {even }}}{k_{\text {min }}^{\text {odd }}} \approx 2$

This phenomenological result can be theoretically motivated by Dirichlet/Neumann boundary conditions imposed on a KK extra-dimension of the early universe affecting primordial scalar and tensor modes

Once primordial tensor modes from PGW are incorporated into the analysis of the temperature correlations the fits of the correlation function $C(\vartheta)$ and the statistic $Q\left(\ell_{\text {max }}\right)$ improve significantly

Further checks using polarization of the CMB should be applied, e.g. looking at the ratio of quadrupole and octupole modes in the BB power spectrum might be a clear signal of PWG

BACK-UP

Figure 4. Histogram of $u_{\mathrm{min}, i}^{\mathrm{odd}}($ left $)$ and $u_{\mathrm{min}, i}^{\text {even }}$ (right), both showing approximate Gaussian shapes. Let us point out that the condition $u_{\min , i}^{\mathrm{even}}=2 u_{\mathrm{min}, i}^{\mathrm{odd}}$ was required throughout the data analysis.

Periodic and antiperiodic boundary conditions

$$
\begin{aligned}
& \psi(\varphi+2 \pi)=\psi(\varphi) \quad \lambda_{\max }^{\text {even }}=2 \pi R_{h} \\
& \psi(\varphi+2 \pi)=-\psi(\varphi) \rightarrow \psi(\varphi+4 \pi)=\psi(\varphi) \quad \lambda_{\max }^{\text {even }}=4 \pi R_{h}
\end{aligned}
$$

The angular Fourier expansion of $\psi(\varphi)$ for the periodic condition reads:

$$
\psi(\varphi)=\sum_{n \in \mathcal{Z}} \alpha_{n} e^{i n \varphi} \text { INTEGERS }
$$

For the antiperiodic conditions, the Fourier expansion reads

$$
\begin{gathered}
\psi(\varphi)=\sum_{\sum_{1 \in \mathcal{Z}^{+}+1 / 2} \alpha_{n} e^{\text {in } \varphi,}}^{\text {HALF-INTEGERS }} \\
\frac{k_{\min }^{\mathrm{odd}}=2 \pi a\left(t_{d}\right) / \lambda_{\max }^{\mathrm{odd}}, k_{\min }^{\mathrm{even}}=2 \pi a\left(t_{d}\right) / \lambda_{\max }^{\mathrm{even}}}{u_{\min }^{\mathrm{odd}}}=\frac{k_{\min }^{\mathrm{even}}}{k_{\min }^{\mathrm{odd}}}=2
\end{gathered}
$$

The angular Fourier expansion of $\psi(\varphi)$ for the periodic condition reads:

$$
\begin{equation*}
\psi(\varphi)=\sum_{n \in \mathcal{Z}} \alpha_{n} e^{i n \varphi} \tag{15}
\end{equation*}
$$

and for a real function,

$$
\begin{equation*}
\psi(\varphi)=2 \sum_{n \in \mathcal{Z}^{+}} \operatorname{Re} \alpha_{n} e^{i n \varphi} \tag{16}
\end{equation*}
$$

so that only $\cos (n \varphi)$ terms appear in the Fourier expansion.
Let us define now a correlation function as in [36]

$$
\begin{equation*}
\int_{0}^{2 \pi} \psi(\varphi) \psi(\varphi+\Delta \varphi) \frac{d \varphi}{2 \pi} \tag{17}
\end{equation*}
$$

For random Gaussian Fourier coefficients, if we define $\theta=\Delta \varphi / 2$, one finds

$$
\begin{equation*}
C(\Delta \varphi)=2 \sum_{n \in \mathcal{Z}^{+}} C_{n} \cos (n \Delta \varphi) \rightarrow C(\theta)=4 \sum_{n \in \mathcal{Z}^{+}} C_{n} \cos ^{2}(n \theta)-2 \tag{18}
\end{equation*}
$$

with $C_{n}=\left\langle\alpha_{n} \alpha_{n}^{*}\right\rangle$ and $\theta \in[0, \pi]$ to be identified with the angle appearing as the argument of the two-point correlation function $C(\theta)$.

For the antiperiodic conditions, the Fourier expansion reads

$$
\begin{equation*}
\psi(\varphi)=\sum_{n \in \mathcal{Z}^{+}+1 / 2} \alpha_{n} e^{i n \varphi} \tag{19}
\end{equation*}
$$

which guarantees that it changes sign when $\varphi \rightarrow \varphi+2 \pi$. Therefore,

$$
\begin{equation*}
C(\theta)=4 \sum_{n \in \mathcal{Z}^{+}+1 / 2} C_{n} \cos ^{2}(n \theta)-2 \tag{20}
\end{equation*}
$$

