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Pheno’s put aside in this talk

. Gaussian QM: Neutrino decoherence

. Gaussian QFT: Isospin anomalies (at up to 9.501) In vector meson decay

. Explained in region where time-boundary effect (discussed below)
dominates


https://inspirehep.net/literature/2679807
https://inspirehep.net/literature/2689810
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Three theoretical applications



Plan

1. Joint measurement of position and momentum (quantum information)
2. Time-Boundary Effect proven! (QFT)

3. Lorentz-invariant/covariant complete basis for scalar/spinor (QFT)



Plan

1. Joint measurement of position and momentum (quantum information)



[Lee-Tsutsui formalism

[Lee, Tsutsui, 2020:; Lee, 2022]

. Pro: Claimed to include all preceding uncertainty relations:
. Kennard-Robertson and Schroedinger (in any QM textbook)

. Arthus—KeIly-GOOdman (errors and cost of measurement)

. Ozawa (errors and disturbances)

. Yuen-Lux and Watanabe-Sagawa-Ueda (estimation theory)

. Con: Too abstract, lacks concrete implementation

. Only simplest two-level system so far (before ours)



Errors and uncertainty relation

. Lee-Tsutsul error and uncertainty: » Lee error and uncertainty:

b= ] - fas (i) o ¢ [ A e

7 ; 2 3.7 2 1309
ol 0] 2 2 1A+ R (007 C JIQ eI
where
15 MM, A, B A, M*M, B where
I[MMM[AZD <[ | ]> <[ 2 ]> .
R, |4, B;M <{A’QB}> — (M A, MB) to {A B} < 2 >

[Lee, Tsutsul, 2020] [Lee, 2022]



Set of Gaussian packets

. Non-orthogonal.
2

(X', P'o| X, P;o) =i b (X' =X)= 4 (X'=X)"- 5 (P'-P)

. Over-completeness in free one-particle subspace: For any fixed o,

d°xX d¢P A
X,P;0)(X,P;0| =1
(27)"

. Naturally leads to positive-operator-valued measure (POVM):
[KO, Ogawa, 2024]

{|X,P;0)(X,P;o

J(x.P)er2



POVM measurement xo. ogaws, 20241

. We propose POVM measurement

M: p—p

with

p(X,P)=Tr[)|X,P;0) (X, P;o

from any to classical state (PDF) p

IN phase space

. Resultant function p properly satistfies condition as PDF:
d°X d°P
——— (X, P)=1

(2m)



Position and momentum operators in phase space

[KO, Ogawa, 2024]

. We obtain natural expressions analogous to those In plane-wave basis:

Xi|X7P;O-> <X7P;U|

) / X 4¢P

T (27)°

P?l X7P;O-> <X7P;O-

A / X 4¢P
(27)°



How about some
concrete 1nitial state?



Setup

. Initial state: Gaussian pure state

— |Xin7 Pin; O-in> <Xin7 Pin; Jin|

. Measurement by POVM:

{

X,P;0)(X,P;o

J(x.P)e

QQd

[KO, Ogawa, 2024]



Basic parameters: spatial width-squared

KO, O 2024
. |Input: [ Jawa |

. Oin Tor Initial state uncertainty
. 0 for detector resolution
. Output:

. Summed o sum for postion errors Usum — Uin + O

. Reduced Ored fOor momentum errors

Oin0
Ored —
Oin - O




Intermediate steps

(KO, Ogawa, 2024]

<X>Mphﬁin — n <P> Mphb\in — Piﬂ’ <XP> Mph:b\in — Xiﬂpiﬂ’
<X>Mphﬁin = Xin, <P>Mph70\in = P, <X P>Mphl/o\in = XinPin,
O sum 2 9 1
X%, . =X P =P
< >Mphpin n 2 ’ < >Mphpin 11 20—1‘6(1 7
2
——2 oF —2 o)
(), ~Tar g (), <rezf
M on Pin 20sum Mon Pin 20in0sum
(Mpne2] (X, P) =X [Mpnpl(X,P) =P [M;glf] (X,P) =X, [M;glﬁ] (X,P) =P
2 2 2 1
12 2 Tin 12 _ 2 o ,—1 _ y2 . Tsum | ,—1 -~ _ p2
1Mol 5, = Kot g2e Mgl = PR+ 5 e A T I e

::;X}n}%n-

ph¥in

(Mphsy Mpnyp),,

— dX dP o
i = [ SR B 0P, (LT o)
— dX d P — = M */il*’\ in
MShMph*p — /IRQ 27_‘_ P‘Xy P; O-> <X7 P;O-’ . <{ ,]\[p;;\[p p} >[3 :%<<7—i0‘red(P—Bn)>*F>M 5 :20 N

LT error and inequality

Lee error and inequality



Result [KO, Ogawa, 2024]

Errors:
LT errors: S [CU] — Lee errors: ~2 (2] —
1 1
2 A ~9 R
es. 1Pl = g2 Ip|l = —
2(0 + 0in) =5,
=rrors, In opposite way, Errors governed by detector resolution

can be made infinitely small

Uncertainty:

[ILT lower bound] = 0O [Lee lower bound] = 1/2

Trivial? Recovers Heisenberg's!



Summary of this part

. Gaussian POVM as joint measurement in phase space
. First realization of Lee-Tsutsuil formalism in infinite-dimensional space

. Lee errors and inequality seem more plausible than LT ones.
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2. Time-Boundary Effect proven! (QFT)



Gaussian basis applicable to QFT

. Gaussian basis can expand any quantum field by
AY(X, P;0)|0) = |X, P;0)

with commutator

A(X7P5U)7 ET(lepl;OJ)_ — <X7P;U X/’P/;OJ>
;uch that _

~ d°X d°P . -
o(z) = / emrall fx po(z)AX, P;o) + h.c.,

and similarly for complex scalar, spinor and vector fields.




. Expansion coefficient Is known function:

o ;| P ; ,o; 11
fooxp(x /\/QE (s | ;) (P3| )

o (2=X) =5 (p—P)"

pY :EQO(P)



Setup [Ishikawa, Jinnouchi, Nishiwaki, KO, 2023]

. Tree-level two-to-two scattering: ¢ ¢ >O—>¢@ ¢
. External states ¢ ¢ are treated by Gaussian wave packets
. See If initial time-boundary effect for ®—¢ ¢ decay emerges

. In some configurations In final-state integral

{ Wave packets
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Results for overlap regions in position space

[Ishikawa, Jinnouchi, Nishiwaki, KO, 2023]

. Momenta on resonance:

Soundary

. On resonance, bulk
contribution dominates

. Boundary contribution
smoothes out time
boundary

. Off resonance, boundary
contribution dominates
over bulk contribution

.- Though overall size Is
smaller than on resonance



Summary of this part

. Existence of time-boundary effect proven!
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3. Lorentz-invariant/covariant complete basis for scalar/spinor (QFT)



Lorentz-invariant generalization

. Lorentz invariant wave packet ikaiser, 1977, 1978; Naumov, Naumov. 2010]
— - ( X +10 P)
(p|II) xe

where

[I:=(X,P)

. This reduces to Gaussian basis in non-relativistic limit.



Manifestly Lorentz-invariant completeness

(KO, Wada, 2021]
. We have obtained manifestly Lorentz-invariant completeness relation:

In free one-particle subspace,

[ ae iy (o = |

where (whole mess I1s hidden inside)

1 [ disH 4¢P
2d - X ol W .
™1y == = 1 (728 555 Lo diSF = ALY (N - X 4 T) N*
¢/ (27) with —

. VVolume element reduces to ordinary Gaussian phase space integral

d’X d’P L
X L

2m)°  on equal-time hyperplane

B LT LT T EEETEEEEREERCEER

. Can be used to expand scalar fields.




Manitestly Lorentz-covariant packet

¢ Spih-diﬂQOl’lal representathn lﬂ lltel’ature [Naumov, Naumov, 2010; Ishikawa, KO, 201 8]

<<p7 S | H? S>>D — <<p | H>> 535 I1:= (X, P) ((p | TT)) o o~ (X +io P)

. Difficulty: Its Lorentz transformation mixes wave-packet states with
different positions and momenta

. We propose phase-space-diagonal representation: [KO, Wada, 2023]

(p, s |11, 5)) o< ({p | IL)) u(p, 5) u(P, S)

and similarly for anti-particles.



Manifestly Lorentz-covariant completeness

(KO, Wada, 2023]
. We now have, In free one-particle subspace,

> [ s s | =

where (whole mess Is hidden inside)

1 d4xH d?P
A1, = / A (9P

qu 2d
=t d““11
./\/l¢ / 0¥




Summary of this part

. Found Lorentz-invariant/covariant wave packets
that can expand scalar/spinor fields



Summary: Gaussian Formalism

1. Furnishes POVM for joint measurement of position and momentum
. Heisenberg’s uncertainty principle in new perspective
2. Proves Time-Boundary Effect in QFT

3. Generalized to Lorentz-invariant/covariant complete basis for scalar/spinor

Future directions

1. Time-energy uncertainty. Bell-CHSH inequality.

2. Interference with no-scattering?! On-shell t-channel scattering? (Thanks B. Grzadkowski)
(And of course more concrete phenomenology involving neutrinos etc.)

3. Massless packets including vector fields
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Backup



Phenomenological applications

. Tend to be accepted quicker

. Even before their theoretical basis

Better have scientist editor

—
—_— e S GE———

[Picture from web]

Referee A: All remarks of previous reports have been fully addressed and the
revised manuscript has been tremendously improved by streamlining the discus-
sion. In this way the manuscript is accessible to the larger community. As the
overlooked effect has a vast impact on various branches of physics such as neu-
trino physics, astrophysics and biophysics I can fully recommend this article for
publication in Physical Review Letters.

Referee C: In my understanding, this result sheds new light on several problems
of quantum field theory and the related topics. In particular, the interpretation
in terms of Lefschetz thimble decomposition is what the physicists should have
done in old days. The paper is well written and organized so as to be readable for
the readers from other fields. I recommend the editor to publish the paper in this
journal.

Referees B says, I find it hard to conclude whether this result has the relevance and depth
that would make me say it { “should be” as opposed to “could be”) published in PRL, and
finishes the letter by the following sentence: But of course I leave to the FEditor the final
decision based also on the other referees’ observations. Referee D did not recommend, the
whole report being as follows:

Referee D: I would agree with the assessment of Referee B. This is a very old
subject and its not clear to me that the intricacies the authors are concerned with
are of sufficient interest to a wide enough audience. Nor do I think will it have
any overwhelming impact in a sub-field that would overcome the aforementioned

shortcoming.
e —



Uncertainty relations for quantum fluctuations

. Kennard-Robertson and Schrodinger inequalities:

P

Putting wA .= (A — <ﬂ>) W>

Into ordinary Cauchy-Schwarz inequality

ol 7l 2|5 [27 E]
- - (&

|wall® 1Usl® > [(ba | ¥B)|7

<

{A7QB} >w B <2>¢ <

KR (1927, 1929)

Purely guantum correlation

Schrodinger (1930)

Semi-classical correlation




Uncertainty relations for errors

. Arthurs-Kelly-Goodman (AKG 1965, 1988) takes into account

N
ep|M; Al e, |M; Bl > <[ ’ ]>
_ . _ p

21

measurement errors:

. Ozawa (2004).

S

Ep :I\/l;A_ Ep |\/|,§ Ep :l\/I;A_ Op

)

Op A Ep :I\/I; E

AV,
T
o )
)
~—
e

. Watanabe-Sagawa-Ueda (201 1): AGK from quantum estimation theory



Lee-Tsutsui (or Lee) inequality,
claimed to include all of them!

E.g. Ozawa inequality [from Lee’s slide 2021}

INEAFRA AAFN INEAF A
=(A)e(B) > £,(A)e,(B) > VR? + 12 > |T| > [([A, B]) | /2 — e(A)o(B) — o(A)z(B)




Observable and state spaces

Observables States
Quantum | S(5#) > A (self-adjoint operator) /(5#) > p (density operator)
Classical | R(f2) > f (real function) W(§2) > p (PDF)
i Te[f] = 1 > 0

Typically pure state © = [¥) (¥

f(w) = f(w) Jodwplw) =1 plw) 20



Quantum measurement

. Affine map M: ° ™ P that allows probablllty mixture: V A [0, 1]

M(X\o, + (1 —X\)0.) = AMD, + (1 — A)M;

Hereafter, we write Mp := Mp

Self-adjoint operators

VANEE S(H#) 5 A

M M* Mx, M*-1

LT adjoint/pullback Pushforward, Inverse

W(L2) > p R(£2) >Ff

PDFs Real functions



Measurement in Lee-Tsutsui formalism

| Lee, Tsutsul, 2020]
. Quantum state = density operator o, where Tr[o]=1

(For pure state, it is just o=|yY><y|.)

. Classical state = w), where w=(X,P) € [phase space Q] = R*
. Measurement = Affine map M: o — p (=M(p) = )

. That naturally admits probability mixture:

- M(A p1+(1-A)p2)= A +(1-A) (0=A=1)



Pullback of classical observable t

[Lee, Tsutsul, 2020]
. Quantum observable = Self-adjoint operator A (=AT)

. Classical observable = Real function f(w), where w=(X,P) € [phase space Q] = R

. Pullback of t: For any o,
/\
(M*F) = {(Fwip

. M™ glves the same guantum expectation value (under o) as
classical expectation value of T (under M o)



LT adjoint/pullback

. Lee-Tsutsui adjoint M*: \v’b\ c / (jf),

m 5: <f>/\//5

Given measurement M,
LT adjoint of a real function is
the operator that gives the same expectation values
for all



Pullback and pushforward

. Pullback is defined for equivalence classes FAB e |ioB| o Fgeslf —gl, =0
(crucilal for LT but irrelevant for us)

. Pushforward Mx is defined by,

(3,377), = (1.4,

Mp

Tr {A’ f*f} = /de [M*A\] (w) f(w) [Mp](w)




Explicit form of Lee-Tsutsui inequality

. LT error:

- - e 2 Y 2 - T - G
ez A3 M ::\/ All — [|M,A — \/Tr 0 A? —/de _M*A_ (w) [Mp](w)

)
<
o)

. LT Inequality:

55[2; M] sﬁ[E;M] > \/zg [E,E; M] +Rg[2,§, M]

where




Meaning of LT error

85[A\;M,f] = \ ||A\— m Z+ (0%/15[]8] —cf%[ﬂﬂ:)

|
-

A <N 2
I Mp

. Choosing test function f to be pushforward MxA gives the optimum.



Explicit form of Lee inequality

. Lee error:

. |12 ~
S |AiM] o= /|24 - |14]
0

2
o)

. Lee Inequality:




Our propsal: POVM measurement for Heisenberg’s uncertainty
. We propose (hon-projective) POVM:

UIX, Pro) (X, Piol j(x p)ere

. POVM measurement:

Monpl(X, P) = Ti|| X, P;o) (X, P;o| p]

. Here (for simplicity), we focus on the pure state:

0: L — ‘X 11N Pln, O 1n> <X 1n Rn7 Uin ‘

l'--ll——r——



Measurement result T

:Mphl/o\in: (X, P) —

1 —Xin)? red —g _P.
‘(X’ P;U|Xin7Pin;Uin>|2 — O ( e asim (X Xm) ) (\/U d€ red(P Pm)z)

\/ TTOsum T

. Limit of spatially finer detector than original wave-packet size o« 0in,
. Spatial part governed by oin
. Momentum part governed by o (information of original packet lost)

. VIce versa



Concrete realization of pullback and pushforward:

. LT adjoint/pullback:

— dX dP
M T = f(X,P)|X,P;o) (X, P;0o]

R2 27'('

. Decomposition of position and momentum operators:

- dX dP - dX dP
$=/ X |X, P;o) (X, P;ol, p=/ P|X,P;o0) (X, P;o|,
Rz 2T R2 2T
[M;}jlf] (X,P) = X, [M;glﬁ} (X,P)=P.

. GIving their inverse:

. Pushforward: " E Mn.P)(X, P) = P,

X:zared(——i——), P:ZO o :
o Oin O + Oin




Our result for LT errors and inequality

. LT errors:
2 [~ Ored 2~ 1
E [I‘M h]: E [p‘M h]z :
| ) P 2 ) ) P 2o_sum
. LT inequality:
1 O 1 O0in
o I'ed 2 O’ Osum = O + Oin, Ored - — %_'_ i - 0-+0-in.
2\ Ogum

« No lower bound!
. Product of errors takes mamixum at o = Oin.

. For projective measurement of position o — 0O, (or momentum o0 —w), It becomes
trivial O=0!



Our result for Lee errors and inequality

. Lee errors:
~)  ~ o ~ -~ 1
Mpn] = = Mpp] = —.
& [377 Ph] 9 < [p7 Ph] 9%

. Depends only on detector resolution!

\Y

. Lee Inequality: 1/2 =z 1/2.
. For initial pure Gaussian state

. Lee Inequality saturated regardless of detector resolution o



