UdD Lot 3.1 – ΤΕΩ 2.0 Robotics@Orano CERN - KUKA - Orano Meeting

A. COUDRAY

20/09/23 Diffusion Limitée Orano

Orano, in few words

The Group as an international leader

orano

3

World expert in the nuclear fuel cycle

Robotics@Orano, to support operation

🔵 orano

Orano Organisation

Robotics @ Orano Temis

Robotics Activity @ Orano Temis, the 3Rs ...

Robotics development to Products

 By developing, at an industrial scale, Remote Controlled systems to answer the needs of highly demanding applications with no market equivalent.

Robotics engineering

 By integrating robotics solutions into projects right from the preliminary evaluation, to the Basic Design or and Detail Design.

Robotics Integration,

 By supplying global turnkey solutions integrating on the shelf tried-and-tested systems and remote controlled means.

Robotics Workshop (400m²)

8

30 years of experience in telerobotics mean

In the 90's, Orano choose the industrial robots of STAUBLI company for remote handling operations in hot cells for La Hague plant

- Electrical technology
- A proven range of product in industrial field
- A closed and tightness structure easy to decontaminate
- A very limited electronics on board easy to harden against radiation
- A french company opened to specific developments

EΩ600 Rad-hardened telerobotics solution

An Industrial Solution for Robotics in a Hostile Environments

ΤΕΩ600

Read TEO MEGA 600 TEO for TElerObotic system MEGA for 1 MegaGray radiations withstanding 600 for 600N of payload

ΕΩ600 Rad-hardened telerobotics solution

System based on the use of industrial robot in nuclear environment for :

- Remote controlled operations with force feedback
- Automatics operations with programmed cycles
- Hydrids operations combining teleoperation actions and automatics operations

Use in Operation, Dismantling, Maintenance...

ΙΕΩ600 Example of use

Grinder

Saber saw

Plasma cutting

Oxycutting

12

Welding TIG

Laser cutting

Dexterous operation: Valve opening

Concrete breaking by Chiselling

TEΩ600 system Integrated solution design

On travelling crane for clean up and waste volume reduction (AD1 facility at La Hague plant)

On a mobile carrier and telescopic mast for waste retrieval (Russia) On telescopic mast trought a containment enclosure for access by the cell's roof (hot cells dismantling

Dual mode (UKAEA)

On a lifting crane (R7 facility La Hague plant)

On a mobile crawler (Fukushima)

On a mobile crawler and a lifting table (HADE La Hague plant)

13

Project in progress Dismantling in HADE facility at La Hague

Dismantling of 2 hot cells with TE Ω 600 system hanging on a telescopic mast and a laser cutting tool

• 2024: Inactif tests to qualify the laser cutting process with a TE Ω 600

8:59

• 2025: Operation in active cell at HADE facility

UdD Project - TEΩ V2

Context

- RX160 STAUBLI Robot is no more marketed since 2021
- New generation of STAUBLI robot use electronic components difficult to rad harden
- Orano have several hot cells to dismantle in the next 10 years
- \rightarrow Necessity to define a new solution for the TE Ω system

Our objective

UdD Project - TEΩ V2

Objective

• Orano choice to use KUKA robots for the future version of the TE Ω system because KUKA meets main Orano requirements:

- A solution without onboard electronics (without RDC card easy to deport)
- Use of brushless motor technology and resolver with a good radiation withstanding
- A large panel of robot solution in payload, and operation range
- A control unit able to be coupled with a telerobotic controller

Orano objective is to have a working prototype in 2024

UdD Project - TEΩ V2

Orano needs

- To qualify KUKA robot arm up to 100kGy at least
- To be able to protect KUKA robot arm against contamination

CERN feedback in KUKA robot use in nuclear environment will be very usefull for Orano

- Robot arm used in CERN facilities (ref product) and conditions of use
- Radiation withstanding: Arm modification, components replacement, special design, material analysis, ...
- Contamination protection

• •••

orano

Giving nuclear energy its full value