

Radiation Resistant Lighting

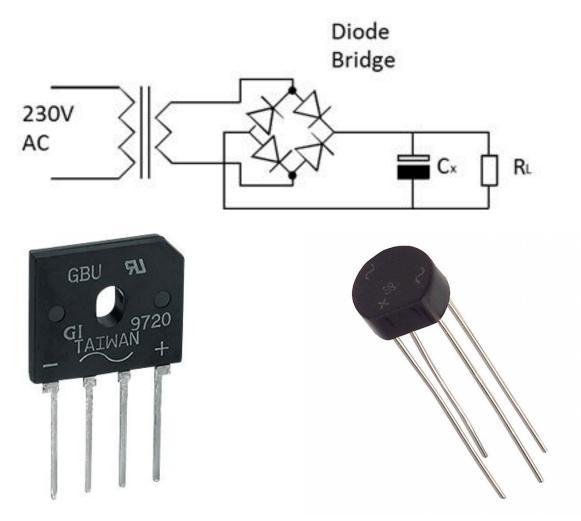
James Devine

20/09/23

Development Drivers:

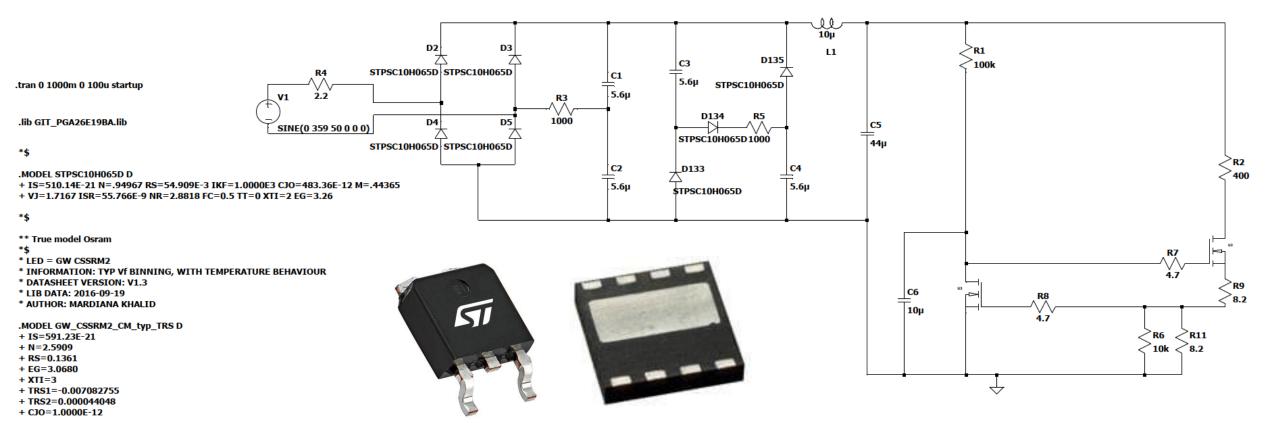
Fear of the dark!

Obsolecence of existing technologies:


- Low pressure sodium lighting, SOX
- Fluorescent tubes & wire wound ballasts
- Xenon beacons

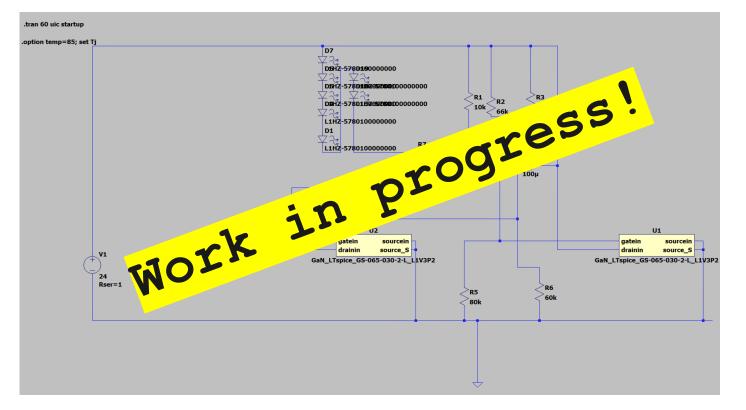
LED is the only commercial alternative.

Radiation hard Emergency lighting



Up to 7W maximum load. Expected functionality up to 1kGy, mixed field. (Limited by Si diodes)

CÉRN

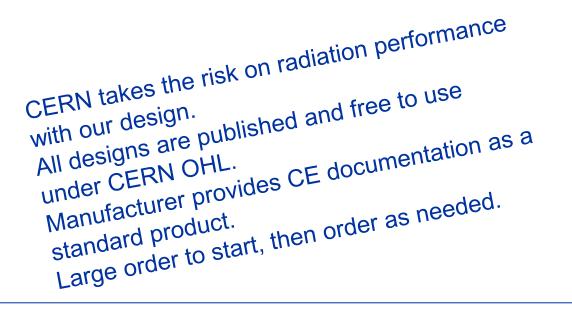


Radiation hard Conventional lighting



SiC and GaN active components + LEDs Expected functionality up to 10kGy, mixed field. (Limited by LEDs)

Radiation hard Flashing lighting


GaN active components + LEDs Expected functionality up to 10kGy, mixed field. (Limited by LEDs)

CÉRN

Approach

- 1. Develop & build prototypes in house.
- 2. Qualify COTS based on fundamentals (GaN, SIC, LEDs).
- 3. Radiation tests at component (full dose) and system level (low dose).
- 4. Commercial manufacture, based on adaptation of existing products (new PCB, existing housings/molding/tooling).
- 5. Follow up to ensure BOM respected in manufacture.
- 6. Monitor in-situ performance and maintain BOM as components reach end of life.

What is missing? No batch/lot qualification No enhanced QA/Documentation No guarantees from the manufacturers visà-vis radiation performance

Conventional Lighting Emergency Lighting Flashing Lights COTS LED + SiC + GaN **COTS LED + Si COTS LED + GaN** 1kGy dose limit **10kGy dose limit** Work in progress Could be increased to 10kGy (to 50% light output)

Back-up slides

Limits, constraints, costs

The LED is the weakest point – failure (50% expected) around 10kGy.

Also, lifetime dependent (50k-70k hours); hard to account for lifetime + radiation. Power supply components (GaN/SiC) are much more durable. Second generation lighting – replaceable LED modules?

Commercial radiation hard lights do exist!

Very expensive (up to 40x price increase!) but come with radiation QA & guarantees. Our experience was a ~3-5x price increase on a "standard luminaire" at tender.

How to get to 10kGy with emergency lighting?

Replace Si diode bridge with SiC, but no internal client for this change (yet).

Open Hardware designs:

Emergency Lighting PSU - <u>https://ohwr.org/project/radtol-led-psu/wikis/home</u> LED luminaire - <u>https://ohwr.org/project/radtol-led-luminaire/wikis/home</u> Flashing beacon - <u>https://ohwr.org/jdevine/rad-tol-led-beacon</u>

Publications:

Radiation hardening of LED luminaires for accelerator tunnels (preprint) - <u>https://arxiv.org/abs/1609.03481v1</u>

Modelling of proton irradiated GaN-based high-power white light-emitting diodes - <u>https://iopscience.iop.org/article/10.7567/JJAP.57.080304</u>

Radiation Testing of Optical and Semiconductor Components for Radiation-Tolerant LED Luminaires - <u>https://ieeexplore.ieee.org/document/9328680</u>

High-energy proton irradiation effects on GaN hybrid-drain-embedded gate injection transistors https://www.sciencedirect.com/science/article/pii/S0026271419308637

Proton irradiation of GaN transistor based power supply operating in the linear regionhttps://ieeexplore.ieee.org/document/9857693

home.cern