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Pulsar Timing Array

= Pulsar Timing Array — GW passage change the time of arrival of
pulses. Distance between earth and pulsar act as an arm of GW
interferometer. Sensitivity of 1 nHZ — 100 nHZ.

= Stochastic Gravitational Wave Background - GW background
created by superposition of many independent sources, which
are not individually detectable. Isotropic across the sky

= Hellings—Downs correlation — Quadrupolar nature of GW gives
correlation between TOA of pulses from pulsars which depends
on angular separation angle between pulsars.

" |n 2023, first evidence of SGWB in 15 years of data by
NANOGrav collab. Confirmed by PPTA, EPTA, InPTA, CPTA.
Around 4-sigma using 15-years of observation, around 70
pulsars.

(NANOGrav collab.2023, IPTA collab., Hellings and Downs’83)
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Sources:

Supermassive Black Hole Binary mergers (SMBH BM)

Inflation and Primordial curvature perturbations

Cosmic Strings

Cosmic Phase Transition

<o_Domain Walls

SGWB Sources

(NANOGrav collab

.2023)
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Domain Walls

= Domain walls are defects produced during spontaneous symmetry breaking of discrete Z-
(more generally Zy) symmetry

= Causally discounted patches could reside in different vacua/domains and domain walls
interpolates between different domains
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Domain Wall Solution

= Solution to classical equation of motion which interpolates between two vacua

S"(2) + V'(S(2)) = 0 with BC S(—00) = —f and S(o0) = f
1 g

S(2) = f tanh[/3 [ 2]

= Energy density of domain walls S(z)
pow = o0/ L .l
o ~ vV Af3(surface tension)

e
L = domain size ——— —f

How does domain size L change during cosmic evolution?




Domain Wall Evolution

* Velocity-dependent One-Scale (VOS) model — effective description of domain
wall evolution considering the surface tension and friction forces

dL
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 Domain wall dominate the energy density of universe if not annihilated as pr ~ T* 1/t2
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Domain Walls must collapse- could QCD effects trigger the collapse?

(Martins et al.’16, Bai, MK, Chen 2023 )



QCD anomalous discrete symmetry

* To have bias between degenerate vacua we make discrete symmetry anomalous under QCD

* Add heavy vector like quarks coupled to S field and integrate out t

Lyvukawa = ySQrQpr invariant under Zo as S — -5, 0, — —Qr, Qr = Or

—_—_— T’i

~

L=-225G,G" where § = arg(S)

 After QCD PT, chiral symmetry breaking, instanton effects \
generate potential for 4
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(Preskill et al’91, Vecchia et al.” 80) /



Domain wall collapse

'ullll'-.t L ';.
« For Z,, V1 = (0.66m2 f2 ~ (100.4 MeV)* \"\ :
. w,
e m_,,/ :
* The biased potential 14,,, cause the DW collapse Vhbias ] e
Tonn ~ 120 MeV Vbias v A o o e g+ (Lann) U '
anm (100 MeV)4 0.8 1016 GeV? 10
* Demanding that DW collapse before dominating the universe and f;
after QCD PT gives upper and lower bound on & R _} f
f T e=o0
Vi Viias \ 7 t
. 1 15 3 bias < <9 1 16 3 bias |
9.2 x 10°° GeV ((100MeV)4) <0 <26 x107° GeV (100 MeV )2 belaS

o ~ 106 GeV?® and f ~ 100 TeV

(Preskill et al’91, Vecchia et al.” 80)




GW production from DW collapse

* Collapse of DW leads to GW production with GW amplitude and frequency at production

Q ~ MpwL? Pow ~ G (BQ/dt®)? ~ Go2t?  pew ~ PawH ' /L? ~Go*  f(tann) = H(tann)

 The peak amplitude and frequency observed today

1/2 ~1/3
_ [P (Tann) Jxs (Tann) Tann
eak = 1.1 x 1 SH e —_—
[fp k < 10 Z( 10 ) ( 10 100 MeV

—3x1078 gG_W i 2( - )2 Lann - 9xs(Tann) 4
peak 0.7 0.8 1016 GeV3 100 MeV 10

* Spectrum of GW from DW collapse:
QGV\/'O(f3 forf<fpeak QGVVO(f—1 forf>fpeak

[nghz(to)

(Hiramatsu et al.10, 13, Saikawa 17, Bai, MK, Chen 2023 )
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QCD PT in non-zero theta domains

e Lattice simulations suggest that finite temperature QCD PT is cross-over in the

domains with 8 = 0. Butisittruefor 6 #07?

 We use Linear Sigma Model coupled to quarks (LSMq) to get a phase diagram

* In this model we get First order QCD PT for some
0 # 0, at finite temperature, which leads to production of
GW in the LISA band

(Pisarski’ 96 , Aoki et al.’06, Lenaghan et al."2000,
Schaefer et al.” 09, Mitter et al.” 14, Bai, MK, Chen 2023)
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Comparison with PTA result
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summary

* Recently Stochastic Gravitational Wave background (SGWB) detected by pulsar
timing array (PTA) which could be explained various sources.

e Collapse of Domain walls induced by QCD effects could lead to GW signal consistent
with the data.

 Some of the domains with non-zero QCD theta angle could lead to QCD first-order
phase transition and thus additional GW in LISA band.



LMSqg model

e LMSq potential at zero temperature, with ® =T, (0, + i7,)

V(@) = 2 Tr (@10) + A [Tr (010)]” + 2, Tr | (@10)?]
_ g e " det (D) + e det ()] — Tr [H (@ + @T)]

* In addition, there is a Yukawa coupling

[:Yukawa =(q [7’@ — gTa (Ja + 7:/.}/571-(1)] q, 4q—=—1u, da S
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(Lenaghan et al.’2000, Schaefer et al.” 09, Mitter et al.” 14)
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