1b2b Tagger: b-tagged Jet Identification PIKIMO 2023

Beni Pazár

Indiana University

11/11/2023

In collaboration with E. Lunghi

- As everyone knows, the Standard Model is incredibly successful
- However, we know that it is still incomplete
- Extra Higgs doublets and vector-like fermions are two straight forward extensions currently being searched for at the LHC
- The current searches look at the two model extensions independently. If they exist simultaneously then cascade decays (*H* → *VLQ* or *VLQ* → *H*) dominate.
- With this in mind, current searches may be looking for non-ideal signals.

Cascade Decays

When the heavy Higgs' mass is greater than the vector-like quarks, these processes are common. I focused on $H \rightarrow b_4 b \rightarrow Zbb$

Decays into b_4b and $b\bar{b}$ dominate

However, if the vector-like quark instead decays into the heavy Higgs then processes such as these can occur. In both cases, proper identification of the final state b-quarks is paramount.

- ATLAS and CMS both have very robust tagging algorithms. They search for a *b*-quark in the jet (arXiv: 1907.05120, 1211.4462)
- This does not give any information about the particle initiating the jet
- ullet For the process studied $g
 ightarrow b ar{b}$ is a dominant background
- So we need a tagger that distinguishes between jets which originated from a b-quark or gluon. We call this the 1b2b-tagger

Our work expanded upon that done by Goncalves, Krauss, and Linten (arXiv: 1512.05265)

• Charged Track Multiplicity (*N*_{ch})

Total number of charged particles in the final state Tend to be fewer in b-quark compared to gluon initiated jets

Girth (g)

A measure of the spread of jet constituents Tends to be smaller for b-quark compared to gluon initiated jets

• Energy Fragmentation Fraction (X_E)

Ratio of the energy of the tagged b-hadron to the total jet energy

Tends to be closer to unity for b-quark compared to gluon initiated jets

Gluon Energy Fragmentation

- When a gluon is forced to split into a $b\bar{b}$ pair, each quark carries roughly 50% of the jet energy (Black points)
- However, when the gluon is allowed to radiate before splitting, the energy of each quark is significantly less than the jet energy (Blue points)
- The amount of collinear gluon radiation prior to splitting is governed by the initial energy of the gluon¹

¹The theory equation came from Ellis, Stirling, and Webber, *QCD and Collider Physics*

XE for different energy scales

As the jet p_T increases the X_E of the gluon initiated jets decrease significantly, while be b-quark initiated jets only shift slightly

The background also includes charm and light jets which were misidentified. They further reduce X_E

Tagger Efficiency

Combining all three parameters into a logistic regression yields the following efficiency curves for the different p_T ranges we investigated. ϵ_b represents the fraction of b-quark initiated jets which pass the 1b2b tagger, while $\bar{\epsilon}_g$ is the fraction of gluon initiated jets which are mistagged.

1b2b Tagger Impact

 $H \rightarrow b_4 b \rightarrow Z b b$ $M_H = 2 \text{ TeV } \& M_{b_4} = 1.5 \text{ TeV}$

Beni Pazár

b-tagged Jet Identification

Branching Ratio Impact

Using the 1b2b tagger, we were able to reduce the upper limit of the detectable branching ratio for the cascade decay.

Beni Pazár b-tagged Jet Identification

- Distinguishing between b-quark and gluon initiated jets using jet substructure parameters is import for both QCD and new physics searches.
- The 1b2b-tagger presented is able to retain approximately 80% of b-quark initiated jets while rejecting 79-93% of gluon jets
- In the cascade decay process presented, viable searches would be impossible without the 1b2b-tagger
- This approach to jet identification should be further improved and applied in future experimental analysis

РТ	Btag	f	Btag _f	Btag _f /Btag	prob jet _f	Btag prob of jet _f
20-50 GeV	0.023	b	0.0062	0.27	0.012	0.52
		с	0.0062	0.27	0.048	0.13
		1	0.010	0.46	0.94	0.011
50-100 GeV	0.037	b	0.013	0.34	0.019	0.68
		с	0.013	0.34	0.061	0.21
		1	0.012	0.32	0.92	0.013
100-200 GeV	0.054	b	0.020	0.37	0.035	0.57
		с	0.018	0.34	0.085	0.21
		1	0.016	0.29	0.88	0.018
200-500 GeV	0.062	b	0.025	0.40	0.04	0.63
		с	0.019	0.31	0.10	0.19
		1	0.018	0.29	0.86	0.021
0.5-1 TeV	0.072	b	0.025	0.35	0.052	0.48
		с	0.018	0.25	0.13	0.14
		1	0.029	0.40	0.82	0.035
1-1.5 TeV	0.081	b	0.019	0.24	0.07	0.27
		с	0.017	0.21	0.16	0.11
		1	0.045	0.55	0.77	0.058
	0.089	b	0.015	0.19	0.077	0.19
1.5-2 TeV		с	0.014	0.20	0.18	0.078
		1	0.059	0.61	0.75	0.079

Flavor Breakdown of Gluon Initiated Jets

Beni Pazár b-tagged Jet Identification

p _T range	$p_T^{\rm avg}$	$\varepsilon_b = 0.6$	$\varepsilon_b = 0.7$	$\varepsilon_b = 0.8$	$\varepsilon_b = 0.9$	$\alpha_{ m ch}$	α_g
20-50 GeV	33 GeV	0.817	0.766	0.699	0.584	0.00581	0.416
50-100 GeV	69 GeV	0.747	0.692	0.615	0.488	0.00309	-0.038
100-200 GeV	134 GeV	0.652	0.581	0.483	0.329	-0.00061	-0.463
200-500 GeV	263 GeV	0.551	0.469	0.356	0.182	-0.00466	-0.750
0.5–1 TeV	0.61 TeV	0.482	0.391	0.269	0.114	-0.0059	-0.084
1–1.5 TeV	1.15 TeV	0.490	0.404	0.287	0.126	-0.00397	0.309
1.5-2 TeV	1.66 TeV	0.481	0.389	0.275	0.121	-0.00363	0.609

p_T range	$\varepsilon_b = 0.6$	$\varepsilon_b = 0.7$	$\varepsilon_b = 0.8$	$\varepsilon_b = 0.9$
20–50 GeV	0.123	0.16	0.212	0.321
50–100 GeV	0.117	0.15	0.206	0.332
100–200 GeV	0.104	0.142	0.216	0.365
200–500 GeV	0.08	0.119	0.195	0.348
0.5–1 TeV	0.057	0.094	0.157	0.265
1–1.5 TeV	0.038	0.058	0.102	0.193
1.5–2 TeV	0.024	0.041	0.072	0.143

0.4

 X_E

0.2

10-1

0.0

0.8

1.0

0.6

 $p_T \in [200, 500] \text{ GeV}$

p₇∈[0.5,1] TeV

p₇∈[1,1.5] TeV

p₇∈[1.5,2] TeV

2TeVHiggs-1.0VLQ||Invariant Mass Plots

Beni Pazár

b-tagged Jet Identification

2TeVHiggs-1.5VLQ||Invariant Mass Plots

Beni Pazár

b-tagged Jet Identification

2TeVHiggs-1.8VLQ||Invariant Mass Plots

Beni Pazár

b-tagged Jet Identification

2TeVHiggs-1.0VLQ||Invariant Mass Plots

Beni Pazár

b-tagged Jet Identification

2.5TeVHiggs-1.5VLQ||Invariant Mass Plots

Beni Pazár

b-tagged Jet Identification

2.5TeVHiggs-1.8VLQ||Invariant Mass Plots

Beni Pazár

b-tagged Jet Identification

2.5TeVHiggs-2.3VLQ||Invariant Mass Plots

Beni Pazár

b-tagged Jet Identification