Entanglement and Symmetry in Low-energy QCD

Qiaofeng Liu

Northwestern University

November 11, 2023

based on 2210.12085

(ロ) (個) (目) (目) (目) ヨー のんぐ

Introduction

Entanglement

"characteristic trait of quantum mechanics"

Symmetry

fundamental in QFT

 290 2 / 17

Baryon-baryon scattering

spin- $\frac{1}{2}$ baryon octet Flavor symmetry $SU(3)$ $(m_u = m_d = m_s)$

$$
B = \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda & \Sigma^+ & p \\ \Sigma^- & -\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}} \Lambda \end{pmatrix}
$$

Simple EFT at very low energies.

Only contact interactions below pion threshold.

Accidental symmetries:

- $SU(4)$ Wigner symmetry
- $SU(2N_f)$ spin-flavor symmetry
- \bullet Schrödinger symmetry

Emergent, not symmetries in QCD

$$
\mathcal{L}_{\text{LO}}^{n_f=3} = -c_1 \langle B_i^{\dagger} B_i B_j^{\dagger} B_j \rangle - c_2 \langle B_i^{\dagger} B_j B_j^{\dagger} B_i \rangle \n- c_3 \langle B_i^{\dagger} B_j^{\dagger} B_i B_j \rangle - c_4 \langle B_i^{\dagger} B_j^{\dagger} B_j B_i \rangle \n- c_5 \langle B_i^{\dagger} B_i \rangle \langle B_j^{\dagger} B_j \rangle - c_6 \langle B_i^{\dagger} B_j \rangle \langle B_j^{\dagger} B_i \rangle
$$

K ロ K K @ K K B X K B X (日) H

First clue: nucleon-nucleon scattering

$$
\mathcal{L}_{\text{LO}}^{n_f=2} = -\frac{1}{2} C_S \left(N^{\dagger} N \right)^2 - \frac{1}{2} C_T \left(N^{\dagger} \boldsymbol{\sigma} N \right) \cdot \left(N^{\dagger} \boldsymbol{\sigma} N \right)
$$

Beane, Kaplan, Klco and Savage [1812.03138]

4 / 17

First clue: nucleon-nucleon scattering

$$
\mathcal{L}_{\text{LO}}^{n_f=2} = -\frac{1}{2} C_S \left(N^{\dagger} N \right)^2 - \frac{1}{2} C_T \left(N^{\dagger} \boldsymbol{\sigma} N \right) \cdot \left(N^{\dagger} \boldsymbol{\sigma} N \right)
$$

Beane, Kaplan, Klco and Savage [1812.03138]

Quantifying Entanglement

Entanglement is defined on states

\n- $$
|\uparrow\downarrow\rangle = |\uparrow\rangle \otimes |\downarrow\rangle : E = 0
$$
\n- $(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2} : E \neq 0$
\n

 $E(|\psi_A\rangle \otimes |\psi_B\rangle) = 0$

Entanglement of operators?

KID K K B K E K K E K LE HORO

5 / 17

Quantifying Entanglement

Entanglement is defined on states

\n- $$
|\uparrow\downarrow\rangle = |\uparrow\rangle \otimes |\downarrow\rangle : E = 0
$$
\n- $(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2} : E \neq 0$
\n

 $E(|\psi_A\rangle \otimes |\psi_B\rangle) = 0$

Entanglement of operators

 $E(U) = \overline{E(U|\psi_1\rangle \otimes |\psi_2\rangle)}$

K ロ ▶ K 何 ▶ K 글 ▶ K 글 ▶ _ 글(님) K) Q Q Q

5 / 17

Minimally Entangling Operators

Minimally entangling operators: $E(U) = 0$

product state $\stackrel{U}{\rightarrow}$ product state.

In a two qubit $(\text{spin-}\frac{1}{2})$ system, only two such operators, unique up to local unitaries (in the basis of $\{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\},$

$$
\begin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} = 1, \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} = \text{SWAP}.
$$

Low and Mehen [2104.10835]

S matrix of baryon-baryon scattering

 $SU(3)$ flavor symmetry \Longrightarrow only 6 independent phase shifts

Charge and strangeness conservation \implies block-diagonal

$$
8 \otimes 8 = 27 \oplus 10 \oplus \overline{10} \oplus 8_S \oplus 8_A \oplus 1
$$
\n
$$
S = \frac{1 - \sigma \cdot \sigma}{4} \otimes (P_{27} e^{2i\delta_{27}} + P_{8s} e^{2i\delta_{8s}} + P_{1} e^{2i\delta_{1}}) \qquad (p\Lambda, p\Sigma^{0}, p\Sigma^{+})
$$
\n
$$
+ \frac{3 + \sigma \cdot \sigma}{4} \otimes (P_{10} e^{2i\delta_{10}} + P_{\overline{10}} e^{2i\delta_{\overline{10}}} + P_{8A} e^{2i\delta_{8A}}) \qquad (p\Lambda, p\Sigma^{0}, p\Sigma^{-})
$$
\n
$$
+ \frac{(p\Lambda, p\Sigma^{0}, p\Sigma^{-})}{(p\Lambda, p\Sigma^{0}, p\Sigma^{-})} \qquad (p\Lambda, p\Sigma^{0}, p\Sigma^{-})}{(S-\Lambda, \Sigma^{-}\Sigma^{0}, p\Sigma^{-})}
$$
\n
$$
+ \frac{(S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0})}{(S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0})}
$$
\n
$$
+ \frac{(S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0})}{(S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0})}
$$
\n
$$
+ \frac{(S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0})}{(S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0})}
$$
\n
$$
+ \frac{(S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0})}{(S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0}, S-\Sigma^{0})}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있어 7 / 17

Constraints on phase shifts

イロト イ団ト イミト イミト (ミ)キ のんぐ 8 / 17

From S matrix to Lagrangian

$$
\mathcal{L}_{\text{LO}}^{n_f=3} = -c_1 \langle B_i^{\dagger} B_i B_j^{\dagger} B_j \rangle - c_2 \langle B_i^{\dagger} B_j B_j^{\dagger} B_i \rangle - c_3 \langle B_i^{\dagger} B_j^{\dagger} B_i B_j \rangle - c_4 \langle B_i^{\dagger} B_j^{\dagger} B_j B_i \rangle - c_5 \langle B_i^{\dagger} B_i \rangle \langle B_j^{\dagger} B_j \rangle - c_6 \langle B_i^{\dagger} B_j \rangle \langle B_j^{\dagger} B_i \rangle.
$$

K ロ ▶ K 個 ▶ K 평 ▶ K 평 ▶ (평) ≥ 19 Q Q Q 9 / 17

Constraints on Wilson coefficients

$$
4 \Box \rightarrow 4 \Box \rightarrow 4 \Xi \rightarrow 4 \Xi \rightarrow \Xi \vert \Xi \rightarrow 0 \vert 0 \vert 17
$$

Symmetries of Lagrangian: minimum in 1-d sector

 $np, \Sigma^-\Xi^-, \Sigma^+\Xi^0$

 $S \propto \mathbf{1} \Longleftarrow$ spin-flavor $SU(6)$

 $n\Sigma^-, p\,\Sigma^+, \Xi^-\Xi^0$

 $S \propto \mathbf{1} \Longleftarrow \text{spin-flavor} \ \overline{SU(6)}$

Spin-flavor symmetry at quark level $SU(6): \; \left(u_{\uparrow}, u_{\downarrow}, d_{\uparrow}, d_{\downarrow}, s_{\uparrow}, s_{\downarrow} \right)^T$

- small octet-decuplet mass difference
- magnetic moment of baryons
- Large- N_c expansion.

KID K K B K E K K E K LE HORO

Symmetries of Lagrangian: minimum in 3-d sector

$$
S \propto \mathbf{1} \Longrightarrow \mathcal{L} = -(c_1+c_5) \langle B_i^{\dagger} B_i \rangle \langle B_j^{\dagger} B_j \rangle + c_1 \langle B_i^{\dagger} B_j^{\dagger} \rangle \langle B_i B_j \rangle
$$

Symmetries manifest when B is written in $SU(3)$ generator components.

$$
B^{a} \equiv \text{Tr}(BT^{a}), \qquad a = 1, \dots, 8 ,
$$

\n
$$
\vec{B} = (B^{1}, \dots, B^{8})
$$

\n
$$
= \frac{1}{2} (\Sigma^{+} + \Sigma^{-}, i\Sigma^{+} - i\Sigma^{-}, p + \Xi^{-}, ip - i\Xi^{-}, n + \Xi^{0}, in - i\Xi^{0}, \sqrt{2}\Sigma^{0}, \sqrt{2}\Lambda).
$$

The Lagrangian becomes

$$
\mathcal{L} = -2(c_1 + c_5) \left(\vec{B}_i^{\dagger} \cdot \vec{B}_i \right) \left(\vec{B}_j^{\dagger} \cdot \vec{B}_j \right) + 2c_1 \left(\vec{B}_i^{\dagger} \cdot \vec{B}_j^{\dagger} \right) \left(\vec{B}_i \cdot \vec{B}_j \right),
$$

 $SO(8)$ symmetry

Symmetries of Lagrangian: minimum in 6-d sector

 $S \propto \mathbf{1} \Longleftrightarrow \text{only } c_5 \text{ nonzero.}$

$$
\mathcal{B}=(n_{\uparrow},n_{\downarrow},p_{\uparrow},p_{\downarrow},\dots)^T
$$

 $\mathcal{L} = -c_5(\mathcal{B}^\dagger \mathcal{B})^2 \Longleftrightarrow SU(16)$ symmetry $\qquad \mathcal{B} \to U\mathcal{B}$, $U \in SU(16)$ [generalization of Wigner $SU(4)$]

 $S \propto$ SWAP:

$$
\mathcal{L} = -c_5 \langle B_i^{\dagger} B_i \rangle \langle B_j^{\dagger} B_j \rangle - c_6 \langle B_i^{\dagger} B_j \rangle \langle B_i^{\dagger} B_j \rangle \n= -2c_5 \left(\vec{B}_i^{\dagger} \cdot \vec{B}_i \right) \left(\vec{B}_j^{\dagger} \cdot \vec{B}_j \right) - 2c_6 \left(\vec{B}_i^{\dagger} \cdot \vec{B}_j \right) \left(\vec{B}_i^{\dagger} \cdot \vec{B}_j \right) .
$$

 $SU(8)$ symmetry

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) K) Q Q Q 13 / 17

The SWAP gate in each sector is achieved when $\delta = 0$ (free theory) in some channels and $\delta = \pi/2$ (unitary limit) in other channels.

The theory flows to a UV fixed point $\frac{d}{d\mu}\mu C_{R,R'} = 0$ in the unitary limit, and scattering length goes to infinity.

 \Rightarrow Schrödinger symmetry in these channels

Lattice Data

NPLQCD [1706.06550, 2009.12357]

Table shows that $SU(6)$ symmetry $(C_{27} = C_{\overline{10}})$ holds up well in both simulations.

 $SU(16)$ is present in unnatural case.

None of the symmetries is completely ruled out. Better simulation results need!

Conclusion and Outlook

We probe entanglement of the S-matrix in baryon-baryon scattering mediated by pionless EFT.

Identity and SWAP gates are realized by phase relations $\delta_R = \delta_{R'}$ and $\delta_R = 0$, $\delta_{R'} = \pi/2$ or $\delta_R = \pi/2$, $\delta_{R'} = 0$.

We find emergent symmetries of $SU(6)$, $SO(8)$, $SU(8)$ and $SU(16)$ when entanglement is minimized in different (Q, S) sectors.

Entanglement principles can be used to predict symmetries. We hope the framework can be used to study entanglement in other theories.

Thanks!

Backup slides

Minimally entangling operators in two qubit system Any tensor product operator $U = U_A \otimes U_B$ does not entangle the spins. The unitary operators of a two-spin system form $SU(4)$. For any $U \in SU(4)$, it has Cartan decomposition

$$
U = (U_A \otimes U_B)U_d(V_A \otimes V_B), \qquad U_d = \exp(\sum_i i\beta_i \sigma_i \otimes \sigma_i),
$$

What are the entanglement properties of U_d ? The entanglement power of

$$
U_d = \exp(\sum_i i\beta_i \,\sigma_i \otimes \sigma_i)
$$

vanishes when $\beta_i = 0$ or $\pi/4$ for all i.¹ Given the $\pi/2$ periocity of β_i , these two solutions are all independent solutions of minimal entanglement.

Minimally entangling operators with regard to $\beta_i = 0$ or $\pi/4$: 1 and $e^{i\frac{\pi}{4}}$ SWAP. They are unique up to local unitaries.

1 Ian and Mehen, 2021. arxiv: 2104.10835

2 / 11

Power Counting in pionless EFT

One complexity of this theory comes from unnatural size of scattering length. It disturbs usual power counting.

Scale of pionless EFT: $\Lambda \sim m_\pi \simeq 140 \text{ MeV}$

Natural scaling of Wilson coefficient with 2n derivatives: $C_{2n} \sim \mathcal{O}\left(\frac{1}{M\Lambda^{2n+1}}\right)$ K ロ) - K @) - K ミ) - K ミ) - ミ 'ニ '

Unnaturalness of pionless EFT

Effective Range Expansion: $p \cot \delta = -\frac{1}{a} + \frac{1}{2}$ $\frac{1}{2} r_0 p^2 + \cdots = -\frac{1}{a} + \frac{1}{2} \Lambda^2 \sum_{n=0}^{\infty} r_n \left(\frac{p^2}{\Lambda^2} \right)$ $\frac{p^2}{\Lambda^2}\right)^n$.

Interaction is encoded in a, r_i which are measured in experiment.

$$
\mathcal{A} = \frac{4\pi}{M} \frac{1}{p \cot \delta - ip} = \frac{4\pi}{M} \left[-\frac{1}{a} - ip + \frac{1}{2} r_0 p^2 + \cdots \right]^{-1}.
$$

Matching expansion from EFT and ERE shows $C_0 = 4\pi a/M$.

Unnaturally large scattering length due to shallow bound state.

 $a \gg 1/\Lambda \implies$ expansion breaks down when $1/a p\Lambda$

KID KARA KE KILE KE ETE KORO 4 / 11

A fix to the problem

KSW-vK scheme subtracts extra poles and allows for a new expansion.

The leading order amplitude now consists of C_0 insertions to all orders.

"fine tuning" in nuclear physics

Nucleon-nucleon interactions

How does $SU(4)$ manifest in nucleon-nucleon interactions?

Nucleon-nucleon interactions of very low energy (below the threshold of pion mass) is described by an effective field theory with only nugleon field N (pionless EFT).

Non-relativistic QFT:

$$
\mathcal{L}_{eff} = \psi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2M} \right) \psi + C_0 (\psi^{\dagger} \psi)^2
$$

$$
+ \frac{C_2}{8} \left[(\psi \psi)^{\dagger} (\psi \overleftrightarrow{\nabla}^2 \psi) + \text{h.c.} \right] + \cdots
$$

In NN scattering, two independent LO operators:

$$
\mathcal{L}_{\text{LO}}^{n_f=2} = -\frac{1}{2} C_S \left(N^{\dagger} N \right)^2 - \frac{1}{2} C_T \left(N^{\dagger} \boldsymbol{\sigma} N \right) \cdot \left(N^{\dagger} \boldsymbol{\sigma} N \right) .
$$
\n
$$
N = \left(p_{\uparrow}, p_{\downarrow}, n_{\uparrow}, n_{\downarrow} \right)^T \qquad \boldsymbol{\sigma} = \left(\sigma_{+,x}^1 \sigma_{+,y}^2 \sigma_{+,x}^3 \right)^T \cdot \left(\sigma_{+,x}^3 \sigma_{+,y}^2 \sigma_{+,y}^4 \sigma_{+,y}^4 \right) \cdot \left(\sigma_{+,x}^4 \sigma_{+,y}^4 \sigma_{+,y}^4 \sigma_{+,y}^4 \sigma_{+,y}^4 \right)
$$

 $SU(4)$ in nucleon-nucleon interactions $\mathcal{L}_{\text{LO}}^{n_f=2}=-\frac{1}{2}$ $\frac{1}{2}C_S (N^\dagger N)^2 - \frac{1}{2}$ $\frac{1}{2}C_T\left(N^{\dagger} \boldsymbol{\sigma} N\right) \cdot \left(N^{\dagger} \boldsymbol{\sigma} N\right)$.

 C_S is $SU(4)$ invariant. C_T explicitly breaks $SU(4)$ Wigner symmetry.

Nucleon-nucleon scattering has two spin channels: $S = 0$ and $S = 1$.

 $1-\sigma\!\cdot\!\sigma$ $rac{\sigma \cdot \sigma}{4}$ and $rac{3+\sigma \cdot \sigma}{4}$ are projectors into $S=0$ and $S=1$ channels. $\bar{C}_0 = C_S - 3C_T$ $\bar{C}_1 = C_S + C_T$ $SU(4)$ implies $\bar{C}_0 = \bar{C}_1$.

In real life,

$$
C_S = -1.2 \times 10^{-4} \,\text{MeV}^{-2}, C_T = -9.6 \times 10^{-6} \,\text{MeV}^{-2}
$$
\n
$$
C_T \ll C_S \ , \quad \bar{C}_0 \simeq \bar{C}_1
$$
\n
$$
C_1 \ll C_S \ , \quad \bar{C}_0 \simeq \bar{C}_1
$$

$SU(16)$ in baryon octet?

Can we generalize Wigner symmetry to three-flavor? Eight particles $\implies SU(16)$.

$$
\mathcal{B}=(n_{\uparrow},n_{\downarrow},p_{\uparrow},p_{\downarrow},\dots)
$$

Six LO operators of baryon-baryon interactions²

$$
\mathcal{L}_{LO}^{n_f=3} = -c_1 \langle B_i^{\dagger} B_i B_j^{\dagger} B_j \rangle - c_2 \langle B_i^{\dagger} B_j B_j^{\dagger} B_i \rangle - c_3 \langle B_i^{\dagger} B_j^{\dagger} B_i B_j \rangle - c_4 \langle B_i^{\dagger} B_j^{\dagger} B_j B_i \rangle - c_5 \langle B_i^{\dagger} B_i \rangle \langle B_j^{\dagger} B_j \rangle - c_6 \langle B_i^{\dagger} B_j \rangle \langle B_j^{\dagger} B_i \rangle.
$$
\n(16) prediction: only c_5 nonzero.
\n*i*, *j* are spin indices

 $SU(16)$ prediction: o

Lattice data³ seems to agree, but may not be the real case (unrealistic m_τ)

 2 Savage and Wise, Phys.Rev.D 53 (1996), 349-354 **Savage and Wise, Phys.Rev.D 53 (1996), 349-354** $\{x \in \mathbb{R}^n : x \in \mathbb{R}^n : x \in \mathbb{R}^n : x \in \mathbb{R}^n \}$ 8/11

Implications of spin-flavor symmetry

.

At leading order, the Lagrangian has only two terms of dimension 6,

$$
\mathcal{L} = -a \left(\Psi_{\mu\nu\rho}^{\dagger} \Psi^{\mu\nu\rho} \right)^2 - b \Psi_{\mu\nu\sigma}^{\dagger} \Psi^{\mu\nu\tau} \Psi_{\rho\delta\tau}^{\dagger} \Psi^{\rho\delta\sigma}.
$$

When only spin-1/2 baryon octet is considered, the Lagrangian can be matched to the baryon interactions by writing indices in terms of the spin index and the flavor index, $(\mu, \nu, \rho) = (\alpha i, \beta j, \gamma k)$,

$$
\Psi^{(\alpha i)(\beta j)(\gamma k)} = \Delta_{\alpha\beta\gamma}^{ijk} + \frac{1}{\sqrt{18}} \left(B_{m,\alpha}^i \epsilon^{mjk} \epsilon_{\beta\gamma} + B_{m,\beta}^j \epsilon^{mki} \epsilon_{\gamma\alpha} + B_{m,\gamma}^k \epsilon^{mij} \epsilon_{\alpha\beta} \right).
$$

 $\text{Kaplan and Savage, Phys.}$ Lett. $\text{B365:}244\text{-}251,1996$ and a set of $\text{F3} \rightarrow \text{F2}$ and $\text{G3} \rightarrow \text{G4}$ 9 / 11

Implications of spin-flavor symmetry

$$
\mathcal{L}_{LO}^{SU(6)} = - a \left(\Psi_{\mu\nu\rho}^{\dagger} \Psi^{\mu\nu\rho} \right)^2 - b \Psi_{\mu\nu\sigma}^{\dagger} \Psi^{\mu\nu\tau} \Psi_{\rho\delta\tau}^{\dagger} \Psi^{\rho\delta\sigma} \n\mathcal{L}_{LO}^{n_f=3} = - c_1 \langle B_i^{\dagger} B_i B_j^{\dagger} B_j \rangle - c_2 \langle B_i^{\dagger} B_j B_j^{\dagger} B_i \rangle - c_3 \langle B_i^{\dagger} B_j^{\dagger} B_i B_j \rangle \n- c_4 \langle B_i^{\dagger} B_j^{\dagger} B_j B_i \rangle - c_5 \langle B_i^{\dagger} B_i \rangle \langle B_j^{\dagger} B_j \rangle - c_6 \langle B_i^{\dagger} B_j \rangle \langle B_j^{\dagger} B_i \rangle.
$$

Projecting Ψ into B fields allows matching c_1-c_6 to a and b.

$$
c_1 = \frac{7}{27}b
$$
 $c_2 = \frac{1}{9}b$ $c_3 = \frac{10}{81}b$ $c_4 = -\frac{14}{81}b$ $c_5 = a + \frac{2}{9}b$ $c_6 = -\frac{1}{9}b$.

For $n_f = 2$ nucleon field, $SU(4)$ spin-flavor gives the same prediction as $SU(4)$ Wigner symmetry.

$$
C_T=0
$$

KID KAR KE KE KE ER DAG 10 / 11

Schrödinger Symmetry

Schrödinger symmetry is the conformal symmetry of non-relativistic QFT.

$$
[J_a, J_b] = i\epsilon_{abc}J_c , \quad [J_a, P_b] = i\epsilon_{abc}P_c , \quad [J_a, K_b] = i\epsilon_{abc}K_c
$$

\n
$$
[P_a, P_b] = 0 , \quad [K_a, K_b] = 0 , \quad [K_a, P_b] = iM\delta_{ab}
$$

\n
$$
[H, J_a] = 0 , \quad [H, P_a] = 0 , \quad [H, K_a] = iP_a
$$

\nSchrödinger symmetry is present when the scattering length is infinite.

This is the case in NN scattering.

$$
a_0 = -24
$$
fm, $a_0^{-1} = -8.2$ MeV $a_1 = 5.4$ fm, $a_1^{-1} = 36$ MeV

11 / 11

K ロ ▶ K 御 ▶ K 글 ▶ K 글 ▶ [로] 主 Y 9 Q @