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Introduction

Entanglement Symmetry
”characteristic trait of quantum fundamental in QFT
mechanics”
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Baryon-baryon scattering

spin—% baryon octet
Flavor symmetry SU(3) (m, = mgq = my)
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Simple EFT at very low energies.

@ Only contact interactions below pion threshold.

. . n=3 i
Accidental symmetries: L6 = - a(BIBB]B;) — c,(BIB,B] B)
— ¢3(B}BIB,B;) — ¢4(B} B! B; B;)

e SU(4) Wigner symmetry e BIBYBIB,) - (B By (B By

e SU(2Ny) spin-flavor symmetry
@ Schrodinger symmetry

Emergent, not symmetries in QCD
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First clue: nucleon-nucleon scattering

nj— 1 1
L2 = —5Cs (N'N)? = Cr (NToN) - (N1 )
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Beane, Kaplan, Klco and Savage [1812.03138]
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First clue: nucleon-nucleon scattering
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SU(4) Wigner symmetry

T
N = (pt,py,n1,ny)
N S UN, UeSU(4)

Schrodinger (conformal)
Symmetry

Beane, Kaplan, Klco and Savage [1812.03138]
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Quantifying Entanglement

Entanglement is defined on states
o =N @ : E=0
o (1) + [11)/VZ: B #0

E(lva) @ [¥5)) =0

Entanglement of operators?
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Quantifying Entanglement

Entanglement is defined on states
o (M) +NM)/V2:E#0 ,

E(|Ya)®|YB)) =0
Entenglement-of-operators

EU) = EU [i1) ® [2))
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Minimally Entangling Operators W .
Minimally entangling operators:
EU)=0

product state Y, product state. )

In a two qubit (spin—%) system, only two such operators, unique up to

local unitaries (in the basis of {|11), 1), 41, 4 }),

1 000 1 000
0100 0 010
0010] L 010 0] SWAP.
0 0 01 0 0 01

Low and Mehen [2104.10835]
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S matrix of baryon-baryon scattering

SU(3) flavor symmetry = only 6 independent phase shifts

Charge and strangeness conservation =—> block-diagonal

(@, S) sectors

np
828=2701001008sB8,4 @1 %E
2E
L

gt e

+—— ® (P1o %1910 | Pige?%10 4 Py, ¢%'%8a) (éfjx\ X;:JFE:U: ZEO))

(20, 2-x0, -9

(E-%+ 20N, 2050)

(T2, 3% AY0 ==p, E%n, AA)
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Constraints on phase shifts

(@, S) sectors

Minimal Entanglement Conditions

np
XTET 527 = (5ﬁ or (527 = 5ﬁ =+ %
»+=0
ny-
pE*t 027 =010 Or O =0d10F 5

=-=0

(pA, p=°, n¥¥)
(nA, nX°, px-)
(A, ¥-%0, n=-)
(S*HA, S+Y0, p=0)
(20, =-%°, 2-%9)
(=-x+,20A, =050)

627:6852610ig:6Ti%:68Aig
or
027 = 08s = 010 = O1p = 08,

(75, X050, AN, = p, =, AA)

027 = 0gg = 01 = 010 = 01 = 084
Or 0g7 =dgg =01 =010x 5 =05 £ 5 =0y £ 5
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From S matrix to Lagrangian

=3
Lr5" =— (Bl BiBIB;) — (B B; B! B;) — c3(B] B! B B))
— cs(BIBIB; B;) — e5(B] B;) (B! B;) — c6(B] B;)(BIB;) .

PP 200+

cz \l(/+1) \1/+1)
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Constraints on Wilson coefficients

Flavor subspaces Minimal Entanglement Conditions
np
2 2
DI = —cq =—— ;= +——
Cy Cg Or (C1+Cs MWQ+% M
a0
nx-
2w 2
pZ*O C1 = Cs or —C2+C5:—m, Cl—()ﬁ:im
(pA, pX°, nX7)
(nA, nX° p-)
1 1
(X7A, 27X n=E7) (1= —C2=—50=501=Co
(STA, 20 pE9) or
1 1 27 27
=0, =780 =0 — )= — (3= —C4 = —C5 — —en £ 21
(== ) I S S V /YRl V
(E-%+, 200, 20%9)
(XFX—, X080 A0 =p, Z%n, AA) ci=C=cC=c,=c=0 or
=C=c=c=00c==2r/Mu,c =
2 /Mp
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Symmetries of Lagrangian: minimum in 1-d sector

np, X" =7, 8+=0 Spin-flavor symmetry at quark level

SU(6) :
S x 1 < spin-flavor SU(6)

(ut,uy, dr dy, sy,5,) "

e small octet-decuplet mass

nzf’p EJr, EfEO difference
e magnetic moment of baryons
S o 1 <= spin-flavor SU(6) o Large-N, expansion.
Baryon pairs symmetric flavor irrep| anti-symmetric flavor irrep
np, 5=, TT=0 27 10
ny,put, = =0 27 10
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Symmetries of Lagrangian: minimum in 3-d sector

S o1l = L=—(c1 +c5) (BIB;)(BIB;) + 1 (B[ Bl)(B; B))

Symmetries manifest when B is written in SU(3) generator
components.

B*=Tx(BT%), a=1,--,8,
EZ(Blv"' aBg)

:% (2+ LY St YT p B ip— S, n + B0, in — iao,\/izo,\/iz\) .
The Lagrangian becomes
L= —2(61 =+ C5) (Bj . B;) ( _"]T . B}) + 2¢1 (B:f . Bj) (Ez . B}) ,

SO(8) symmetry
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Symmetries of Lagrangian: minimum in 6-d sector

S x 1 <= only ¢5 nonzero.
B = (ny,ny,pr,py,- - I

L = —c5(B'B)? <= SU(16) symmetry B—UB, Ue€SU(16)
[generalization of Wigner SU (4)]

S o« SWAP:

L =—c5 (B B;)(BIB;) — cs (B! B;)(B] B;)
=2 (Bl B.) (B]-B,) - 20 (B! B;) (B B) -

SU(8) symmetry
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Schrodinger Symmetry

The SWAP gate in each sector is achieved when 6 = 0 (free theory)
some channels and § = /2 (unitary limit) in other channels.

The theory flows to a UV fixed point % #Cr r = 0 in the unitary
limit, and scattering length goes to infinity.

—> Schrodinger symmetry in these channels

n
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Lattice Data

NPLQCD [1706.06550, 2009.12357]

Car Cio O
natural [6] —16.7(2.8) —50(50) —11.1(2.5)
unnatural [6] 1.89(4) 1.75(6) 2.00(8)
natural [25] —2873 - —2973
unnatural [25] 10.075% - 11.379%

my, = 806 MeV
my, = 450 MeV

Table shows that SU(6) symmetry (Ca7 = Cqg) holds up well in both

simulations.

SU(16) is present in unnatural case.

None of the symmetries is completely ruled out. Better simulation

results need!
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Conclusion and Outlook

We probe entanglement of the S-matrix in baryon-baryon scattering
mediated by pionless EFT.

Identity and SWAP gates are realized by phase relations dg = dr and
5R = 0,(53/ :71'/2 or (SR = 7T/2,(5R/ =0.

We find emergent symmetries of SU(6), SO(8), SU(8) and SU(16)
when entanglement is minimized in different (@, .S) sectors.

Entanglement principles can be used to predict symmetries. We hope
the framework can be used to study entanglement in other theories.
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Thanks!
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Backup slides
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Minimally entangling operators in two qubit system
Any tensor product operator U = U4 ® Up does not entangle the spins.

The unitary operators of a two-spin system form SU(4). For any
U € SU(4), it has Cartan decomposition

U=(Ua@Up)Us(Va® V), Ug=exp(d_ifioi®0),

What are the entanglement properties of U;? The entanglement power
of

Ug = exp(d_ifioi ® 0y)

7

vanishes when 3; = 0 or 7/4 for all i. ! Given the 7/2 periocity of f3;,
these two solutions are all independent solutions of minimal
entanglement.

Minimally entangling operators with regard to §; = 0 or w/4: 1 and
¢'s SWAP. They are unique up to local unitaries.
Tan and Mehen, 2021. arxiv: 2104.10835
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Power Counting in pionless EFT

One complexity of this theory comes from unnatural size of scattering
length. It disturbs usual power counting.

Scale of pionless EFT: A ~ m, ~ 140 MeV

W

p

- A o —Co iyt
+ ><><>< + >< + .
ci ()’ ~Cop?

Natural scaling of Wilson coefficient with 2n derivatives:

Con ~ O (yxzwe1)
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Unnaturalness of pionless EF'T

Effective Range Expansion:
2 n
poots ==t + drop? oo = b+ AT ()"

Interaction is encoded in a, r; which are measured in experiment.

_dm 1 _4dm_1_ . L. .2 -1
A= N peotomp = 8 [Ta P+ grop’ +-]

Matching expansion from EFT and ERE shows Cy = 4wa /M.
Unnaturally large scattering length due to shallow bound state.

a>1/A = expansion breaks down when 1/apA

4/11



A fix to the problem

#+1p 703 (M (il:ip)>2
>< ><>< + .
_0217 2 CoM (u+ip) ;L+‘Ip —C p ((U\I ;Hr/p))

KSW-vK scheme subtracts extra poles and allows for a new expansion.
The leading order amplitude now consists of Cy insertions to all orders.

“fine tuning” in nuclear physics
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Nucleon-nucleon interactions

How does SU(4) manifest in nucleon-nucleon interactions?

Nucleon-nucleon interactions of very low energy (below the threshold of

pion mass) is described by an effective field theory, with only nugleon
field N (pionless EFT).

Non-relativistic QFT:
2
Logp =01 (i&e + QVM> v+ Co(h)? —Conp™
+ % [(ww(ﬁ%) + h-c-] +o

In NN scattering, two independent LO operators:

ner 1 !
L = —3Cs (NIN)? = SCr (NToN) - (NTa)

N = (py,pp,npn)t o= (c'0? %)
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SU(4) in nucleon-nucleon interactions

L = —%CS (NTN)? — %CT (NToeN)- (NToN) .

Cyg is SU(4) invariant. Cp explicitly breaks SU(4) Wigner symmetry.

Nucleon-nucleon scattering has two spin channels: S =0 and S = 1.

1*4‘17"7 and 3*2"’ are projectors into S = 0 and S = 1 channels.

00=CS—BCT C_'1:CS+CT
SU(4) implies Cy = C4.
In real life,
Cg=-12x10"*MeV~2, Cp = —9.6 x 1075 MeV 2

Cr<Cs, Cy~Cy
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SU(16) in baryon octet?
Can we generalize Wigner symmetry to three-flavor?
Eight particles = SU(16).

B = (ny,ny,pr,py,---)
Six LO operators of baryon-baryon interactions?

=3
L5 =~ e1(BIB;B!B;) — (B! B; B! B;) — e3(B! B! B, B)
— (B! BIB;B;) — es(B] Bi)(B] B;) — cs(B!B;) (BIB;) .
SU(16) prediction: only c5 nonzero. i, j are spin indices
o o
- Lattice data3 seems to agree, but
may not be the real case
B P (unrealistic m)
00 ®

2Savage and Wise, Phys.Rev.D 53 (1996), 349-354
SNPLQCD, Phys. Rev. D 96, 114510 (2017)
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Implications of spin-flavor symmetry
At leading order, the Lagrangian has only two terms of dimension 6,
i uvp\ T wr\ T gpdo
£=—a(wh,,wr) —oul, wrel e
When only spin-1/2 baryon octet is considered, the Lagrangian can be

matched to the baryon interactions by writing indices in terms of the
spin index and the flavor index, (u, v, p) = (a1, 54, vk),

(i) (Bi)(vk) A2§7+—18 (Bfmaem]ke/g,y + Bfnﬂemk’e,ya + B,]f%,yem”ea/g) .

Kaplan and Savage, Phys.Lett.B365:244-251,1996
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Implications of spin-flavor symmetry

SU(6 2 . .
ot — (\IJLVP\II“””> — bW, v
=3
»Czé) =—C <BJBZBJB]> - CQ<BJ~LB]'B;B¢> - Cg(B;LB;BiBj>
— cs(BIBIB; Bi) — e5(B] B;) (B! B;) — c6(B] B;)(BIB;) .

Projecting ¥ into B fields allows matching c¢i-cg to a and b.

7 1 10 14 2 1
cl 271) ) 9b c3 SIb cy g1 cs =a -+ 9 Ce 9

For ny = 2 nucleon field, SU(4) spin-flavor gives the same prediction as
SU(4) Wigner symmetry.
Cr=0
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Schrodinger Symmetry

Schrodinger symmetry is the conformal symmetry of non-relativistic
QFT.

[v]av Jb] = i€agbede [Jm Pb] = t€ape e [Jaa Kb] = t€ape K
[lzzal%J =0, [I(aalK}J =0, [}(aa-F%] = iMdap
[H,J,)=0, [H,P]=0, [HK,=iP,
Schrodinger symmetry is present when the scattering length is infinite.

This is the case in NN scattering.

ag = —24fm, aal = —8.2MeV a1 = 5.4fm, afl = 36MeV
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