Isosinglet vectorlike leptons at e^+e^- colliders

Prudhvi N. Bhattiprolu

M University of Michigan

PIKIMO Fall 2023 Indiana University November 11

Based on arXiv:hep-ph/2308.08386 with Stephen P. Martin and Aaron Pierce

- Hadron colliders: best discovery reach
- Lepton colliders: precision studies and indirect searches

This may not be the case for weakly interacting particles

- Hadron colliders: best discovery reach
- Lepton colliders: precision studies and indirect searches This may not be the case for weakly interacting particles

Consider the example of $SU(2)_L$ -singlet vectorlike leptons τ' :

$$au_L', au_R'^\dagger ~\sim~ ({f 1},{f 1},-1)~+~ ({f 1},{f 1},+1)$$

Hadron colliders: best discovery reach

Lepton colliders: precision studies and indirect searches This may not be the case for weakly interacting particles

Consider the example of $SU(2)_L$ -singlet vectorlike leptons τ' :

$$au_L', au_R'^\dagger ~\sim~ ({f 1},{f 1},-1)~+~ ({f 1},{f 1},+1)$$

in contrast with the **chiral** τ leptons in the SM:

$$au_{{\it L}}, au_{{\it R}}^{\dagger} ~\sim~ ({f 1}, {f 2}, -1/2)~+~ ({f 1}, {f 1}, +1)$$

Hadron colliders: best discovery reach

Lepton colliders: precision studies and indirect searches This may not be the case for weakly interacting particles

Consider the example of $SU(2)_L$ -singlet vectorlike leptons τ' :

$$au_L', au_R'^{\dagger} \sim ({f 1},{f 1},-1) + ({f 1},{f 1},+1)$$

in contrast with the **chiral** τ leptons in the SM:

$$au_L, au_R^{\dagger} \sim (\mathbf{1}, \mathbf{2}, -1/2) + (\mathbf{1}, \mathbf{1}, +1)$$

Motivations:

- Many new physics models require vectorlike leptons
- New fermions must be necessarily vectorlike
- Decouple from flavor and EW precision data for higher masses
- Automatically anomaly-free (unlike chiral fermions)

Assume mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau}v & 0\\ \epsilon v & M \end{pmatrix}$$

Assume tiny mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau} v & 0 \\ \epsilon v & M \end{pmatrix}$$

with prompt τ' decays

Assume tiny mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau} v & 0 \\ \epsilon v & M \end{pmatrix}$$

with prompt au' decays

Limited reach for τ' at the

- ▶ LHC [Kumar, Martin 1510.03456]
- Future pp colliders [PNB, Martin 1905.00498]

Assume tiny mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau} v & 0 \\ \epsilon v & M \end{pmatrix}$$

with prompt τ^\prime decays

Limited reach for τ' at the

- ► LHC [Kumar, Martin 1510.03456]
- Future pp colliders [PNB, Martin 1905.00498]

Current 95% CL exclusions:

- $M_{ au'} < 101.2 \,\, {
 m GeV} \,\, [{
 m LEP} \,\, 0107015]$
- ▶ 125 GeV $< M_{\tau'} < 150$ GeV [CMS 2202.08676]

- ▶ Pair-production mode: $e^+e^- \rightarrow \gamma^*, Z^* \rightarrow \tau'^+\tau'^-$
- Accounting for the effects of ISR + beamstrahlung

- ▶ Pair-production mode: $e^+e^- \rightarrow \gamma^*, Z^* \rightarrow \tau'^+\tau'^-$
- Accounting for the effects of ISR + beamstrahlung
- ▶ $(P_{e^+}, P_{e^-}) = (-0.3, 0.8)$ and (0, 0.8) maximize σ for ILC and CLIC

Isosinglet VLL at e^+e^- colliders

$$e^{+}e^{-} \rightarrow \tau'^{+}\tau'^{-} \rightarrow ZZ\tau^{+}\tau^{-}, \quad hh\tau^{+}\tau^{-}, \quad Zh\tau^{+}\tau^{-}$$
$$ZW^{\pm}\tau^{\mp} + \not{E}, \quad hW^{\pm}\tau^{\mp} + \not{E},$$
$$W^{\pm}W^{\mp} + \not{E} \text{ (largest!)}$$

 $^\dagger Relevant$ files at github:prudhvibhattiprolu/VLL-UFOs (being used by ATLAS and CMS)

Isosinglet VLL at e^+e^- colliders

Peak reconstruction

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, Zh, Zh, ZZ, W^+W^-h , W^+W^-Z , and $W^+W^-\nu\overline{\nu}$ with $\nu\overline{\nu} \notin Z$

[†]Relevant files at github:prudhvibhattiprolu/VLL-UFOs (being used by ATLAS and CMS)

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, Zh, Zh, ZZ, W^+W^-h , W^+W^-Z , and $W^+W^-\nu\overline{\nu}$ with $\nu\overline{\nu} \notin Z$

Events generated at LO while accounting for ISR + beamstrahlung: $FeynRules^{\dagger} \rightarrow Whizard \rightarrow Pythia8 \rightarrow Delphes$

 $^{^\}dagger Relevant$ files at github:prudhvibhattiprolu/VLL-UFOs (being used by ATLAS and CMS)

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, Zh, Zh, ZZ, W^+W^-h , W^+W^-Z , and $W^+W^-\nu\overline{\nu}$ with $\nu\overline{\nu} \notin Z$

Events generated at LO while accounting for ISR + beamstrahlung: $FeynRules^{\dagger} \rightarrow Whizard \rightarrow Pythia8 \rightarrow Delphes$

Goal: Reconstructing mass peaks for various $M_{\tau'}$ in various signal regions

[†]Relevant files at github:prudhvibhattiprolu/VLL-UFOs (being used by ATLAS and CMS)

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, Zh, Zh, ZZ, W^+W^-h , W^+W^-Z , and $W^+W^-\nu\overline{\nu}$ with $\nu\overline{\nu} \notin Z$

Events generated at LO while accounting for ISR + beamstrahlung: $FeynRules^{\dagger} \rightarrow Whizard \rightarrow Pythia8 \rightarrow Delphes$

Goal: Reconstructing mass peaks for various $M_{\tau'}$ in various signal regions

Consider a 500 GeV e^+e^- collider with unpolarized beams ...

[†]Relevant files at github:prudhvibhattiprolu/VLL-UFOs (being used by ATLAS and CMS) Isosinglet VLL at e⁺e⁻ colliders Peak reconstruction Prudhvi Bhattiprolu (UMich) 5 / 13

Signal regions: 15 different signal regions targeting various final states with

$$egin{array}{rcl} N_\ell + N_j + N_b &=& 4 \ N_{ au} &=& 1 ext{ or } 2 \end{array}$$

Reconstruct Z from $\ell^+\ell^-/jj$, h from bb, and also W from jj if $N_{\tau} = 1$

E.g.,

- \blacktriangleright 4 ℓ + 2 τ
- \blacktriangleright 2 ℓ + 2b + 2 τ
- ► 4*b* + 2*τ*

...

- $\blacktriangleright 2\ell + 2j + 1\tau$
- $\blacktriangleright 2j + 2b + 1\tau$
- ► $3j + 1b + 2\tau (Z/h/W)$ also reconstructed from *jb*)

Signal regions: 15 different signal regions targeting various final states with

$$egin{array}{rcl} N_\ell + N_j + N_b &=& 4 \ N_{ au} &=& 1 ext{ or } 2 \end{array}$$

Reconstruct Z from $\ell^+\ell^-/jj$, h from bb, and also W from jj if $N_{\tau} = 1$

E.g.,

...

- $\blacktriangleright 4\ell + 2\tau \rightarrow ZZ\tau\tau$
- $\blacktriangleright 2\ell + 2b + 2\tau \rightarrow Zh\tau\tau$
- ► $4b + 2\tau \rightarrow hh\tau\tau$
- $\blacktriangleright 2\ell + 2j + 1\tau \rightarrow ZW\tau\nu_{\tau}$
- $\blacktriangleright 2j + 2b + 1\tau \rightarrow hW\tau\nu_{\tau}$
- ► $3j + 1b + 2\tau \rightarrow ZZ\tau\tau, Zh\tau\tau$

Reconstruct Z/h bosons, B_{α} , and also W bosons, W_{β} , if $N_{\tau} = 1$

- Reconstruct Z/h bosons, B_{α} , and also W bosons, W_{β} , if $N_{\tau} = 1$
- Rescale jet momenta if Z/h/W reconstructed from jets such that M_{JJ} = M_{Z/h/W} (Here and below, J = j, b)

- Reconstruct Z/h bosons, B_{α} , and also W bosons, W_{β} , if $N_{\tau} = 1$
- Rescale jet momenta if Z/h/W reconstructed from jets such that M_{JJ} = M_{Z/h/W} (Here and below, J = j, b)
- Find all the possible (tau, boson) pairings:

$$au_1' \supset (au_1, oldsymbol{
u}_1, B_lpha)$$
 and $au_2' \supset egin{cases} (au_2, oldsymbol{
u}_2, B_eta) & ext{in SRs with exactly } 2 au \ (oldsymbol{
u}_2, W_eta) & ext{in SRs with exactly } 1 au \end{cases}$

such that the bosons in au_1' and au_2' are distinct

- Reconstruct Z/h bosons, B_{α} , and also W bosons, W_{β} , if $N_{\tau} = 1$
- ▶ Rescale jet momenta if Z/h/W reconstructed from jets such that $M_{JJ} = M_{Z/h/W}$ (Here and below, J = j, b)
- Find all the possible (tau, boson) pairings:

$$au_1' \supset (au_1, oldsymbol{
u}_1, B_lpha)$$
 and $au_2' \supset egin{cases} (au_2, oldsymbol{
u}_2, B_eta) & ext{in SRs with exactly } 2 au \ (oldsymbol{
u}_2, W_eta) & ext{in SRs with exactly } 1 au \end{cases}$

such that the bosons in au_1' and au_2' are distinct

In SRs with 2τ: τ₁ is the τ with highest energy, or it is relabeled to be the τ paired with the leptonically decaying Z if there is exactly one Z reconstructed from leptons

• Use collinear approximation for ν_1 from τ_1 decay:

$$E_{
u_1} = |ec{p}_{
u_1}|, \quad ec{p}_{
u_1} = (r-1)ec{p}_{ au_1},$$

and obtain the four-momentum of the other neutrino using:

$$E_{\nu_2} = E - E_{\nu_1}, \qquad \vec{p}_{\nu_2} = \frac{E_{\nu_2}}{|\vec{p} - \vec{p}_{\nu_1}|} (\vec{p} - \vec{p}_{\nu_1}),$$

such that both ν_1 and ν_2 are on-shell.

• Use collinear approximation for ν_1 from τ_1 decay:

$$E_{
u_1} = |ec{p}_{
u_1}|, \quad ec{p}_{
u_1} = (r-1)ec{p}_{ au_1},$$

and obtain the four-momentum of the other neutrino using:

$$E_{\nu_2} = E - E_{\nu_1}, \qquad \vec{p}_{\nu_2} = \frac{E_{\nu_2}}{|\vec{p} - \vec{p}_{\nu_1}|} (\vec{p} - \vec{p}_{\nu_1}),$$

such that both ν_1 and ν_2 are on-shell.

For each pairing, solve for *r* from:

$$p_{ au_1'}^2 \ = \ p_{ au_2'}^2$$

and impose $E_{
u_1} \geq 0$ and $E_{
u_2} \geq 0$

• Use collinear approximation for ν_1 from τ_1 decay:

$$E_{
u_1} = |ec{p}_{
u_1}|, \quad ec{p}_{
u_1} = (r-1)ec{p}_{ au_1},$$

and obtain the four-momentum of the other neutrino using:

$$E_{\nu_2} = E - E_{\nu_1}, \qquad \vec{p}_{\nu_2} = \frac{E_{\nu_2}}{|\vec{p} - \vec{p}_{\nu_1}|} (\vec{p} - \vec{p}_{\nu_1}),$$

such that both ν_1 and ν_2 are on-shell.

For each pairing, solve for *r* from:

$$p_{ au_1'}^2 = p_{ au_2'}^2$$

and impose $E_{
u_1} \geq 0$ and $E_{
u_2} \geq 0$

• If multiple pairings survive, pick a pairing that minimizes $|\vec{p}_{total}|$ and

$$M_{\tau'}^{
m reco} = \sqrt{p_{\tau_1}^2}$$

- Since $BR(\tau' \rightarrow W\nu_{\tau})$ is the largest, we have far better statistics in these SRs
- Backgrounds are (non-)negligible (but still clearly under control)
- Similar peak reconstructions also possible in all SRs with 2 au

If τ' indeed discovered, the heights of mass peaks in various SRs can be used to determine τ' branching ratios!

If τ' indeed discovered, the heights of mass peaks in various SRs can be used to determine τ' branching ratios!

• $4\ell + 2\tau$ and $2\ell + 2j + 2\tau$ SRs provide a pure sample of $ZZ\tau\tau$ final state

Similarly,

► $2\ell + 2b + 2\tau$ and $2j + 2b + 2\tau$ SRs provide a pure sample of $Zh\tau\tau$ final state

Similarly,

• $2\ell + 2j + 1\tau$ and $2j + 1j + 1b + 1\tau$ SRs provide a pure sample of $ZW\tau\nu$ final state

Similarly,

2j + 2b + 1τ (4b + 2τ) SR provides a (relatively) pure sample of hWτν (hhττ) final state

Both Higgs and top factories can also act as discovery machines ...

► For $M_{\tau'} < M_h + M_{\tau}$, since $\tau' \rightarrow h\tau$ is not accessible, we also reconstruct Z from bb

Conclusions:

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed in various signal regions up to close to the kinematic limit
- Heights of the mass peaks in various signal regions can in turn give a handle on the branching ratios

Conclusions:

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed in various signal regions up to close to the kinematic limit
- Heights of the mass peaks in various signal regions can in turn give a handle on the branching ratios

 e^+e^- collider may act as a discovery machine for particles with only electroweak interactions that have limited reach at a hadron collider!

At $\sqrt{s} = 1.5$ and 3 TeV:

- Since the production cross section falls with \sqrt{s}, a lack of adequate statistics can be an issue in some signal regions
- Backgrounds can be more significant, but with a smooth mass distribution that should be under good theoretical control

Isosinglet VLL at e^+e^- colliders

Backup slides

Partonic pair-production cross-section $\hat{\sigma}(e^+e^- \rightarrow \tau'^+ \tau'^-)$:

$$\begin{split} \hat{\sigma} \; = \; \frac{2\pi\alpha^2}{3} (\hat{s} + 2M_{\tau'}^2) \sqrt{1 - 4M_{\tau'}^2/\hat{s}} \left[|a_L|^2 (1 - P_{e^-})(1 + P_{e^+}) \right. \\ & + |a_R|^2 (1 + P_{e^-})(1 - P_{e^+}) \right], \end{split}$$

where the left-handed and right-handed amplitude coefficients are

$$egin{array}{rcl} a_L &=& rac{1}{\hat{s}} + rac{1}{c_W^2} (s_W^2 - 1/2) rac{1}{\hat{s} - M_Z^2}, \ a_R &=& rac{1}{\hat{s}} + rac{s_W^2}{c_W^2} rac{1}{\hat{s} - M_Z^2}. \end{array}$$

P = 1 and -1 corresponding to pure right-handed and left-handed polarizations

▶ Since $|a_L| < |a_R|$ for $\sqrt{\hat{s}} > 93$ GeV, we see that the production cross-section is maximized when P_{e^-} is positive (and, if available, when P_{e^+} is negative)

SM backgrounds:

Precision electroweak:

If τ' is stable over detector lengths, then it can be inferred that $M_{\tau'} \gtrsim 750$ GeV based on the -dE/dx and time of flight measurements in searches for long lived charginos at the LHC

Isosinglet VLL at e^+e^- colliders