

Nafis Fuad

The search for Neutrinoless double beta decay in Ge

PIKIMO 15 - Fall 2023

November 11, 2023

INDIANA UNIVERSITY

Outline

- Neutrinos: Known and Unknown
- Neutrinoless double beta decay, in
- LEGEND a neutrinoless double beta decay (in Ge) experiment
- Work of IU group: investigating a small part of the detectors called 'passivated surface'

What we know & don't know about Neutrinos

<u>We know</u>: Neutrinos

At least, very tiny, since so many of them can escape the Sun

- Are only electric chargeless (charge conservation in beta decays, Cowan-Reines, 1953) fermions (have spin ½, from many experiments, by angular momentum conservation)
- Interact ~only through Weak interactions!
- Violate parity! (And ~maximally, ~100% LH!!) [Wu, 1958] $\psi_L \rightarrow (1 - i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2})\psi_L; \checkmark$ $\psi_R \rightarrow (1 - i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2})\psi_R. \mathbf{X}$
- Have mass $\gtrsim 0.01 \text{ eV}$ (from ν -flavor oscillation experiments)

What we know & don't know about Neutrinos

<u>We know</u>: Neutrinos

At least, very tiny, since so many of them can escape the Sun

- Are only electric chargeless (charge conservation in beta decays, Cowan-Reines, 1953) fermions (have spin ½, from many experiments, by angular momentum conservation)
- Interact ~only through Weak interactions!
- Violate parity! (And ~maximally, ~100% LH!!) [Wu, 1958] $\psi_L \rightarrow (1 - i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2})\psi_L; \checkmark$ $\psi_R \rightarrow (1 - i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2})\psi_R. \mathbf{X}$
- Have mass $\geq 0.01 \text{ eV}$ (from ν -flavor oscillation experiments)

<u>We don't know</u>: Origin of their masses. Two possible ways:

Dirac Way: Two handedness of leptons + coupling with Higgs field \rightarrow Conserves Lepton Number \rightarrow Leads to $y_{\nu} \sim O(10^{-12})$ (meh)

Majorana Way: Charglessness + being fermion \rightarrow No Higgs coupling needed \rightarrow Lets same handed fermionic fields be coupled together \rightarrow Violates Lepton number, No need for RH neutrinos

 $\psi^{C} = (\psi_{L} + \psi_{L}^{C})^{C} = \psi_{L}^{C} + \psi_{L} = \psi$: Particle = Anti-particle

Neutrinoless double beta decay

 $\beta^{-} \text{ decay: } n \to p^{+} + e^{-} + \bar{\nu}_{e}$ $2\nu\beta\beta \text{ decay: } 2n \to 2p^{+} + 2e^{-} + 2\bar{\nu}_{e} (T_{\frac{1}{2}}({}^{76}\text{Ge}) = 10^{21}\text{yr})$ $0\nu\beta\beta \text{ decay: } 2n \to 2p^{+} + 2e^{-} + 0\bar{\nu}_{e} (T_{\frac{1}{2}} = ??, \text{ Current: >10^{25}yr})$

Experimental signature of $0\nu\beta\beta$

No neutrinos in this case to take away any energy \rightarrow very sharp peak at the $Q_{\beta\beta}$ of $2\nu\beta\beta$

$$Q_{\beta\beta}$$
 = Total energy of 2e⁻ (2.039 MeV for ⁷⁶Ge)

What isotopes can actually go through $\beta\beta$?

Spin paring makes even-even nuclei more strongly bound than its nearby ones.

Binding energy of parent and daughter nuclei decides if that nucleus <u>can</u> go through a $\beta\beta$ decay instead of β decay!

- ~100 isotopes calculated to be able to go through $\beta\beta$.
- 9 nuclei directly observed to do this.

	Nuclide	Half-life, 10 ²¹ years	Mode	Transition	Method	Experiment
	⁴⁸ Ca	$0.064^{+0.007}_{-0.006} \pm ^{+0.012}_{-0.009}$	β-β-		direct	NEMO-3 ^[11]
	⁷⁶ Ge	1.926 ±0.094	$\beta^{-}\beta^{-}$		direct	GERDA ^[10]
GERDA GEND	⁷⁸ Kr	$9.2^{+5.5}_{-2.6} \pm 1.3$	33		direct	BAKSAN ^[10]
	⁸² Se	0.096 ± 0.003 ± 0.010	$\beta^{-}\beta^{-}$		direct	NEMO-3 ^[10]
	⁹⁶ Zr	$0.0235 \pm 0.0014 \pm 0.0016$	$\beta^{-}\beta^{-}$		direct	NEMO-3 ^[10]
	¹⁰⁰ Mo	0.00693 ± 0.00004	β-β-			NEMO-3 ^[10]
		$0.69^{+0.10}_{-0.08} \pm 0.07$	β-β-	$0^+ \rightarrow 0^+_{1}$	direct	Ge coincidence ^{[10}
	¹¹⁶ Cd	$\begin{array}{c} 0.028 \pm 0.001 \pm 0.003 \\ 0.026 \substack{+0.009 \\ -0.005} \end{array}$	β-β-		direct	NEMO-3 ^[10] ELEGANT IV ^[10]
	¹²⁸ Te	7200 ± 400 1800 ± 700	β-β-		geochemical	[10]
	¹³⁰ Te	$0.82 \pm 0.02 \pm 0.06$	$\beta^{-}\beta^{-}$		direct	CUORE-0 ^[12]
	¹²⁴ Xe	18 ± 5 ± 1	33		direct	XENON1T ^[13]
	¹³⁶ Xe	2.165 ± 0.016 ± 0.059	β-β-		direct	EXO-200 ^[10]
	¹³⁰ Ba	(0.5 – 2.7)	33		geochemical	[14][15]
	¹⁵⁰ Nd	$0.00911^{+0.00025}_{-0.00022} \pm 0.00063$	β-β-		dine et	NEMO-3 ^[10]
		0.107 ^{+0.046} -0.026	β-β-	$0^{+} \rightarrow 0^{+}_{1}$	airect	Ge coincidence ^{[10}
	²³⁸ U	2.0 ± 0.6	β-β-		radiochemical	[10]

Why Ge?

- Ge detectors are semiconductors
- → Big number of electron-hole pairs for even small amount of energy deposition
- \rightarrow Greater energy resolution
- \rightarrow Makes it possible to remove more background

From Majorana Demonstrator and GERDA: Energy resolution 0.12% FWHM at $Q_{\beta\beta}$; Bkg Index 10⁻³ counts/keV-kg-yr at ROI

LEGEND (Large Enriched Ge Experiment for Neutrinoless $\beta\beta$ Decay)

- ~1 mile underground in Gran Sasso, Italy.
- Modular form, arrays of ~10 detectors hung on strings.
- LAr in the cryostat below detector strings. SiPMs basically make it an 'active detector for backgrounds'.

Detectors of LEGEND

Chunks of highly pure Ge. Connected in reverse bias of 2-5 kV. Broadly two types:

- The ones that collect charge through a point (good for analysis later): PPC (repurposed from MJD), BEGe (from GERDA) , ICPC.

- The ones with larger contact for charge collection: Coaxial.

LEGEND-200 : Detector performances

- 101 detectors = ~140 kg (14% of total goal)
- Mostly ICPC. PPC and BEGe from MJD and GERDA repurposed
- Weekly energy calibration using ²²⁸Th sources.
- Currently collecting data. Recent result on 10.1 kg-yr.

Nafis Fuad

FWHM ~ 0.1% of $Q_{\beta\beta}$, even better than expected!

LEGEND-200 : Energy spectrum and background index

Energy spectrum of L200. Nothing surprising.

- ⁴²K, ⁴⁰K from Liquid Ar
- ²⁰⁸Tl from ²³²Th chain (residual Thoriums in the detector components)
- $2\nu\beta\beta$ spectrum visible with thousands of them detected already! ($T_{\frac{1}{2},^{76}Ge \rightarrow 2\nu\beta\beta} = 10^{21}yr$, so already very very rare!)
- Some 'high energy' (~5 MeV) α particles, originated from ²¹⁰Po and ²¹⁰Pb.

Can those alphas be problematic? Possibly!

Majorana Demonstrator's low energy spectrum reveals some missing peaks from ²¹⁰Pb \rightarrow Energy degraded in the passivated surface of the detectors?

~5 MeV α particles can get degraded to ~2 MeV, which is ROI!!!

IU+UW joint effort to solve the issue!

- A PPC detector from Majorana Demonstrator
- Shoot Kr towards it
- Look for 32 keV electron peak

32 keV line of Kr is clearly degraded, and possibly in the passivated surface. How do we quantify it?

Summary

- Set out to measure $T_{\frac{1}{2}}({}^{76}Ge \rightarrow 0\nu\beta\beta)$, Currently: >10²⁵yr
- LEGEND: A ton scale experiment looking for 0vBB in 76Ge, Built on success of Majorana Demonstrator and GERDA
- LEGEND 200: 15% deployed, currently taking physics data
 better both FWHM and Bkg Index so far
 Already seeing thousands of 2νββ
- Some 'high energy' α s are expected to be problematic. IU+UW groups are working on it.

Summary

- Set out to measure $T_{\frac{1}{2}}({}^{76}Ge \rightarrow 0\nu\beta\beta)$, Currently: >10²⁵yr
- LEGEND: A ton scale experiment looking for 0vBB in 76Ge, Built on success of Majorana Demonstrator and GERDA
- LEGEND 200: 15% deployed, currently taking physics data
 better both FWHM and Bkg Index so far
 Already seeing thousands of 2νββ
- Some 'high energy' α s are expected to be problematic. IU+UW groups are working on it.

Thanks everyone for listening! Questions?

Backup slides

Backup slides

$$m_{\beta\beta} = \sum_{i} (U_{ei})^2 m_i. \tag{67}$$

We can express the matrix elements U_{ei} in terms of the mixing angles and phases that traditionally parameterize the PMNS matrix:

$$U_{\alpha i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e_{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\lambda_a} & 0 & 0 \\ 0 & e^{i\lambda_b} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(68)

Majorana phases

Inverted and normal order hierarchy comes into play when calculating m_BB from T_1/2, not before that.

But Standard Model tries to understand them

Leads to ElectroWeak theory: SU(2)xU(1), [G,W,S,...,1970s] [all fermions starts with 0 Dirac mass and only gets mass later through SSBreaking]

No evidence of RH neutrino + Only evidence of Higgs doublet ↓ LH doublet + RH singlet ↓ Neutrinos are massless (i.e. no coupling with Higgs)

1998: Neutrinos have mass! (=all mass eigenvalues can't be 0), tiny!(~0.1 eV) [Super-Kamiokande]

Worth to look for $0\nu\beta\beta$?

* ~'Anything that can happen, should happen.'(Good enough?)

All the good stuff...

Majorana nature of neutrino \rightarrow 'Tunable' origin of ν masses \rightarrow Leptogenesis

Only 3 phases can be absorbed in leptonic fields

(i.e. only charged lepton fields can do that now)

$$\downarrow U_{PMNS} = U_{CKM}(\delta) \begin{pmatrix} e^{i\rho} & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

[Just two more ways to explain the observed 'big' amount of CP violation]

Schechter-Valle[1982] : 'Any diagram of $0\nu\beta\beta$ \rightarrow Majorana ν '

Possible Lorentz violation: shifts $2\nu\beta\beta$ spectrum

[Checked on 136Xe, null result.]

Where could neutrinos gain masses from?

<u>Dirac way</u>: coupling with Higgs field (just like other leptons gets mass through SSB.

→ conserves lepton number (like all other known interactions) Leads to $y_{\nu} \sim O(10^{-12})$, based on limits of $m_{\nu[exp]}$ and VEV. Existence of heavy RH ν could make this better. (But other ones (e.g. electrons') are $\sim O(1)$ (9)

<u>Majorana way</u>: No Higgs coupling required, so can explain ~any value of $m_{\nu}!$ $\bar{\nu}_L \nu_L^C$ can be $\neq 0$, since $\nu_L^C = CP(\nu_L) = C(\nu_R) = \nu_R$ (since ν s are chargeless. So no *need* of ν_R , but can accommodate that if needed.)

Violates Lepton number conservation 😁 (no known interaction does that, but not prohibited either! 🥯)

Majorana
$$\rightarrow$$
. $\psi^C = (\psi_L + \psi_L^C)^C = \psi_L^C + \psi_L = \psi$

 \rightarrow particle = anti-particle

 $\mathcal{L}_{N}^{\mathrm{M}} = \frac{1}{2} \overline{N_{I}^{\mathrm{R}}} \partial N_{I}^{\mathrm{R}}$

20

No Higgs field needed

		BI Before Cuts	Surv	Survival Probabilities [%]		BI After Cuts
Source	Location	$[\mathrm{cts}/(\mathrm{keVkgyr})]$	\mathbf{AC}	\mathbf{PSD}	PSD After AC	$[\mathrm{cts}/(\mathrm{keVkgyr})]$
238 U chain	Cabling—HV	$(1.2\pm0.5) imes10^{-5}$	11	19	5.0	$(6.3\pm 4.2)\times 10^{-8}$
238 U chain	Cabling—Signal	$(1.3\pm0.6) imes10^{-5}$	11	19	5.0	$(7.3 \pm 4.9) \times 10^{-8}$
238 U chain	Det. Mount (EFCu)	$(7.9 \pm 3.9) imes 10^{-6}$	22	19	6.1	$(1.0\pm 0.8)\times 10^{-7}$
238 U chain	Det. Mount (Ultem ^{M})	$(2.1\pm0.7) imes10^{-5}$	21	23	15	$(6.8\pm 4.2)\times 10^{-7}$
238 U chain	Optical Fibers	$(2.3\pm0.8) imes 10^{-4}$	4.3	22	10	$(1.0 \pm 0.7) \times 10^{-6}$
238 U chain	Front End ASIC	$< 1.0 \times 10^{-6}$	16	19	6.3	$< 1.0 \times 10^{-8}$
238 U chain	PEN Plates	$(7.3 \pm 1.8) \times 10^{-5}$	2.7	20	6.5	$(1.3\pm 0.8)\times 10^{-7}$
238 U chain	HV Conn. (Ultem ^{$^{\text{M}}$})	$(2.0\pm 0.6) imes 10^{-6}$	17	21	7.4	$(2.5\pm 1.6)\times 10^{-8}$
238 U chain	HV Conn. (Ph-Br)	$(6.3\pm0.2) imes10^{-6}$	17	21	7.4	$(8.0\pm 4.2)\times 10^{-8}$
238 U chain	$\mathrm{FE} \ \mathrm{Mount} \ (\mathrm{Ultem}^{^{\scriptscriptstyle{M}}})$	$(4.4 \pm 1.5) \times 10^{-6}$	19	18	6.0	$(5.1 \pm 1.7) \times 10^{-8}$
²³⁸ U chain	FE Mount (Ph-Br)	$(7.7\pm0.2) imes10^{-6}$	19	18	6.0	$(8.9\pm 4.7)\times 10^{-8}$
238 U chain	CAPs	$(6.3 \pm 1.6) imes 10^{-6}$	3.6	22	9.2	$(2.1^{+2.4}_{-2.1}) \times 10^{-8}$
238 U chain	Re-entrant Vessels	$(8.3 \pm 4.1) imes 10^{-6}$	13	22	11	$(1.2\pm 0.9)\times 10^{-7}$
238 U chain	Tetratex & TPB	$(1.6\pm 0.3) imes 10^{-5}$	13	22	11	$(2.2\pm 1.4)\times 10^{-7}$
232 Th chain	Cabling—HV	$(2.3 \pm 1.6) imes 10^{-5}$	0.068	35	4.6	$(7.3^{+7.7}_{-7.3}) \times 10^{-10}$
232 Th chain	Cabling—Signal	$(2.7 \pm 1.9) imes 10^{-5}$	0.068	35	4.6	$(8.5^{+9.0}_{-8.5}) \times 10^{-10}$
232 Th chain	Det. Mount (EFCu)	$(1.5\pm0.7) imes10^{-5}$	0.31	35	8.2	$(3.9\pm 2.8)\times 10^{-9}$
232 Th chain	Det. Mount (Ultem ^{M})	$(7.8 \pm 1.8) \times 10^{-5}$	0.32	36	6.8	$(1.7\pm 1.1)\times 10^{-8}$
²³² Th chain	Optical Fibers	$(1.0\pm0.3) imes10^{-3}$	0.049	38	33	$(1.6 \pm 1.5) \times 10^{-7}$
232 Th chain	Front-End ASIC	$< 1.6 \times 10^{-6}$	0.32	35	5.4	$<2.8\times10^{-10}$
232 Th chain	PEN Plates	$(2.8\pm 0.8) imes 10^{-4}$	0.19	35	3.5	$(1.9\pm 2.8)\times 10^{-8}$
232 Th chain	HV Conn. (Ultem ^{M})	$(7.9 \pm 1.8) imes 10^{-6}$	0.18	37	9.3	$(1.3\pm 0.9)\times 10^{-9}$
232 Th chain	HV Conn. (Ph-Br)	$(3.3\pm2.2) imes10^{-6}$	0.18	37	9.3	$(5.5\pm5.2)\times10^{-10}$
232 Th chain	$\mathrm{FE} \ \mathrm{Mount} \ (\mathrm{Ultem}^{^{\scriptscriptstyle{M}}})$	$(1.6\pm 0.4) imes 10^{-5}$	0.35	35	8.4	$(4.8 \pm 2.9) \times 10^{-9}$
232 Th chain	FE Mount (Ph-Br)	$(3.6\pm2.5) imes10^{-6}$	0.35	35	8.4	$(1.1 \pm 1.0) \times 10^{-9}$
232 Th chain	CAPs	$(1.3\pm0.3) imes 10^{-5}$	0.14	32	3.2	$(6.1^{+6.3}_{-6.1}) imes 10^{-10}$
232 Th chain	Re-entrant Vessels	$(2.5 \pm 1.1) imes 10^{-5}$	1.2	37	17	$(5.1 \pm 4.0) \times 10^{-8}$
$^{232}\mathrm{Th}$ chain	Tetratex & TPB	$(3.1\pm0.6) imes 10^{-5}$	1.2	37	17	$(6.2\pm 4.2)\times 10^{-8}$
⁶⁸ Ge	Detector Material	$(2.7\pm 0.5) imes 10^{-4}$	35	3.6	1.0	$(1.0 \pm 0.5) \times 10^{-6}$
60 Co	Detector Material	$(4.5 \pm 0.9) \times 10^{-4}$	3.7	1.1	0.67	$(1.1\pm 0.6)\times 10^{-7}$
238 U chain	Detector Material	$< 7.5 \times 10^{-7}$	65	53	77	$< 3.7 \times 10^{-7}$
232 Th chain	Detector Material	$<4.3\times10^{-7}$	50	43	69	$< 1.5 \times 10^{-7}$
⁴² Ar	Detector n ⁺ Surf.	$(5.1^{+0.8}_{-5.1}) \times 10^{-4}$	81	1.0	1.0	$(4.1^{+2.2}_{-4.1}) \times 10^{-6}$
222 Rn	Underground Ar	$(1.3\pm 0.1) imes 10^{-4}$	0.48	21	6.4	$(3.9\pm 2.1)\times 10^{-8}$
Surface αs		$(5.7 \pm 1.5) \times 10^{-4}$	100	0.16	0.16	$<9.2\times10^{-7}$
$^{238}{\rm U}/^{232}{\rm Th}$	External (γ)	$(1.1\pm0.2) imes10^{-5}$				$(5.3 \pm 1.0) \times 10^{-7}$
$^{238}{\rm U}/^{232}{\rm Th}$	External (n)					$(2.0\pm0.5) imes10^{-7}$
77 Ge	μ -induced	$(3.4 \pm 3.4) \times 10^{-7}$				$(3.2 \pm 3.2) \times 10^{-8}$
77m Ge	μ -induced	$(5.4 \pm 5.4) \times 10^{-7}$				$(2.6 \pm 2.6) \times 10^{-8}$
All Sources		$(3.9^{+0.4}_{-0.6}) \times 10^{-3}$				$(9.1^{+4.9}_{-6.3}) \times 10^{-6}$
		-76-	-2			

INDIANA UNIVERSITY