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CINCINNATI Motivation M LHAD

Simulating Collision

e o .
% e e — =» Hard process:
{ %o, 9 scale A initial high-energy interaction .
5 ® et o e perturbative
7 .
4 =» Evolution:
parton shower
=» Hadronization: non -perturbative
Bt combine quarks and gluons

W primary hadrons
W secondary hadrons
W hadronic rescattering
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Simulating Collision
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" » & & time/energy =» Hard process:
- L scale A initial high-energy interaction .
: L -~ perturbative
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o =» Evolution:
parton shower
=» Hadronization: o .
O hard interaction Combine quarks and gluons

o ha
W primary hadrons
W secondary hadrons

 hadronic rescattering
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CINCINNATI Big Picture M LHAD

A series of progressive steps needs to be done before
practically useful in Pythia simulations

4 N
Train on truth level Pythia -
output (not obs. In exp) Train on real data (i.e.,
J We are O 1 d d
hore just already measure
s \ information)
Develop a framework to \.
propagate errors #
g v
4 N
r D Replace/Complement
Train on mock data (i.e., just Partial Pythia string model
observable information) v results . <
S v
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CINCINNATI Big Picture

MLiaD)

A series of progressive steps needs to be done before
practically useful in Pythia simulations

S

Train on truth level Pythia
output (not obs. In exp)
We are
here
N
Develop a framework to
propagate errors #
V.
N
Train on mock data (i.e., just Partial
observable information) v resulty
V.
N

s

Train on real data (i.e.,
just already measured
information)

7

.

Replace/Complement
Pythia string model

\

~
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””E“ffi'i’c“fl& o MLHAD Pipeline N[LHAD

: JE o (1o, B
rl(rml 1) /"A—'(z(mzl-Ez)
e A ' ;
. P Q —) o, Ps, M ph;!
step 1 - —pt
/
l , /ﬁ\,,/'" , * h; hadron
I (A -\
\["/’ o) ’7‘\) ‘\‘U‘/‘ * s; string fragment . e .
T (h1,pn,) = pj4-momentum (h2.p,)
C’ p « A lLorentz transform
+ FS flavor-selector
: s;i—| F§ |— 82— | FS |—*s3
. J
Stopping condition : F; < Eeu
We need a generative model!
Sample hadron kinematics: Emission of different Mesons:
Train on {p,, pr} Condition on mass (m) and energy (E)
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Google DeepMind's

AIphaFoId 2

ChatGPT

S\ Breakthrough in Biology
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Abstract

This work reports on a method for uncertainty estimation in simulated collider-event pre-
dictions. The method is based on a Monte Carlo-veto algorithm, and extends previous
work on uncertainty estimates in parton showers by including uncertainty estimates for
atation model. This method is advantageous from the perspective
events can be reinterpreted as though it
h event now is accompa-

the Lund string-fragn
of simulation costs: a sing]
ined using a different set of input para
This allows for a robust exploration of the uncertainties

ensemble of generate
rs, where ¢

was
nied with a corresponding weight
arising from the choice of input model parameters, without the need to rerun full simu-
Such explorations are important when

lation pipelines for each input parameter choice.
determining the sensitivities of precision physics measurements. Accompanying code is
available at gitlab.com/uchep/mlhad-weights-validation
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Hacking Generative Models with Differentiable Network Bending
NeurIPS, ML for Creativity and Design workshp
G. Aldeghery, A Rogalska, A. Youssef, E. Iofinova
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Hacking Generative Models with Differentiable Network Bending
NeurIPS, ML for Creativity and Design workshp
G. Aldeghery, A Rogalska, A. Youssef, E. Iofinova
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Ung;;\i;g;k&{ﬂ Generative Models M LHAD

https://openai.com/research/generative-models

generated distribution true data distribution

p(x)

unit gaussian

generative
model
(neural net)

Source: generative models

= Task: Learn the probability distribution p(x) of the data

Which generative model should we choose?

Is it able to learn Do we have access to
complex the exact probability
distributions? distribution?

sef: A Machine Learning Perspective on Hadronization
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SciPost Phys. 14, 027 (2023)

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE) SW distance enables
learning any sampleable

1 latent distribution
[ J—
= Can learn complex distributions!
T;—| Encoder | —pz; —| Decoder |[—;
I Decoder “just” generates
C o samples
o [ vaE

¢SWAE architecture

(Architecture used in SciPost Phys. 14, 027 (2023) ) No access to the probability distribution

sef: A Machine Learn rspective on Hadronization
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'
SciPost Phys. 14, 027 (2023)

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE) SW distance enables
learning any sampleable

1 latent distribution
[ J—
= Can learn complex distributions!
T;—| Encoder | —pz; —| Decoder |[—;
I Decoder “just” generates
C o samples
o [ vaE

¢SWAE architecture

(Architecture used in SciPost Phys. 14, 027 (2023) ) No access to the probability distribution

Normalizing Flows (NF)

e, g ), g T, gy e @y of; (i
@ pr(zx) = po(zo)l_[|d9t< iz 1)> |

l 1

= Can learn complex distributions!

= Access to the exact probability distribution

20~ 10 ~ =)

hHps://github.com/janosh/awesome-normalizing-flows

sef: A Machine Learn rspective on Hadronization
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CINCINNATI
'
SciPost Phys. 14, 027 (2023)
Conditional Sliced Wasse ' ) bles
leable
cl_ ______________________ F . 0.025 ion
T 1 — NF RS
s ’ distributions!
! ])\ I'HIA | ()A()_)[) } X distributions
T;—  Encoder —E £
] 0.015 ‘%
K =  |erates

. | 0.010 R

¢SWAE architecture - o

(Architecture used in SciPost Ph | 0.005 probability distribution

Normalizing Flows (NF) | 0.000
0.172
filzio1)
Zy e 0.27 a i\Zi— -1
. g S\ {|det< fl( i 1)> |
WO ‘\C)\ azi—l
istributions!

2~ pilzi) Tk~ D E)

. . o = Access to the exact probability distribution
hHps://github.com/janosh/awesome-normalizing-flows
sef: A Machine Learni rspective on Hadronizati
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CINCINNATI

Back to Physics

MLiaD)

e (”’1|~E1 )
1

v

NF

Implement NF in the fragmentation chain to obtain physical observables

UH«P:.‘)

F*A—- ca(ma, Eo)
1
Pss v

NF [~

(haypr,)

_ql_p—bh'z D ————————— FS —* 53

Pss

Stopping condition : E; < Eey

=

12

114

10

(Nn)

- PYTHIA
- NF
100 200 300 400 500

Esmng ( GGV)

= Multiplicity obtained by MLHad agrees with Pythia!

A. Youssef: A Machine Learning Perspective on Hadronization



mailto:youssead@ucmail.uc.edu

Ung;;\i;g;k&{ﬂ Uncertainty Quantification M LHAD

Uncertainty estimation is crucial for event generator
predictions!

ef: A Machine Learning Perspective on Hadronization
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,Classical“ Neural Networks

)

Weights have a fixed value
- Weight values are updated in each epoch

ef: A Machine Learning Perspective on Hadronization

(Image source: The very Basics of Bayesian Neural Networks )
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cicinnar | Statistical (and Training) Uncertainties M. H AD

,Classical“ Neural Networks Bayesian Neural Networks (BNN)

)

Weights are sampled from a distribution
- Distribution parameter are updated in
each epoch

Weights have a fixed value
- Weight values are updated in each epoch

- BNN are easy to implement: Add additional loss function for weight distribution

- Capture statistical and training uncertainties

(Image source: The very Basics of Bayesian Neural Networks )

: A Machine Learning Perspective on Hadronization
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Bayesian NF Results

MLiaD)

CINCINNATI
r——
Preliminary
25000 e Mean BNF o/ N
Pythia 0.10 1/ VN
20000
50.08
£ 15000 . 20,06
= ki
10000 ) S0.04
5000 ™ 0.02
b 10 20 30 0 50 ] 5000 10000 15000 20000 25000
1.5 1.5
-2 2
H10 ¢t et et ettty Ty =1.0
= ‘ &
0-% 10 20 30 i 50 055 5000 10000 15000 20000 25000
P: e
: . Mean BNF: . e
Pythia Sample: 5 . BNF capture the statistical
One sample with errors 5 x 10° samples with . . o e
N errors corresponding to and training uncertainties
corresponding to /Ny, b g

the standard deviation
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MLiaD)

CINCINNATI
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Preliminary
25000 @‘ : Mean BNF o/ N
Pythia 0.10 1/ VN
20000
5008
£ 15000 . £0.06
0 @ ]
10000 i 2004
5000 ™ 0.02 O
b 10 0 30 a0 50 0 5000 10000 15000 20000 5000
1.5 1.5
-2 2
H10 ¢t et et ettty Ty =1.0
= ‘ &
0% 10 20 30 0 50 057 5000 10000 15000 20000 25000
P: e
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Pythia Sample: 5 . BNF capture the statistical
One sample with errors 5 x 10° samples with . . o e
N errors corresponding to and training uncertainties
corresponding to /Ny, b g

the standard deviation
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CINCINNATI
*Preliminary
0.20 — bp=1098
..... o Z - ?'i b is a free parameter in the Lund function used
0.15 BN . in Pythia: StringZ:bLund
bp — bp =08

“““ bp—=bp=14

Density
o
=
o

Train nominal NF conditioned on different b

- - Get likelihood

0.00 i - Reweight nominal output using ratio of
0.0 2.5 5.0 7.5 10.0 12.5 15.0 175 20.0 likelihoods:
2
N 3 Prom(2)

o) ‘ w=1li~q

3 ; o

~1 i S

0.0 2.5 5.0 7.5 10.0 12,5 150 17.5  20.0
17\[)1
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MLhadPipeline

We developed a pipeline for
Hadronization based on the Lund model Observables

@
:-SI
Not =
Observed! >
Pythia
Sample] truth level —  Observables

Base Model
output
t J)

First Step:
Train on “pseudo” data
from Pythia
A. Youssef: A Machine Learning Perspective on Hadronization youssead@ucmail.uc.edu
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””E'fﬁ\'iyé’ikg T Further Directions N[LHAD

MLhadPipeline

] Uselossfunction <——  (bservables
on observable

o Reweight
Fine-tuned truth level —  Observables

(o, e ol

it Not restricted to an analytic

function!! Bierlich et al, 2311.xxxxx
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Ung;;\i;g{k&{ﬂ Conclusion and Outlook N[LHAD

® First MLHAD pipeline based on cSWAE was published in SciPost Phys. 14, 027 (2023)

® NFs overcome the limitations of cSWAE - can emit in principle any meson and have access to pdf
® NFs allow us to reweight events and capture uncertainties
Work in progress
® TFinalize normalizing flows architecture (include model uncertainty)
® PyTHIA reweighting (Release as part of Pythia)
® TFlavor Selector

® Performing training on physically accessible observables to train MLHAD on experimental data

ssef: A Machine Learnin rspective on Hadronization
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Backup
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When is a hadronization model successful?

sef: A Machine Learning Perspective on Hadronization
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When is a hadronization model successful?

=» The performance is judged by their description of
experimental measurements!

ssef: A Machine Learnin rspective on Hadronization
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When is a hadronization model successful?

=» The performance is judged by their description of
experimental measurements!

Phenomenological Models (String, Cluster) are currently state of art
and are overall very successful, however:

=» comparison of data from proton-proton and ion-ion collision with Pythia

discrepancies at the level of 0(20%) to %) N.Fischer and T. Sj"ostrand,
=-»> S P S 0( o o) 0(50 0) JHEP 01, 140 (2017), 1610.09818.

=» recovering collective effects can be challenging, for instance, heavy baryon
production at high event multiplicities Alice Collaboration, arXiv: 1807.11321

=p no efficient estimation of Uncertainties

cluster

ssef: A Machine Learnin rspective on Hadronization
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When is a hadronization model successful?

=» The performance is judged by their description of
experimental measurements!

Phenomenological Models (String, Cluster) are currently state of art
and are overall very successful, however:

=» comparison of data from proton-proton and ion-ion collision with Pythia

discrepancies at the level of 0(20%) to %) N.Fischer and T. Sj"ostrand,
=-»> S P S 0( o o) 0(50 0) JHEP 01, 140 (2017), 1610.09818.

=» recovering collective effects can be challenging, for instance, heavy baryon
production at high event multiplicities Alice Collaboration, arXiv: 1807.11321

=p no efficient estimation of Uncertainties

Both models have a discrepancy in
ﬁ describing experimental measurements!

cluster

ssef: A Machine Learnin rspective on Hadronization



https://arxiv.org/abs/1610.09818
https://arxiv.org/abs/1807.11321
mailto:youssead@ucmail.uc.edu

”mc“fﬁ\'i’c“il& - Motivation N[LHAD

When is a hadronization model successful?

=» The performance is judged by their description of
experimental measurements!

Phenomenological Models (String, Cluster) are currently state of art
and are overall very successful, however:

with Pythia

and T. Sj ostrand,

=» comparison of data from proton-proton and ion-ig
=p discrepancies at the level of 0(20%) to 2 <O
e 29®

=» recovering collective effects cg g, for instance, heavy baryon

Both models have a discrepancy in
describing experimental measurements!

cluster
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Ung;\i;g;k&{ﬂ Hadronization Models M LHAD

Two primary hadronization models are used

r Fo—p — o \ f P A7 \
‘ @ —@ ’ . e String model:
Step 1 Tteratively split parton connected by QCD

l Foop @ " " # color strings with linear potential

step 2 —— el
) O B_] Cluster model:
p oD
Fhe Py pre-confine partons into proto-

String cluster clusters, then split by two-body decays
Pythia l J L I Herwig
MLhad: Ilten, Menzo,Youssef, Zupan, 2203.04983, HadML: (Chan, Ghosh,)
https://gitlab.com/uchep/mlhad Ju, (Kania), Nachman,

(Sangli,) Siodmok,
2203.12660, 2305.17169
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Uncertainty estimation is crucial for event generator
predictions!

ef: A Machine Learning Perspective on Hadronization
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CINCINNATI Uncertainty Quantification MLH AD
Uncertainty estimation is crucial for event generator
predictions!
Efficient solutions exist!
=p Hard matrix element

perturbative calculations depend on choices of scale,
values of gauge and other couplings, particle masses,

and nonperturbative inputs
Giele et al, Phys. Rev. D84, 05400

=» Parton shower

2011
S. Mrenna and P. Skands, Phys. Rev. D94(7), 074005 (2016)

sef: A Machine Learni

erspective on Hadronization
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CINCINNATI Uncertainty Quantification MLH AD
Uncertainty estimation is crucial for event generator
predictions!
) Efficient solutions exist!
=p Hard matrix element

perturbative calculations depend on choices of scale,
~— values of gauge and other couplings, particle masses,

and nonperturbative inputs
Giele et al, Phys. Rev. D84, 05400

=» Parton shower

2011
S. Mrenna and P. Skands, Phys. Rev. D94(7), 074005 (2016)

Efficient solution has remained elusive!
=» Hadronization \_ Standard procedure: perform repeated simulations

with different sets of values for the model parameters

* Computationally very expensive!

ssef: A Machine Learnin

rspective on Hadronization
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CINCINNATI Uncertainty Quantification MLH AD
Uncertainty estimation is crucial for event generator
predictions!
) Efficient solutions exist!
=p Hard matrix element

perturbative calculations depend on choices of scale,
~— values of gauge and other couplings, particle masses,

and nonperturbative inputs
Giele et al, Phys. Rev. D84, 05400

=» Parton shower

2011
S. Mrenna and P. Skands, Phys. Rev. D94(7), 074005 (2016)

=» Hadronization

ssef: A Machine Learnin
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Small Detour: Reweighting Monte Carlo Predictions and Automated
No ML only Had Fragmentation Variations in PYTHIA 8
i
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MLHAD

Abstract

This work reports on a method for uncertainty estimation in simulated collider-event pre-

dictions. The method is based on a Monte lo-veto algorithm, and extends previous

work on uncertainty estimates in parton showers by including uncertainty estimates for
the Lund string-fragmentation model. This method is advantageous from the perspective
of simulation costs: a single ensemble of generated events can be reinterpreted as though it

was obtained using a different set of input parameters, where each event now is accompa-

nied with a corresponding w

ight. This allows for a robust exploration of the uncertainties
arising from the choice of input model parameters, without the need to rerun full simu-
lation pipelines for each input parameter choice. Such explorations are important when
determining the sensitivities of precision physics measurements. Accompanying code is
available at gitlab.com/uchep/mlhad-weights-validation.
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CINCINNATI
Event: 1 2 3 4 5 6
=» Event generation is time consuming
=» We want to reweight events without par=i
regenerating @
Q. .
. . g par=s)
=» Use a modified veto algorithm 3
=» New event weights for different par=k
hadronization param are book kept
Instead of generating three
samples with weight=1,
generate one sample with
weight={1, w;, w,}
=»> We calculate event weights for different
hadronization options in a single 2 ) w=1 g w=1 g w=1 g w=1 jf w=1
event generation! E pai=l Wi i i L wf
& Wi Wy Wi Wi Wi

spective on Hadronization

ef: A Machine Learnin
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i ete” > Z - jets ia=0.30

a=0.55 a=0.76

e I ] - ' 10 = a5 =0.63

< [ *i . % 1] ™ o+ w
02 L L _: L - AL w = 17 e exact calc.

O1f= = 1k 1 1F " .

O.OFM..|.*'|~s_e,~.l_'.:...|.m.“w..1”m,..|.m."«._.|'

\\Q.) 2.5 ENEARSN L L I B EAE TN LU ) N PR T TR TR S W

N 5 7B 51 L ]

0.0 -I P S R N T % -1 PR T N S T N T I’ -I I T N T S :’i

25 50 25 50 25 50

charge multiplicity charge multiplicity charge multiplicity
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CINCINNATI
- T T T — T
g -~ 1
= Fit: 0.28+0.05 xx ) = Generate 100 samples
Sek | Means | with different variations
-
Lot of aLund
Z
& | |
é 4 - =» Each sample has 1000
-t events
5
=t ]

2k - Cost per additional

- parameter variation is
around 0.05 ms
0 1 L ! 1 | " L L 1 L L L | 1 1 L 1 L L L |
0 20 40 60 80 100 =» We have a speed up by a
Number of variations factor ~3
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CINCINNATI Generative Models M LHAD

Variational Autoencoder (VAE)
Kingma etal, arXiv:1312.6114

zZj
! KL-divergence limits the
CxL latent space to a simple
analytic distribution
x;—| Encoder |—z; —| Decoder |—I;

ACrvc

Vanilla VAE

VAE latent space
arXiv: 1804.01947

sef: A Machine Learn rspective on Hadronization
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CINCINNATI Generative Models M LHAD

Variational Autoencoder (VAE)
Kingma etal, arXiv:1312.6114

(r D
Zj
KL-divergence limits the
CxL latent space to a simple
analytic distribution
ﬂfa‘ ——| Encoder |——2z;—| Decoder |—;
‘C rec
Vanilla VAE
VAE latent space
Inference

arXiv: 1804.01947

{p,pr}
Decoder |—» Samples
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Variational Autoencoder (VAE)
Kingma etal, arXiv:1312.6114

v
Zj
KL-divergence limits the
CxL latent space to a simple
analytic distribution
ﬂfa‘ ——| Encoder |——2z;—| Decoder |—;
‘C rec
Vanilla VAE
VAE latent space
arXiv: 1804.01947
Complex input data Simple latent space
> Encoder > Decoder = Complex distribution are hard to learn!
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Variational Autoencoder (VAE)
Kingma etal, arXiv:1312.6114

(r D
P T T
KL-divergence limits the
CxL latent space to a simple
analytic distribution
Tf —| Encoder |—2; —| Decoder |—;
[ How can we make
Vanilla VAE
VAEs learn more VAB latent space
° ° ° arXiv: 1804.01047
Complex input data complex distribution?
> Encoder > Decoder = Complex distribution are hard to learn!
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Use Sliced Wasserstein Distance as latent loss
function!
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Use Sliced Wasserstein Distance as latent loss

function!
Wasserstein distance (WD) 1951 W, (i) .
< - o E~N(ji=1[0,01,G=[1,1]) e .
N N 1/'1 1001+ E~NGE=00,10,5=1,1)
W,(E,E) min ZZ f“ ii) ‘
{fii20} = =

=1j=1 75 >
> 5.0
2.5
0.0
—-2.5
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Use Sliced Wasserstein Distance as latent loss

function!
Wasserstein distance (WD) 1251 Wy (i)
_ ' e E~N(i=[0,0,5=1[11])
W (g g i 2 f l/q 10.0 o &~ N(ji=[10,10],5 = [1,1])
min ’
{fiz20} % “ ”
=1 j=1 -
(.0
= 5.0
Sliced Wasserstein distance
2.5
=» Projects high dimensional data into one -
dimensional “slices” 0.0 7
= WD in 1D has a closed form solution —-25 Pkl
=) Sorted Difference of the two samples =25 0.0 2.5 5.0 75 100 125
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SciPost Phys. 14, 027 (2023)  Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE) Restricted to
Pion emissions
(f . R
LR Zi i SW distance enables
‘:_ I c i learning any sampleable
. - = latent distribution
T;— Encoder | —p =z —| Decoder |—;
I = Can learn complex distributions!
Co [ VAE
c¢SWAE architecture

(Architecture used in SciPost Phys. 14, 027 (2023) )

SWAE latent space
(arXiv: 1804.01947 )
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SciPost Phys. 14, 027 (2023)

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE) Restricted to

Pion emissions

LR Zi i SW distance enables
‘:_ I Cow ; learning any sampleable
v AR
3 latent distribution
T;— Encoder |—z; —»| Decoder |—@;
I = Can learn complex distributions!
Co [ VAE

cSWAE architecture
(Architecture used in SciPost Phys. 14, 027 (2023) )

SWAE latent space
Latent (arXiv: 1804.01947 )
Distribution

{pzpr}
Decoder |—» Samples

Decoder “just” generates samples

= No access to the probability distribution
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Normalizing Flows

MLiaD)

Ji(zn) Filzioa) Jiv1 (=)
_ 2 .- 2 > Zigl .-

zo ~ polza) 2~ pilzi)
Zo- random vector Fi

i — invertible NN that
sampled from a

Gaussi (z0) transforms p(z) to p;(z;)
ausstan po{Zo by change of variables

Complex target distribution
pr(zy) is learned

= Can learn complex distributions!

Exact probability distribution is
obtained by change of variables

fl(zl 1)) |

Zi-1

Pe(zi) = po(2o) 1_[ |det<

Removed pion

hHps://github.com/janosh/awe s s . .
ps:/ /s /) ! emission restriction

some-normalizing-flows

=Access to the exact probability distribution
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““g,f;;;glgm Further Directions N[LHAD

=»> Propagation of errors
=» ML architecture with Bayesian Normalizing Flows (presented in part)

=» Train on observables only

=» Two part reweighter (not part of the talk)
=» Train on global observables with Fine tuning (results not

shown in this talk)
=» To train on experimental data
=» Want fast evaluation of parameter dependency
=» Use reweighting method

=» First implementation in Pythia for Lund string model (to be released

soon in Pythia)

ef: A Machine Learning Perspective on Hadronization



mailto:youssead@ucmail.uc.edu

Unglrfxiiyé’fr&g{ﬂ N[LHAD

Back up
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CINCINNATI Training Results cNF N[LHAD
*Preliminary

[] Target, m = 0.1 GeV [] Target, m = 0.1 GeV
0.020 ] E = 100.0 GeV 25 ] E = 100.0 GeV
[ 1 E = 400.0 GeV [ 1 E = 400.0 GeV
[ E = 700.0 GeV 2.0 [ E = 700.0 GeV
0.015 ] E = 1000.0 GeV ] E = 1000.0 GeV
= =15
o o
0.010
1.0
0.005 05
0.000 = 0.0
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