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Simulating Collision
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Hard process:
initial high-energy interaction
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Big Picture
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A series of progressive steps needs to be done before 
practically useful in Pythia simulations 
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Train on truth level Pythia 
output (not obs. In exp)

Develop a framework to 
propagate errors

Train on mock data (i.e., just 
observable information)

Train on real data (i.e., 
just already measured 

information)

Replace/Complement 
Pythia string model

We are 
here

Partial 
results 
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MLHAD Pipeline
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We need a generative model!

Sample hadron kinematics:
Train on {𝒑𝒛, 𝒑𝑻}

Emission of different Mesons:
Condition on mass (𝒎) and energy (𝑬)
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Hacking Generative Models with Differentiable Network Bending

G. Aldeghery, A Rogalska, A. Youssef, E. Iofinova

NeurIPS, ML for Creativity and Design workshp
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Why Machine Learning?
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Hacking Generative Models with Differentiable Network Bending

G. Aldeghery, A Rogalska, A. Youssef, E. Iofinova

NeurIPS, ML for Creativity and Design workshp

How is this useful for us?
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Generative Models

Source: generative models
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⇒ Task: Learn the probability distribution p(x ) of the data

Which generative model should we choose?
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Do we have access to

the exact probability 
distribution?

Is it able to learn 
complex 

distributions?

https://openai.com/research/generative-models

https://openai.com/research/generative-models
mailto:youssead@ucmail.uc.edu


cSWAE architecture
(Architecture used in SciPost Phys. 14, 027 (2023) )

Generative Models

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE)

⇒ Can learn complex distributions!

⇒ No access to the probability distribution

SciPost Phys. 14, 027 (2023)

VAE
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SW distance enables
learning any sampleable

latent distribution

Decoder “just” generates 
samples

https://scipost.org/SciPostPhys.14.3.027
https://scipost.org/SciPostPhys.14.3.027
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SW distance enables
learning any sampleable

latent distribution

Decoder “just” generates 
samples

⇒ Can learn complex distributions!

⇒ Access to the exact probability distribution
hHps://github.com/janosh/awesome-normalizing-flows

Normalizing Flows (NF)

𝑝𝑘 𝑧𝑘 = 𝑝0 𝑧0 ෑ

𝑖=1

𝐾

|det
𝜕𝑓𝑖(𝑧𝑖−1)

𝜕𝑧𝑖−1
 ቚ

−1
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Back to Physics

Implement NF in the fragmentation chain to obtain physical observables

NF NF

⇒ Multiplicity obtained by MLHad agrees with Pythia!
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Uncertainty Quantification
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Uncertainty estimation is crucial for event generator 
predictions! 

17
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Statistical (and Training) Uncertainties

(Image source: The very Basics of Bayesian Neural Networks )

„Classical“ Neural Networks

Weights have a fixed value
→Weight values are updated in each epoch
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Statistical (and Training) Uncertainties

Bayesian Neural Networks (BNN)

(Image source: The very Basics of Bayesian Neural Networks )

„Classical“ Neural Networks

Weights have a fixed value
→Weight values are updated in each epoch

Weights are sampled from a distribution
→ Distribution parameter are updated in 

each epoch

→ BNN are easy to implement: Add additional loss function for weight distribution

→ Capture statistical and training uncertainties
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Bayesian NF Results

BNF capture the statistical 
and training uncertainties
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∗Preliminary

Pythia Sample:
One sample with errors 

corresponding to 𝑁𝑏𝑖𝑛

Mean BNF:
5 × 105 samples with 

errors corresponding to 
the standard deviation
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Reweighting with NFs

∗Preliminary

b is a free parameter in the Lund function used 
in Pythia: StringZ:bLund

Train nominal NF conditioned on different b
→ Get likelihood

→ Reweight nominal output using ratio of 
likelihoods:

𝑤 = ς𝑖
𝑝𝑛𝑜𝑚

𝑖
(𝑧)

𝑝𝑝𝑒𝑟𝑡
𝑖

(𝑧)
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Further Directions

Base Model
Pythia 

truth level 
output

Observables
ML-

Based

First Step:
Train on “pseudo” data 

from Pythia

Not 
Observed!

Observables

Simulated

Experiment

V
a

li
d

a
te

Sample

MLhadPipeline

We developed a pipeline for 
Hadronization based on the Lund model 
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Further Directions

Fine-tuned 
Model

Reweight 
truth level 

output
Observables

ML-
Based

Observables

Simulated

Experiment

MLhadPipeline
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Use loss function 
on observable

Not restricted to an analytic 
function!! Bierlich et al, 2311.xxxxx
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Conclusion and Outlook
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• First MLHAD pipeline based on cSWAE was published in SciPost Phys. 14, 027 (2023)

• NFs overcome the limitations of cSWAE - can emit in principle any meson and have access to pdf

• NFs allow us to reweight events and capture uncertainties

Work in progress

• Finalize normalizing flows architecture (include model uncertainty)

• PYTHIA reweighting (Release as part of Pythia)

• Flavor Selector

• Performing training on physically accessible observables to train MLHAD on experimental data
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Backup
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Motivation
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When is a hadronization model successful?

youssead@ucmail.uc.edu
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When is a hadronization model successful?

The performance is judged by their description of 
experimental measurements!

youssead@ucmail.uc.edu
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Motivation
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Pythia

Herwig

N. Fischer and T. Sj¨ostrand,
JHEP 01, 140 (2017), 1610.09818.

When is a hadronization model successful?

The performance is judged by their description of 
experimental measurements!

Phenomenological Models (String, Cluster) are currently state of art 
and are overall very successful, however:

comparison of data from proton-proton and ion-ion collision with Pythia

discrepancies at the level of O(20%) to O(50%)

recovering collective effects can be challenging, for instance, heavy baryon 
production at high event multiplicities Alice Collaboration, arXiv: 1807.11321

no efficient estimation of Uncertainties

youssead@ucmail.uc.edu

https://arxiv.org/abs/1610.09818
https://arxiv.org/abs/1807.11321
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Hadronization Models

Two primary hadronization models are used

h1  h1

h2  h2

step 1

step 2

string

32

cluster

String model:

Iteratively split parton connected by QCD 

color strings with linear potential

Cluster model:

pre-confine partons into proto-

clusters, then split by two-body decays

A. Youssef: A Machine Learning Perspective on Hadronization youssead@ucmail.uc.edu

Pythia Herwig

MLhad: Ilten, Menzo,Youssef, Zupan, 2203.04983, 
https://gitlab.com/uchep/mlhad 

HadML: (Chan, Ghosh,) 
Ju, (Kania), Nachman, 
(Sangli,) Siodmok, 
2203.12660, 2305.17169
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Uncertainty Quantification
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Uncertainty estimation is crucial for event generator 
predictions! 

33
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Uncertainty Quantification
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Uncertainty estimation is crucial for event generator 
predictions! 

Efficient solutions exist!

perturbative calculations depend on choices of scale, 
values of gauge and other couplings, particle masses, 

and nonperturbative inputs
Giele et al, Phys. Rev. D84, 054003 (2011)

Hard matrix element

P a r t o n  sh o w e r

S. Mrenna and P. Skands, Phys. Rev. D94(7), 074005 (2016)

34
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Efficient solutions exist!

perturbative calculations depend on choices of scale, 
values of gauge and other couplings, particle masses, 

and nonperturbative inputs
Giele et al, Phys. Rev. D84, 054003 (2011)

Hadronization

Hard matrix element

P a r t o n  sh o w e r

Efficient solution has remained elusive!

Standard procedure: perform repeated simulations 
with different sets of values for the model parameters

Computationally very expensive!

S. Mrenna and P. Skands, Phys. Rev. D94(7), 074005 (2016)
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Reweighting Hadronized Pythia Events
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Small Detour:
No ML, only Had

youssead@ucmail.uc.edu
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Reweighting Hadronized Pythia Events
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Event generation is time consuming

We want to reweight events without 
regenerating

Use a modified veto algorithm

New event weights for different 
hadronization param are book kept

We calculate event weights for different 
hadronization options in a single 

event generation!

youssead@ucmail.uc.edu
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Reweighting Hadronized Pythia Events
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reweighted

exact calc.

𝒆+𝒆− → 𝒁 → 𝒋𝒆𝒕𝒔

youssead@ucmail.uc.edu
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Reweighting Hadronized Pythia Events
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Generate 100 samples 
with different variations 

of aLund

Each sample has 1000 
events

We have a speed up by a 
factor ~3

youssead@ucmail.uc.edu

Cost per additional 
parameter variation is 

around 0.05 ms

mailto:youssead@ucmail.uc.edu


Vanilla VAE

VAE latent space
arXiv: 1804.01947

Generative Models

Variational Autoencoder (VAE)

KL-divergence limits the 
latent space to a simple 

analytic distribution
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Kingma et al, arXiv:1312.6114

https://arxiv.org/abs/1804.01947
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Kingma et al, arXiv:1312.6114

𝒑𝒛, 𝒑𝑻

Samples 

Latent 
Distribution

𝒛 ~ 𝑝(𝑧) 

Inference

https://arxiv.org/abs/1804.01947
mailto:youssead@ucmail.uc.edu
https://arxiv.org/abs/1312.6114


Vanilla VAE

VAE latent space
arXiv: 1804.01947

Generative Models

Variational Autoencoder (VAE)

43 A. Youssef: A Machine Learning Perspective on Hadronization 
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Complex input data Simple latent space

⇒ Complex distribution are hard to learn!

Kingma et al, arXiv:1312.6114

KL-divergence limits the 
latent space to a simple 

analytic distribution

youssead@ucmail.uc.edu

https://arxiv.org/abs/1804.01947
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Vanilla VAE

VAE latent space
arXiv: 1804.01947

Generative Models

Variational Autoencoder (VAE)
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Complex input data Simple latent space

⇒ Complex distribution are hard to learn!

Kingma et al, arXiv:1312.6114

KL-divergence limits the 
latent space to a simple 

analytic distribution

How can we make 
VAEs learn more 

complex distribution?

youssead@ucmail.uc.edu

https://arxiv.org/abs/1804.01947
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Generative Models

Use Sliced Wasserstein Distance as latent loss 
function!
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Generative Models

Use Sliced Wasserstein Distance as latent loss 
function!
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Wasserstein distance (WD)

mailto:youssead@ucmail.uc.edu


Generative Models

Use Sliced Wasserstein Distance as latent loss 
function!
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Wasserstein distance (WD)

Sliced Wasserstein distance

Projects high dimensional data into one 
dimensional “slices”

WD in 1D has a closed form solution

Sorted Difference of the two samples

mailto:youssead@ucmail.uc.edu


cSWAE architecture
(Architecture used in SciPost Phys. 14, 027 (2023) )

SWAE latent space
(arXiv: 1804.01947 )

Generative Models

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE)

⇒ Can learn complex distributions!

SciPost Phys. 14, 027 (2023)

VAE

Restricted to 
Pion emissions

48 A. Youssef: A Machine Learning Perspective on Hadronization youssead@ucmail.uc.edu

SW distance enables
learning any sampleable

latent distribution

https://scipost.org/SciPostPhys.14.3.027
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cSWAE architecture
(Architecture used in SciPost Phys. 14, 027 (2023) )

SWAE latent space
(arXiv: 1804.01947 )

Generative Models

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE)

⇒ Can learn complex distributions!

𝒑𝒛, 𝒑𝑻

Samples 

⇒ No access to the probability distribution

SciPost Phys. 14, 027 (2023)

VAE

Latent 
Distribution

Restricted to 
Pion emissions
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𝒛 ~ 𝑝(𝑧) 

SW distance enables
learning any sampleable

latent distribution

Decoder “just” generates samples

https://scipost.org/SciPostPhys.14.3.027
https://scipost.org/SciPostPhys.14.3.027
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Z0- random vector 
sampled from a 

Gaussian 𝑝0 𝑧0

Fi – invertible NN that 

transforms 𝑝0 𝑧0 to 𝑝𝑖 𝑧𝑖  
by change of variables

Complex target distribution 

𝑝𝑘 𝑧𝑘  is learned 

⇒ Can learn complex distributions!

⇒ Access to the exact probability distribution

𝑝𝑘 𝑧𝑘 = 𝑝0 𝑧0 ෑ

𝑖=1

𝐾

|det
𝜕𝑓𝑖(𝑧𝑖−1)

𝜕𝑧𝑖−1
 ቚ

−1

Normalizing Flows

Exact probability distribution is 
obtained by change of variables

Removed pion 
emission restriction
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hHps://github.com/janosh/awe
some-normalizing-flows
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Further Directions
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Propagation of errors

ML architecture with Bayesian Normalizing Flows (presented in part)

Train on observables only

Two part reweighter (not part of the talk)

Train on global observables with Fine tuning (results not 
shown in this talk)

To train on experimental data

Want fast evaluation of parameter dependency

Use reweighting method

First implementation in Pythia for Lund string model (to be released 
soon in Pythia)

youssead@ucmail.uc.edu
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Back up
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Training Results cNF

∗Preliminary
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