Quantpostela Day 1, Lecture 1A:

Quantum computing basics

Meijian Li
10-11 AM, Oct 18

IGFAE, Aula B, University of Santiago de Compostela Qiskit Fall Fest 2023

What we will learn

1. How does quantum computing develop?
2. What is quantum mechanics?
3. What is qubit?
4. How do we construct a quantum circuit?
5. What is density operator?

1. How does quantum computing develop?

> Quantum

- In 1905, Albert Einstein explains the photoelectric effect-shining light on certain materials can function to release electrons from the material—and suggests that light itself consists of individual quantum particles or photons.

1. How does quantum computing develop?

> Quantum

- In 1905, Albert Einstein explains the photoelectric effect-shining light on certain materials can function to release electrons from the material—and suggests that light itself consists of individual quantum particles or photons.
- In 1924, the term quantum mechanics is first used in a paper by Max Born.

1. How does quantum computing develop?

> Computing

- David Hilbert's 1928 problem: "what can humans know about mathematics, in principle, and what (if any) parts of mathematics are forever unknowable by humans?"

1. How does quantum computing develop?

> Computing

- David Hilbert's 1928 problem: "what can humans know about mathematics, in principle, and what (if any) parts of mathematics are forever unknowable by humans?"
- To tackle this problem, in 1936, Alan Turing described what we now call a Turing machine: a single, universal programmable computing device that could perform any algorithm whatsoever.

1. How does quantum computing develop?

> Quantum \& Computing

- In 1985, David Deutsch invented a new type of computing system, a quantum computer, with stating " 'quantum parallelism', a method by which certain probabilistic tasks can be performed faster by a universal quantum computer than by any classical restriction of it."

1. How does quantum computing develop?

> Quantum \& Computing

- In 1985, David Deutsch invented a new type of computing system, a quantum computer, with stating ' 'quantum parallelism', a method by which certain probabilistic tasks can be performed faster by a universal quantum computer than by any classical restriction of it."
- In 1982, Richard Feynman suggested that building computers based on the principles of quantum mechanics would allow us to avoid the essential difficulties in simulating quantum mechanical systems on classical computers.

1. How does quantum computing develop?

> Quantum advantage (over classical computers)

- In 1994, Peter Shor demonstrated that the problem of finding the prime factors of an integer, and the 'discrete logarithm' problem could be solved efficiently on a quantum computer.

1. How does quantum computing develop?

> Quantum advantage (over classical computers)

- In 1994, Peter Shor demonstrated that the problem of finding the prime factors of an integer, and the 'discrete logarithm' problem could be solved efficiently on a quantum computer.
- In 1995, Lov Grover invented the quantum database search algorithm.

Lecture 2A, "Quantum Fourier Transform" by Marcos Gonzalez; Lecture 2B and Lab 2, "Shor's Algorithms"
by Xiaojian Du

1. How does quantum computing develop?

> Quantum supremacy

- In 2004, First five-photon entanglement demonstrated by Jian-Wei Pan's group at the University of Science and Technology in China.
- In $\underline{2019}$, Google claims to have reached quantum supremacy by performing a series of operations in 200 seconds that would take a supercomputer about 10,000 years to complete.
- In 2022, the IBM Quantum Summit announced new breakthrough advancements in quantum hardware and software and outlining its pioneering vision for quantum-centric supercomputing.

UTSC, Jian-Wei Pan's group, Science 370, 1460 (2020)

Google AI Quantum 1910.11333 (2019)

IBM Quantum at CES 2020

1. How does quantum computing develop?

> Quantum supremacy

- In 2023, Galicia acquires the most powerful quantum computer in Spain and one of the first in Europe, "Qmio", a 32-qubit computer based on superconducting technology in the Galician Supercomputing Center (CESGA).

2. What is quantum mechanics?

> A mathematical framework for the development of physical theories

- Postulate 1: Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system's state space.

2. What is quantum mechanics?

> A mathematical framework for the development of physical theories

- Postulate 2: The evolution of a closed quantum system is described by a unitary transformation. That is, the state $|\psi\rangle$ of the system at time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the system at time t_{1} by a unitary operator U which depends only on the times t_{1} and t_{2},

$$
\left|\psi\left(t_{2}\right)\right\rangle=U\left(t_{1} ; t_{2}\right)\left|\psi\left(t_{1}\right)\right\rangle
$$

the time-dependent Schrödinger equation

$$
H|\psi(t)\rangle=\mathrm{i} \hbar \frac{\partial}{\partial t}|\psi(t)\rangle \quad \square U\left(t_{1} ; t_{2}\right)=e^{-i H\left(t_{2}-t_{1}\right) / \hbar}
$$

2. What is quantum mechanics?

> A mathematical framework for the development of physical theories

- Postulate 3: Quantum measurements are described by a collection $\left\{M_{m}\right\}$ of measurement operators. These are operators acting on the state space of the system being measured. The index m refers to the measurement outcomes that may occur in the experiment. If the state of the quantum system is $|\psi\rangle$ immediately before the measurement, then the probability that result m occurs is given by

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle
$$

and the state of the system after the measurement is $\frac{M_{m}\left|\psi_{i}\right\rangle}{\sqrt{\left\langle\psi_{i}\right| M_{m}^{\dagger} M_{m}\left|\psi_{i}\right\rangle}}$
The measurement operators satisfy the completeness equation $\sum_{m} M_{m}^{\dagger} M_{m}=1$

2. What is quantum mechanics?

> A mathematical framework for the development of physical theories

- Postulate 3: Quantum measurements example

$$
\begin{aligned}
|\psi\rangle & =\alpha|0\rangle+\beta|1\rangle \\
M|0\rangle & =M_{0}|0\rangle=0|0\rangle \\
M|1\rangle & =M_{1}|1\rangle=1|1\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
p(0)=\langle\psi| M_{0}^{\dagger} M_{0}|\psi\rangle=|\alpha|^{2}, & |\psi\rangle \rightarrow|0\rangle \\
p(1)=\langle\psi| M_{1}^{\dagger} M_{1}|\psi\rangle=|\beta|^{2}, & |\psi\rangle \rightarrow|1\rangle
\end{array}
$$

2. What is quantum mechanics?

> A mathematical framework for the development of physical theories

- Postulate 4: The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in the state $\left|\psi_{i}\right\rangle$, then the joint state of the total system is

$$
\begin{gathered}
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \cdots \otimes\left|\psi_{n}\right\rangle \\
|u\rangle \otimes|v\rangle=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) \otimes\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
u_{1} v_{1} \\
u_{1} v_{2} \\
\vdots \\
u_{1} v_{n} \\
\vdots \\
\vdots \\
u_{n} v_{1} \\
u_{n} v_{2} \\
\vdots \\
u_{n} v_{n}
\end{array}\right)
\end{gathered}
$$

3. What is qubit?

- A (classical) bit is a state of 0 or 1 , a mathematical concept in classical computing.

00

3. What is qubit?

- A (classical) bit is a state of 0 or 1 , a mathematical concept in classical computing.

00

- Bits are stored as tiny electric charges on nanometer-scale capacitors.

3. What is qubit?

- A quantum bit, i.e., qubit, is a mathematical concept in quantum computing. It is a state of 2dimensional unit vector,

α and β are complex values, satisfying $|\alpha|^{2}+|\beta|^{2}=1$.
> What is the degree of freedom, number of independent real variables, in one qubit?

3. What is qubit?

- A quantum bit, i.e., qubit, is a mathematical concept in quantum computing. It is a state of 2dimensional unit vector,

$$
\binom{\alpha}{\beta}
$$

α and β are complex values, satisfying $|\alpha|^{2}+|\beta|^{2}=1$.
> What is the degree of freedom, number of independent real variables, in one qubit?

$$
2 \text { (variables) } \times 2 \text { (complex) }-1 \text { (normalization constraint) }=3
$$

3. What is qubit?

- A qubit state:
$\binom{\alpha}{\beta}=\alpha\binom{1}{0}+\beta\binom{0}{1}$

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
superposition / linear combination

3. What is qubit?

- A qubit state:

$$
\begin{aligned}
|\psi\rangle & =\alpha|0\rangle+\beta|1\rangle \\
& =e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle\right) \\
& \text { overall } \\
\text { phase polar } & \text { angle }
\end{aligned}
$$

3. What is qubit?

- A qubit state:

$$
\begin{aligned}
&|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\
&=e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle\right) \\
& \begin{array}{ll}
\text { overall } & \text { polar } \\
\text { phase } & \text { angle }
\end{array} \begin{array}{l}
\text { azimuthal } \\
3
\end{array} \\
& 3 \text { real variables }
\end{aligned}
$$

- The state of the qubit can be stored on an electron, photon, or an atom.

3. What is qubit?

- A qubit state: $\quad|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
$>$ What is the physical meaning of the amplitudes α and β ?

Recall what happens after

 a measurement in QM
or

3. What is qubit?

- A 2-qubit state

$?$

2 Bloch spheres

3. What is qubit?

- A 2-qubit state

$$
\begin{aligned}
|\psi\rangle & =(\alpha|0\rangle+\beta|1\rangle)\left(\alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle\right) \\
& =c_{00}|00\rangle+c_{01}|01\rangle+c_{10}|10\rangle+c_{11}|11\rangle
\end{aligned}
$$

> What is the degree of freedom, number of independent real variables, in a two-qubit state?

$$
\begin{aligned}
4(\text { variables }) \times 2(\text { complex })-1(\text { normalization constraint }) & =7 \\
& \neq 2(\text { qubits }) \times 3
\end{aligned}
$$

3. What is qubit?

- A 2-qubit state

3. What is qubit?

- A 2-qubit state

hypersphere in 7 dimension

3. What is qubit?

- A 2-qubit state

> What is missing on the right-hand side?

3. What is qubit?

- A 2-qubit state

> What is missing on the right-hand side?
Correlation between the two qubits.

3. What is qubit?

- A n-qubit state

$$
\begin{aligned}
|\psi\rangle & =\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right)\left(\alpha_{2}|0\rangle+\beta_{2}|1\rangle\right) \ldots\left(\alpha_{n}|0\rangle+\beta_{n}|1\rangle\right) \\
& =c_{00 \ldots}|00 \ldots 0\rangle+c_{00 \ldots}|00 \ldots 1\rangle+\cdots+c_{11 \ldots}|11 \ldots 1\rangle
\end{aligned}
$$

> What is the degree of freedom, number of independent real variables, in a n-qubit state?

$$
\left.2^{n}(\text { variables }) \times 2(\text { complex })-1 \text { (normalization constraint }\right)=2^{n+1}-1>2 n
$$

4. How do we construct a quantum circuit?

- A classical computer is built from an electrical circuit containing wires and logic gates.

4. How do we construct a quantum circuit?

- A quantum computer is built from a quantum circuit containing wires and elementary quantum gates to carry around and manipulate quantum information (qubits).

4.1 Quantum wire

- The simplest quantum circuit is a quantum wire, which does nothing.
> However, it is also the hardest to implement in practice. The reason is that quantum states are often incredibly fragile, as stored in a single photon or a single atom.

4.2 Single qubit operations

- Single qubit operations are described by 2×2 unitary matrices. For example, Pauli matrices, X, Y and Z ,

$$
\begin{aligned}
X & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
Y & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
Z & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

4.2 Single qubit operations

- Single qubit operations are described by 2×2 unitary matrices, say U, and the state after the operation reads

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

. Why does the operation have to be unitary?

Unitary matrices preserve the length of their inputs.

$$
\begin{gathered}
U U^{\dagger}=U^{\dagger} U=I \\
\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| U^{\dagger} U|\psi\rangle=\langle\psi \mid \psi\rangle=1
\end{gathered}
$$

4.2 Single qubit operations

- The Quantum NOT gate/ X gate

4.2 Single qubit operations

- The Hadamard gate/ H gate

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

4.2 Single qubit operations

- An arbitrary single qubit gate

$$
U=e^{i \alpha}\left(\begin{array}{cc}
e^{-i \beta / 2} & 0 \\
0 & e^{i \beta / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos (\gamma / 2) & -\sin (\gamma / 2) \\
\sin (\gamma / 2) & \cos (\gamma / 2)
\end{array}\right)\left(\begin{array}{cc}
e^{-i \delta / 2} & 0 \\
0 & e^{i \delta / 2}
\end{array}\right)
$$

α, β, γ, and δ are real variables
> Unitarity constraint is the only constraint on quantum gates.

4.2 Multiple qubit gates

- The C(ontrolled-)NOT gate

control qubit
target qubit

addition modulo 2
$0 \oplus 0=0$
$0 \oplus 1=1$
$1 \oplus 0=1$
$1 \oplus 1=0$
> What is the matrix representation of the CNOT gate?

4.2 Multiple qubit gates

- The C(ontrolled-)NOT gate

addition modulo 2
$0 \oplus 0=0$
$0 \oplus 1=1$
$1 \oplus 0=1$
$1 \oplus 1=0$
> What is the matrix representation of the CNOT gate?

$$
\mathrm{CNOT}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

4.2 Multiple qubit gates

- The C(ontrolled-)NOT gate

control qubit
target qubit

$>$ Is the control qubit always unchanged after the CNOT gate?

4.2 Multiple qubit gates

- The C(ontrolled-)NOT gate

control qubit
target qubit

$>$ Is the control qubit always unchanged after the CNOT gate?

4.2 Multiple qubit gates

- The Controlled-U gate

4.2 Multiple qubit gates

- The Toffoli gate/ CCNOT gate

$>$ Toffoli gate is universal, in the sense that any classical reversible circuit can be constructed from it.

4.3 Measurement

- The circuit representation of the measurement is

The double line coming out of the measurement carry classical bit.
> Could we get the values of α and β of $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ through measurement?

4.4 Quantum circuit I: the Bell state

- The Bell states / EPR (Einstein, Podolsky, and Rosen) pairs represent the simplest examples of quantum entanglementment.

$$
\begin{aligned}
& \left.\beta_{00}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}, \\
& \left\langle\beta_{01}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}, \\
& \left.\beta_{10}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}, \\
& \left.\beta_{11}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}},
\end{aligned}
$$

Lecture 1B and Lab 1, "Quantum Teleportation and Entanglement" by Juan Santos

4.4 Quantum circuit II: quantum teleportation

- How can Alice deliver a qubit that she does not know, $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$, to Bob?

Lecture 1B and Lab 1, "Quantum Teleportation and Entanglement" by Juan Santos

4.4 Quantum circuit III: quantum simulation

- How to simulate the evolution of a system for a given Hamiltonian?

Lecture 3A, "Time evolution" by ML; Lecture 3B and Lab 3, "Variational algorithms" by Wenyang Qian

5. What is density operator?

- Suppose a quantum system is in one of a number of states $\left|\psi_{i}\right\rangle$ with respective probabilities p_{i}, where i is an index. We call $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$ an ensemble of pure states. The density operator/matrix is defined as

$$
\rho \equiv \sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

5.1 Pure \& mixed states

- If the state of the system is known exactly, i.e., an ensemble of $\{1,|\psi\rangle\}$, we say the system is in a pure state, and

$$
\rho=|\psi\rangle\langle\psi|
$$

- Otherwise, the system is a mixture of different pure states $\left|\psi_{i}\right\rangle$, and we say it is in a mixed state.

5.1 Pure \& mixed states

$>$ Pure or mixed? $\quad|\psi\rangle=|0\rangle$

5.1 Pure \& mixed states

> Pure or mixed?
$$
|\psi\rangle=|0\rangle
$$

Pure

$$
\begin{aligned}
& \quad \rho=|0\rangle\langle 0|=\binom{1}{0}(10) \\
& \quad=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& \operatorname{Tr} \rho=1 \\
& \operatorname{Tr} \rho^{2}=1
\end{aligned}
$$

5.1 Pure \& mixed states

\rangle Pure or mixed? $\quad|\psi\rangle=|+\rangle=(|0\rangle+|1\rangle) / \sqrt{ } 2$

5.1 Pure \& mixed states

$>$ Pure or mixed? $\quad|\psi\rangle=|+\rangle=(|0\rangle+|1\rangle) / \sqrt{ } 2$

Pure

$$
\begin{aligned}
& \rho=|+\rangle\langle+|=\frac{1}{2}\binom{1}{1}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

$\operatorname{Tr} \rho=1$
$\operatorname{Tr} \rho^{2}=1$

5.1 Pure \& mixed states

$>$ Pure or mixed? $\quad\{1,|+\rangle\}$

5.1 Pure \& mixed states

$>$ Pure or mixed? $\quad\{1,|+\rangle\}$

Pure

$$
\begin{aligned}
& \rho=|+\rangle\langle+|=\frac{1}{2}\binom{1}{1}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

$\operatorname{Tr} \rho=1$
$\operatorname{Tr} \rho^{2}=1$

5.1 Pure \& mixed states

5.1 Pure \& mixed states

Mixed

$$
\begin{aligned}
& \rho=\frac{1}{3}|+\rangle\langle+|+\frac{2}{3}|0\rangle\langle 0| \\
& =\frac{1}{3} \frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)+\frac{2}{3}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{ll}
5 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

$$
\operatorname{Tr} \rho=1
$$

$\operatorname{Tr} \rho^{2}=\frac{7}{9} \quad$ р purity

5.2 Properties of the density matrix

1) Trace condition
2) Positivity condition

$$
\operatorname{Tr} \rho=1 \quad \operatorname{tr}(\rho)=\sum_{i} p_{i} \operatorname{tr}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)=\sum_{i} p_{i}=1
$$

$\langle\phi| \rho|\phi\rangle>0$

$$
\begin{aligned}
\langle\varphi| \rho|\varphi\rangle & =\sum_{i} p_{i}\left\langle\varphi \mid \psi_{i}\right\rangle\left\langle\psi_{i} \mid \varphi\right\rangle \\
& =\sum_{i} p_{i}\left|\left\langle\varphi \mid \psi_{i}\right\rangle\right|^{2}
\end{aligned}
$$

5.2 Properties of the density matrix

1) Trace condition

$$
\operatorname{Tr} \rho=1
$$

2) Positivity condition

$$
\langle\phi| \rho|\phi\rangle>0
$$

ρ is the density operator

5.3 Operations with the density matrix

- If the evolution of the system is given by the unitary operator U,

$$
\left|\psi_{i}\right\rangle \xrightarrow{U} U\left|\psi_{i}\right\rangle
$$

that of the density operator follows as

5.3 Operations with the density matrix

- For a measurement with operators M_{m}, the probability of getting result m given the initial state $\left|\psi_{i}\right\rangle$ is,

$$
p(m \mid i)=\left\langle\psi_{i}\right| M_{m}^{\dagger} M_{m}\left|\psi_{i}\right\rangle=\operatorname{Tr}\left(M_{m}^{\dagger} M_{m}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)
$$

then the total probability of getting m is,

$$
p(m)=\sum_{i} p_{i} p(m \mid i)=\sum_{i} p_{i} \operatorname{Tr}\left(M_{m}^{\dagger} M_{m}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)=\operatorname{Tr}\left(M_{m}^{\dagger} M_{m} \rho\right)
$$

5.3 Operations with the density matrix

- After the measurement, state with outcome m becomes

$$
\left|\psi_{i}\right\rangle \rightarrow \quad\left|\psi_{i}^{m}\right\rangle=\frac{M_{m}\left|\psi_{i}\right\rangle}{\sqrt{\left\langle\psi_{i}\right| M_{m}^{\dagger} M_{m}\left|\psi_{i}\right\rangle}}
$$

the subsystem with m is an ensemble of $\left\{p(i \mid m),\left|\psi_{i}^{m}\right\rangle\right\}$,

$$
\begin{aligned}
\rho_{m}=\sum_{i} p(i \mid m)\left|\psi_{i}^{m}\right\rangle\left\langle\psi_{i}^{m}\right|=\sum_{i} \frac{p(m \mid i) p_{i}}{p(m)} \frac{M_{m}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| M_{m}^{\dagger}}{\left\langle\psi_{i}\right| M_{m}^{\dagger} M_{m}\left|\psi_{i}\right\rangle} & =\sum_{i} p_{i} \frac{M_{m}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| M_{m}^{\dagger}}{\operatorname{Tr}\left(M_{m}^{\dagger} M_{m} \rho\right)} \\
& =\frac{M_{m} \rho M_{m}^{\dagger}}{\operatorname{Tr}\left(M_{m}^{\dagger} M_{m} \rho\right)} .
\end{aligned}
$$

5.3 Operations with the density matrix

- Therefore, after the measurement, the density matrix becomes

$$
\rho=\sum_{m} p(m) \rho_{m}==\mid \sum_{m}^{m} M_{m} \rho M_{m}
$$

> The density matrix, ρ, provides an alternative language, as compared to state vectors, $|\psi\rangle$, of Quantum Mechanics, for pure and mixed states.

5.4 QM in terms of the density matrix

- Postulate 1: Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the state space of the system. The system is completely described by its density operator ρ.
- Postulate 2: The evolution of a closed quantum system is described by a unitary transformation.

$$
\rho \rightarrow U \rho U^{\dagger}
$$

5.4 QM in terms of the density matrix

- Postulate 3: Quantum measurements are described by a collection $\left\{M_{m}\right\}$ of measurement operators. If the state of the quantum system is ρ immediately before the measurement, then the probability that result m occurs is given by

$$
p(m)=\operatorname{Tr}\left(M_{m}^{\dagger} M_{m} \rho\right)
$$

and the state of the system after the measurement is $\frac{M_{m} \rho M_{m}^{\dagger}}{\sqrt{M_{m}^{\dagger} M_{m} \rho}}$
The measurement operators satisfy the completeness equation $\sum_{m} M_{m}^{\dagger} M_{m}=1$

- Postulate 4: The state space of a composite physical system is the tensor product of the state spaces of the component physical systems, $\rho_{1} \otimes \rho_{2} \otimes \cdots \otimes \rho_{n}$

We have learned

1. How does quantum computing develop?
2. What is quantum mechanics?
3. What is qubit?
4. How do we construct a quantum circuit?
5. What is density operator?

Outlook

	2019	2020	2021	2022 O	2023	2024	2025	2026+	
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applications with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime	
Model Developers					Prototype quantum software applications		Quantum software applications		
							Machine learning \| Natural science	Optimization	
Algorithm Developers		Quantum algorithm and application modules		\bigcirc	Quantum Serverless *)				
		Machine Iearning \| Natural science 1 Optimization				Inteligent orchestration	Circuit Knitting Toolbox	Circuit libraries	
Kernel Developers	Circuits		Qiskit Runtime						
				Dynamic circuits Q	Threaded primitives	Error suppression and mitigation		Error correction	
System Modularity	Falcon 27 qubits	Hummingbird 65 qubits	Eagle 127 qubits	Osprey 433 qubits	Condor 1,121 qubits	Flamingo $1,386+\text { qubits }$	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical and quantum communication	
					Heron 133 qubits $\times p$	Crossbill 408 qubits			

