爱 XUNTA :3: DE GALICIA

## Quantum Phase Estimation And Shor's Algorithm

Kiaojian Du
Oct. 19'h 2023
Quantpostela 2023 IGFAE

## Outine

## Pre-requisite: Quantum Fourier Transform

## In the lecture, we will learn: <br> 1. Quantum Phase Estimation

Quantum kickback
Quantum interference and Phase Estimation

## 2. RSA Cryptography

How to encrypt and decrypt
How to design public and private keys

## 3. Basic idea of Shor's Algorithm

How to hack the RSA cryptography
Factoring problem and period-finding problem
Quantum algorithm for solving period-finding problem

## Quantum Phase Estimation

## Quantum Phase Estimation

## What is QPE:

Given a unitary operator that applies a phase $\theta$ to the state

$$
U|\psi\rangle=e^{2 \pi i \theta}|\psi\rangle
$$

Quantum Phase Estimation (QPE) algorithm estimates the phase $\theta$ with quantum kickback effect


## Quantum Kicthack

Controlled NOT-gate on |control, target):
Entangled: $\quad \begin{array}{r}|+0\rangle= \\ \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \\ \text { CNOT }|+0\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\end{array}$

## Unchanged:

## Kickback:

It affects the state of the control qubit while leaving the state of the target qubit unchanged

## Phase Kicthack

Controlled T/R/P-gates on |control, tar get):
T-gate:

$$
\mathrm{T}|1\rangle=e^{i \pi / 4}|1\rangle
$$

$$
|1+\rangle=|1\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{\sqrt{2}}(|10\rangle+|11\rangle)
$$

$$
\mathrm{CT}|1+\rangle=\frac{1}{\sqrt{2}}\left(|10\rangle+e^{i \pi / 4}|11\rangle\right)=|1\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \pi / 4}|1\rangle\right)
$$

## Controlled Rotation-gate (in QFT):

$$
\text { CROT }_{k}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{\frac{2 a i}{2^{k}}}
\end{array}\right)
$$

Controlled U-gate:

$$
\boldsymbol{C P}(\phi)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{i \phi}
\end{array}\right)
$$

Symmetric gate: Applies the phase iff both control \& target bits are |1 (or on state |11>)

## Gontrolled Phase Gates

## State-vector



## Controlled T-gate:

$$
C T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{\frac{\pi}{4}}
\end{array}\right)
$$

## Controlled Phase Gates

## State-vector

## Controlled T-gate:

$$
C T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{\frac{\pi}{4}}
\end{array}\right)
$$

qc.h(0)
qc.h(1)


$$
\begin{aligned}
& \text { Statevector }([0.5+0 . j, 0.5+0 . j, 0.5+0 . j, 0.5+0 . j] \\
& \operatorname{dims}=(2,2)) \\
& \mid \text { state vector }\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)
\end{aligned}
$$

## Gontrolled Phase Gates

## State-vector after Controlled T-gates

Controlled T-gate:

$$
C T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{\frac{s}{4}}
\end{array}\right)
$$

```
qc.h(1)
```



$$
\begin{gathered}
\text { Statevector }([0.5+0 . j, 0.5+0 . j, 0.5+0 . j, 0.5+0 . j], \\
\operatorname{dims}=(2,2))
\end{gathered}
$$

$$
\mid \text { state vector }\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)
$$

$$
\mathrm{qc} \cdot \mathrm{~h}(\theta)
$$

qc.h(1)
qc.cp(np.pi/4,0,1)


## QPE Circuif Breaktiown

## How to construct QPE circuit:

Let's look at the circuit in the previous slide


## QPE Gircuit Breakiown

Initial
$\left|\phi_{0}\right\rangle=|0\rangle^{\otimes n}|\psi\rangle$


## QPE Gircuit Breakiown

$\left\lvert\,(4)=\frac{1}{\left.\sqrt{x^{2}}(0)+1\right)^{2 a(1)}}\right.$

## H-gates

Initial
$\left|\phi_{0}\right\rangle=|0\rangle^{\otimes n}|\psi\rangle$


## QPE Gircuit Breaktiown

## $\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}}(|0\rangle+|1\rangle\rangle^{\otimes n}|\psi\rangle$

H-gates
$\boldsymbol{C P}(2 \pi \theta) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \theta}|1\rangle\right)|\psi\rangle$
Quantum phase kickback (Remember to initialize $|\psi\rangle=|1\rangle$ )
Phase-gates
$\left|\phi_{0}\right\rangle=|0\rangle^{\otimes n}|\psi\rangle$


## QPE Circuif Breaktiown

## $\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}}(|0\rangle+|1\rangle)^{\otimes n}|\psi\rangle$

$$
C P(2 \pi \theta) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \theta}|1\rangle\right)|\psi\rangle
$$

$$
\left|\phi_{2}\right\rangle=\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i \theta 2^{n-1}}|1\rangle\right) \otimes \ldots \otimes\left(|0\rangle+e^{2 \pi i \theta 2^{1}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i \theta^{0}}|1\rangle\right)|\psi\rangle
$$

## multiple Phase-gates

$\left|\phi_{0}\right\rangle=|0\rangle^{\otimes n}|\psi\rangle$


## QPE Circuif Breaktiown

For 1 qubit

$$
C P(2 \pi \theta) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \theta}|1\rangle\right)|\psi\rangle
$$

For n qubits

$$
\left|\phi_{2}\right\rangle=\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i Q^{n-1}}|1\rangle\right) \otimes \ldots \otimes\left(|0\rangle+e^{2 \pi i Q^{1}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i Q^{2}}|1\rangle\right)|\psi\rangle
$$

Compact form for 1 qubit

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \theta}|1\rangle\right)|\psi\rangle=\frac{1}{\sqrt{2}} \sum_{x=0}^{1} e^{2 \pi i \theta x}|x\rangle
$$

Compact form for n qubits

$$
\begin{aligned}
& \left.\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i 0 e^{-1}}| |\right\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi i 00^{1}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i 00^{0}}|1\rangle\right)|\psi\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{x-1} \sum^{e^{2 \pi i \theta} x}|x\rangle|\psi\rangle
\end{aligned}
$$

Convert to bitstring

$$
x=2^{n-1} x_{0}+2^{n-2} x_{1}+\ldots+2^{1} x_{n-2}+2^{0} x_{n-1} \text {, with } x_{i}=0 \text { or } 1
$$

For example:

$$
(13)_{10}=2^{3} \cdot 1+2^{2} \cdot 1+2^{2} \cdot 0+2^{0} \cdot 1=(1101)_{2}
$$

## QPE Gircuitit Breaktiown

## $\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}}(|0\rangle+|1\rangle)^{\otimes n}|\psi\rangle$

$$
C P(2 \pi \theta) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \theta}|1\rangle\right)|\psi\rangle
$$

$$
\begin{aligned}
\left|\phi_{2}\right\rangle & =\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i Q^{n-1}}|1\rangle\right) \otimes \ldots \otimes\left(|0\rangle+e^{2 \pi i \theta 2^{1}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i \theta 2^{0}}|1\rangle\right)|\psi\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} e^{2 \pi i \theta x}|x\rangle|\psi\rangle
\end{aligned}
$$

Initial
$\left|\phi_{0}\right\rangle=|0\rangle^{\otimes n}|\psi\rangle$


## QPE Circuif Breaktiown

$\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}}(|0\rangle+|1\rangle)^{\otimes n}|\psi\rangle$

$$
C P(2 \pi \theta) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \theta}|1\rangle\right)|\psi\rangle
$$

$$
\begin{aligned}
\left|\phi_{2}\right\rangle & =\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i Q^{2-1}}|1\rangle\right) \otimes \ldots \otimes\left(|0\rangle+e^{2 \pi i Q^{1}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i \theta 2^{0}}|1\rangle\right)|\psi\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} e^{2 \pi i \theta x}|x\rangle|\psi\rangle
\end{aligned}
$$

Initial
$\left|\phi_{0}\right\rangle=|0\rangle^{\otimes n}|\psi\rangle$


## Recall QFT and invQFT

$$
\begin{aligned}
& U_{Q F T}|x\rangle=\frac{1}{\sqrt{N}} \sum_{-}^{N-1} e^{2 \pi i x y / 2^{n}}|y\rangle \\
& U_{Q F T^{-1}}|x\rangle=\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{-2 \pi i x y / 2^{n}}|y\rangle
\end{aligned}
$$

## QPE Circuif Breaktiown

$$
\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}}(|0\rangle+|1\rangle)^{\otimes n}|\psi\rangle
$$

$$
C P(2 \pi \theta) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \theta}|1\rangle\right)|\psi\rangle
$$

$$
\begin{aligned}
\left|\phi_{2}\right\rangle & =\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i \theta 2^{-1}}|1\rangle\right) \otimes \ldots \otimes\left(|0\rangle+e^{2 \pi i \theta 2^{1}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i \theta 2^{0}}|1\rangle\right)|\psi\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n-1}} e^{2 \pi i \theta x}|x\rangle|\psi\rangle
\end{aligned}
$$

Initial
$\left|\phi_{0}\right\rangle=|0\rangle^{\otimes n}|\psi\rangle$

## Recall QFT and invQFT

$U_{Q F T}|x\rangle=\frac{1}{\sqrt{N}} \sum_{-N}^{N-1} e^{2 \pi i x y / 2^{n}}|y\rangle$
$U_{Q F T^{-1}}|x\rangle=\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{-2 \pi i x y / 2^{n}}|y\rangle$

$$
\left|\phi_{3}\right\rangle=U_{O F T^{-1}} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} e^{2 \pi i \theta x}|x\rangle|\psi\rangle=\frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{n}-1} e^{2 \pi i\left(\theta-\frac{y}{2^{n}}\right) x}|y\rangle|\psi\rangle
$$

## QPE Circuif Breaktiown

$\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}}(|0\rangle+|1\rangle)^{\otimes n}|\psi\rangle$

H-gates

$$
\boldsymbol{C P}(2 \pi \theta) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i \theta}|1\rangle\right)|\psi\rangle
$$

$$
\begin{aligned}
\left|\phi_{2}\right\rangle & =\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i e 2^{n-1}}|1\rangle\right) \otimes \ldots \otimes\left(|0\rangle+e^{2 \pi i 0^{1}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i 2^{0}}|1\rangle\right)|\psi\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} e^{2 \pi i \theta x}|x\rangle|\psi\rangle
\end{aligned}
$$

Initial
$\left|\phi_{0}\right\rangle=|0\rangle^{\otimes n}|\psi\rangle$

Recall QFT and invQFT
$U_{\text {OFT }}|x\rangle=\frac{1}{\sqrt{N}} \sum_{-N}^{N-1} e^{2 \pi i x y V^{n}}|y\rangle$
$U_{Q^{-1}}|x\rangle=\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{-2 \pi i x y V^{n}}|y\rangle$
Measurement in high probability when $2^{\mathrm{n}} \theta$ is an integer

It seems to peak near $x=2^{n} \theta$ :

$$
\left|\phi_{3}\right\rangle=U_{Q F T^{-1}} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} e^{2 \pi i \theta^{2} x}|x\rangle|\psi\rangle=\frac{1}{2^{n}} \sum_{x=0}^{2^{n-1}} \sum_{y=0}^{2^{n-1}} e^{2^{2 \pi i\left(\theta-\frac{y}{2^{n}}\right)}|y\rangle|\psi\rangle}
$$

## Quantum Interference in the QPF

## What should we expect for the measurement?

Let's exchange the sequence of $x$ and $y$

$$
\begin{aligned}
\left|\phi_{3}\right\rangle & =\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} e^{2 \pi i x\left(\theta-\frac{y}{2^{n} n}\right)}|y\rangle|\psi\rangle \\
& =\frac{1}{N} \sum_{y=0}^{N-1}\left(\sum_{x=0}^{N-1} e^{2 \pi i x\left(\theta-\frac{y}{2^{n}}\right)}\right)|y\rangle|\psi\rangle \\
& =\frac{1}{N} \sum_{y=0}^{N-1} \frac{1-e^{2 \pi i\left(\theta-\frac{y}{2^{n}}\right) 2^{n}}}{1-e^{2 \pi i\left(\theta-\frac{y}{2^{n}}\right)}}|y\rangle|\psi\rangle
\end{aligned}
$$

Strong quantum interference from the phase
The probability of getting result $y$ from the measuring

$$
P(y)=\frac{1}{N^{2}}\left|\frac{1-e^{2 \pi i\left(\theta-\frac{y}{2^{n}}\right) 2^{n}}}{1-e^{2 \pi i\left(\theta-\frac{y}{2^{n}}\right)}}\right|^{2}=\frac{1}{N^{2}} \frac{1-\cos \left[2 \pi\left(\theta-\frac{y}{2^{n}}\right) 2^{n}\right]}{1-\cos \left[2 \pi\left(\theta-\frac{y}{2^{n}}\right)\right]} \text {, with } \sum_{y=0}^{N-1} P(y)=1
$$

## Quantum Interference in the Q.FE

## What should we expect for the measurement?

Probability with different number of qubits

$$
P\left(\theta-\frac{y}{2^{n}}\right)
$$



$$
P(y)=\frac{1}{N^{2}}\left|\frac{1-e^{2 \pi i\left(\theta-\frac{)}{2^{2}}\right) 2^{n}}}{1-e^{2 \pi i\left(\theta-\frac{y}{2 \pi}\right)}}\right|^{2}=\frac{1}{N^{2}} \frac{1-\cos \left[2 \pi\left(\theta-\frac{y}{\left.2^{2}\right)} 2^{n}\right]\right.}{1-\cos \left[2 \pi\left(\theta-\frac{y}{2^{n}}\right)\right]} \text {, with } \sum_{y=0}^{N-1} P(y)=1
$$

## Quantum Interference in the QPE

## What should we expect for the measurement?

Probability with different number of qubits

$$
P\left(\theta-\frac{y}{2^{n}}\right)
$$



$$
P(y)=\frac{1}{N^{2}}\left|\frac{1-e^{2 \pi i\left(\theta-\frac{y}{\pi^{2}}\right) 2^{n}}}{1-e^{2 \pi\left(\theta-\frac{y}{2 n}\right)}}\right|^{2}=\frac{1}{N^{2}} \frac{1-\cos \left[2 \pi\left(\theta-\frac{y}{2^{2}}\right) 2^{n}\right]}{1-\cos \left[2 \pi\left(\theta-\frac{y}{2^{n}}\right)\right]} \text {, with } \sum_{y=0}^{N-1} P(y)=1
$$

The probability peaks when $\theta-\frac{y}{2^{n}}$ is an integer!
Of course $\theta \pm 1,2, \ldots$ gives the same probability due to the $2 \pi$ factor If we restrict the phase $0<\theta<1$, the peak value of $\frac{y}{2^{n}}$ is what we need.

## Qistitilmplementation

## Implementing the QPE

```
M def cp_theta(qc,theta,x,psi):
    qc.cp(2*np.pi*theta,x,psi)
    return qc
def qpe(qc,n,theta):
    for j in range(0,n):
        qc.h(j)
    qc.barrier()
    for j in range(0,n):
        for k in range(0,2**j):
            qc=cp_theta(qc,theta,j,n)
    qc.barrier()
    qc=qft_inv(qc,n)
    for j in range(0,n):
        qc.measure(j,j)
    return qc
```


## Qistitilmplementation

## Implementing the QPE

```
N def cp_theta(qc,theta,x,psi):
    qc.cp(2*np.pi*theta,x,psi)
    return qc
def qpe(qc,n,theta):
    for j in range(0,n):
        qc.h(j)
    qc.barrier()
    for j in range(0,n):
        for k in range(0,2**j):
            qc=cp_theta(qc,theta,j,n)
    qc.barrier()
    qc=qft_inv(qc,n)
    for j in range(0,n):
        qc.measure(j,j)
    return qc
```



For example:
CT gate or phase $\theta=1 / 8$ With 3 qubits

## Qistititmplementation

## Implementing the QPE

Initialize the ancilla qubit $|\psi\rangle$ with $|1\rangle$ so that the symmetric controlled-phase gate applies


## For example: <br> CT gate or phase $\theta=1 / 8$ With 3 qubits

## Testing the QPE

## Testing Controlled-T gate $\mathbf{\theta}=\mathbf{1 / 8}$

```
M qc=QuantumCircuit(n_qubit+1,n_qubit)
    qc.x(n_qubit)
    qc=qpe(qc,n_qubit,theta)
    simulator = Aer.get_backend('qasm_simulator')
    shots=1024
    result =simulator.run(qc,shots=shots).result()
    counts = result.get_counts(qc)
    plot_histogram(counts, figsize=(8,5))
```


## Testing the QPE

## Testing Controlled-T gate $\mathbf{\theta = 1 / 8}$

```
M qc=QuantumCircuit(n_qubit+1,n_qubit)
    qc.x(n_qubit)
    qc=qpe(qc,n_qubit,theta)
    simulator = Aer.get_backend('qasm_simulator')
    shots=1024
    result =simulator.run(qc,shots=shots).result()
    counts = result.get_counts(qc)
    plot_histogram(counts, figsize=(8,5))
M n_qubit=1
    theta=1/8
1-qubit
```



Measurement suggests $\frac{0}{2}$

## Testing the QPE

## Testing Controlled-T gate $\mathbf{\theta = 1 / 8}$

```
M qc=QuantumCircuit(n_qubit+1,n_qubit)
    qc.x(n_qubit)
    qc=qpe(qc,n_qubit,theta)
    simulator = Aer.get_backend('qasm_simulator')
    shots=1024
    result =simulator.run(qc,shots=shots).result()
    counts = result.get_counts(qc)
    plot_histogram(counts, figsize=(8,5))
```

M n_qubit=1
theta $=1 / 8$

1-qubit


Measurement should peak at $\theta \approx \frac{y}{2^{n}}$



Measurement suggests $\frac{0}{2} \quad$ Measurement suggests $\frac{0}{4}, \frac{1}{4}$

## Tesing the QPE

## Testing Controlled-T gate $\mathbf{\theta = 1 / 8}$

```
M qc=QuantumCircuit(n_qubit+1,n_qubit)
    qc.x(n_qubit)
    qc=qpe(qc,n_qubit,theta)
    simulator = Aer.get_backend('qasm_simulator')
    shots=1024
    result =simulator.run(qc,shots=shots).result()
    counts = result.get_counts(qc)
    plot_histogram(counts, figsize=(8,5))
```

M $\begin{aligned} & \text { n_qubit }=1 \\ & \text { theta }=1 / 8\end{aligned}$

1-qubit
M $\begin{aligned} & \text { n_qubit }=2 \\ & \text { theta }=1 / 8\end{aligned}$
Measurement should peak at $\theta \approx \frac{y}{2^{n}}$



Measurement suggests $\frac{0}{2}$
 theta=1/8

3-qubits


Measuremént exactly $\frac{1}{8}$ !

## Testing the QPE

## Testing Controlled-T gate $\mathbf{\theta = 1 / 3}$

```
M qc=QuantumCircuit(n_qubit+1,n_qubit)
    qc.x(n_qubit)
    qc=qpe(qc,n_qubit,theta)
    simulator = Aer.get_backend('qasm_simulator')
    shots=1024
    result =simulator.run(qc,shots=shots).result()
    counts = result.get_counts(qc)
    plot_histogram(counts, figsize=(8,5))
M n_qubit=3
    theta=1/3
3-qubits
```



Measurement suggests $\frac{3}{8}$

## Testing the QPE

## Testing Controlled-T gate $\mathbf{\theta = 1 / 3}$

```
M qc=QuantumCircuit(n_qubit+1,n_qubit)
    qc.x(n_qubit)
    qc=qpe(qc,n_qubit,theta)
    simulator = Aer.get_backend('qasm_simulator')
    shots=1024
    result =simulator.run(qc,shots=shots).result()
    counts = result.get_counts(qc)
    plot_histogram(counts, figsize=(8,5))
M n_qubit=3
    theta=1/3
3-qubits
```

```
| n_qubit=5
    theta=1/3
```

5-qubits



Measurement suggests $\frac{3}{8}$
Measurement suggests $\frac{11}{32}$

## Testing the QPE

## More accurate? More qubits

## 3-qubits


$(011)_{2}=3 \sim 3 / 2^{3}=0.375$

Measurement should peak at $\theta \approx \frac{y}{2^{n}}$

5-qubits

$(01011)_{2}=11 \sim 11 / 2^{5}=0.34375$
Much better precision

## RSA Cryptography

## RSA Gryptograply

## What is RSA cryptography?



## RSA Gryptograply

## How do the encryption and decryption work?

The Sender starts with the plaintext $\mathbf{P}$, it can be digitized in some way Just for example, translating letters/symbols in $\mathbf{P}$ with ASCII code

| Dec | Hex | Name | Char | Ctri-char | Dec | Hex | Char | Dec | Hex | Char | Dec | Hex | Char |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | Null | NUL | CTRL-震 | 32 | 20 | Space | 64 | 40 | 6 | 96 | 60 |  |
| 1 | 1 | Start of heading | SOH | CTRL-A | 33 | 21 | 1 | 65 | 41 | A | 97 | 61 | a |
| 2 | 2 | Start of teat | STX | CTRL-B | 34 | 22 | - | 66 | 42 | B | 98 | 62 | b |
| 3 | 3 | End of text | ETX | CTRL-C | 35 | 23 | \# | 67 | 43 | C | 99 | 63 | c |
| 4 | 4 | End of xmit | EOT | CTRL-D | 36 | 24 | \$ | 68 | 44 | D | 100 | 64 | d |
| 5 | 5 | Enquiry | ENQ | CTRL-E | 37 | 25 | \% | 69 | 45 | E | 101 | 65 | e |
| 6 | 6 | Acknowledge | ACK | CTRL-F | 38 | 26 | 8 | 70 | 46 | F | 102 | 66 | $f$ |
| 7 | 7 | Bell | BEL | CTRL-G | 39 | 27 | , | 71 | 47 | 6 | 103 | 67 | 0 |
| 8 | 8 | Backspace | BS | CTRL-H | 40 | 28 | ( | 72 | 48 | H | 104 | 68 | h |
| 9 | 9 | Horizortal tab | HT | CTRL-1 | 41 | 29 | ) | 73 | 49 | 1 | 105 | 69 | i |
| 10 | OA | Line feed | LF | CTRL-J | 42 | 2A | * | 74 | 4 A | J | 106 | 6A | j |
| 11 | OB | Vertical tab | VT | CTRL-K | 43 | 28 | + | 75 | 48 | K | 107 | 6 B | k |
| 12 | OC | Form feed | FF | CTRL-L | 44 | 2 C | , | 76 | 4 C | L | 108 | 6C | I |
| 13 | OD | Carriage feed | CR | CTRL-M | 45 | 20 | - | 77 | 40 | M | 109 | 60 | m |
| 14 | OE | Shift out | SO | CTRL-N | 46 | 2 E | , | 78 | $4 E$ | N | 110 | $6 E$ | n |
| 15 | OF | Shift in | SI | CTRL-O | 47 | 2F | 1 | 79 | 4 | 0 | 111 | 6F | - |
| 16 | 10 | Data line escape | DLE | CTRL-P | 48 | 30 | 0 | 80 | 50 | $p$ | 112 | 70 | p |
| 17 | 11 | Device control 1 | DC1 | CTRL-Q | 49 | 31 | 1 | 81 | 51 | Q | 113 | 71 | a |
| 18 | 12 | Device control 2 | DC2 | CTRL-R | 50 | 32 | 2 | 82 | 52 | R | 114 | 72 | $r$ |
| 19 | 13 | Device control 3 | DC3 | CTRL-S | 51 | 33 | 3 | 83 | 53 | S | 115 | 73 | s |
| 20 | 14 | Device control 4 | DC4 | CTRL-T | 52 | 34 | 4 | 84 | 54 | T | 116 | 74 | t |
| 21 | 15 | Neg acknowledge | NAK | CTRL-U | 53 | 35 | 5 | 85 | 55 | U | 117 | 75 | $u$ |
| 22 | 16 | Synchronous ide | SYN | CTRL-V | 54 | 36 | 6 | 86 | 56 | V | 118 | 76 | $v$ |
| 23 | 17 | End of xmit block | ETB | CTRL-W | 55 | 37 | 7 | 87 | 57 | W | 119 | 77 | w |
| 24 | 18 | Cancel | CAN | CTRL-X | 56 | 38 | 8 | 88 | 58 | X | 120 | 78 | $\times$ |
| 25 | 19 | End of medium | EM | CTRL-Y | 57 | 39 | 9 | 89 | 59 | $\boldsymbol{Y}$ | 121 | 79 | $y$ |
| 26 | 14 | Substitute | SUB | CTRL-Z | 58 | 3 A | : | 90 | 54 | $z$ | 122 | 7A | $z$ |
| 27 | 18 | Escape | ESC | CTRL- | 59 | 3 B | ; | 91 | 58 | 1 | 123 | 78 | ( |
| 28 | 1 C | File separator | FS | CTRL-1 | 60 | 3C | $\leqslant$ | 92 | 5 C | 1 | 124 | 7 C | I |
| 29 | 10 | Group separator | GS | CTRL-] | 61 | 30 | $=$ | 93 | 50 | 1 | 125 | 70 | \} |
| 30 | IE | Record separator | RS | CTRL ${ }^{\text {- }}$ | 62 | 3E | > | 94 | SE | $\cdots$ | 126 | $7 E$ | $\sim$ |
| 31 | $1 F$ | Unit separator | US | CTRL- | 63 | 3F | ? | 95 | 5 F |  | 127 | 7F | DEL |

Then the sender has an integer form for the message $\mathbf{P}$ (stored as bitstring in computer)

## Encryplion and decrypution

## How do the encryption and decryption work?

The sender encrypt the plaintext $\mathbf{P}$ with the following to get a cipher text $\mathbf{C}$

$$
\mathbf{C}=\mathbf{P}^{\mathrm{E}}(\bmod \mathbf{N})
$$

The encryption power $\mathbf{E}$ and the large number $\mathbf{N}$ are integer numbers
The pair ( $\mathbf{E}, \mathbf{N}$ ) is called the public key
The recipient can distribute the public key to "public" so that any sender wants to send recipient a message $\mathbf{P}$ can encrypt it first them send the ciphertext C instead

## Encryntion and decrypuion

## How do the encryption and decryption work?

The sender encrypt the plaintext $\mathbf{P}$ with the following to get a cipher text $\mathbf{C}$

$$
\mathbf{C}=\mathbf{P}^{\mathrm{E}}(\bmod \mathbf{N})
$$

The encryption power $\mathbf{E}$ and the large number $\mathbf{N}$ are integer numbers
The pair ( $\mathbf{E}, \mathrm{N}$ ) is called the public key
The recipient can distribute the public key to "public" so that any sender wants to send recipient a message $\mathbf{P}$ can encrypt it first them send the ciphertext $\mathbf{C}$ instead
Once the recipient receives the ciphertext $\mathbf{C}$, the recipient can use the following to get the plaintext $\mathbf{P}$

$$
\mathbf{P}=\mathbf{C}^{\mathbf{D}}(\bmod \mathbf{N})
$$

The decryption power $\mathbf{D}$ and the large number $\mathbf{N}$ are integer numbers
The pair ( $\mathbf{D}, \mathbf{N}$ ) is called the private key
Only the recipient has the private key!

## Encryption and decryption

## How do the encryption and decryption work?

Let's look at an example with public key $(\mathbf{7}, 143)$ and private key $(43,143)$
Suppose we send a plaintext 'IGFAE', the ASCII codes in Decimal formal are ' 1 ' $=73$, ' $G$ ' $=71, ~ ' ~ F '=65, ~ ' A '=70, ~ ' ~ E '=69$. The ciphertexts would be
$C_{1}=73^{7}(\bmod 143)=83$
$\mathrm{C}_{2}=71^{7}(\bmod 143)=124$
$\mathrm{C}_{3}=65^{7}(\bmod 143)=65$
$\mathrm{C}_{4}=70^{7}(\bmod 143)=60$
$\mathrm{C}_{5}=69^{7}(\bmod 143)=108$
The corresponding ASCII codes in symbolic form are ' $\mathrm{S}^{\prime}, \overline{, 1}$, ' A ', '<',','. So the recipient receives the ' $\mathrm{S} \mid \mathrm{Al}$ ', looks totally different from 'IGFAE'

## Encryplion and decrypution

## How do the encryption and decryption work?

Let's look at an example with public key $(7,143)$ and private key $(43,143)$
Suppose we send a plaintext 'IGFAE', the ASCII codes in Decimal formal are
'I'=73, ‘G'=71, 'F'=65, 'A'=70, 'E'=69. The ciphertexts would be
$C_{1}=73^{7}(\bmod 143)=83$
$\mathrm{C}_{2}=71^{7}(\bmod 143)=124$
$C_{3}=65^{7}(\bmod 143)=65$
$C_{4}=70^{7}(\bmod 143)=60$
$C_{5}=69^{7}(\bmod 143)=108$
The corresponding ASCII codes in symbolic form are 'S','|','A','<','I'. So the recipient receives the 'S|Al', looks totally different from 'IGFAE'.
Then the recipient decrypt it with the private key

$$
\begin{aligned}
& P_{1}=83^{43}(\bmod 143)=73 \\
& P_{2}=124^{43}(\bmod 143)=71 \\
& P_{3}=65^{43}(\bmod 143)=65 \\
& P_{4}=60^{43}(\bmod 143)=70 \\
& P_{5}=108^{43}(\bmod 143)=69
\end{aligned}
$$

Which is 'IGFAE' again

## Symmetric Gryatography

## It's a symmetric cryptography

We may notice the symmetric form

$$
C=P^{E}(\bmod N) \quad P=C^{D}(\bmod N)
$$

If the recipient wants to send a message, recipient's private key can be used to encrypt the message, then the sender can use recipient's public key to decrypt it

$$
C=P^{D}(\bmod N) \quad P=C^{E}(\bmod N)
$$

The recipient's private key is the sender's public key
The recipient's public key is the sender's private key

## Symmetric Gryntoyraphy

## It's a symmetric cryptography

For example, let's use the private key $(43,143)$ to encrypt the 'IGFAE'
$\mathrm{C}_{1}=73^{43}(\bmod 143)=57$
$\mathrm{C}_{2}=71^{43}(\bmod 143)=59$
$\mathrm{C}_{3}=65^{43}(\bmod 143)=65$
$\mathrm{C}_{4}=70^{43}(\bmod 143)=86$
$\mathrm{C}_{5}=69^{43}(\bmod 143)=82$
Which means ' 9 ;AVR', totally different from 'IGFAE'

## Symmetric Gryntography

## It's a symmetric cryptography

For example, let's use the private key $(43,143)$ to encrypt the 'IGFAE'
$\mathrm{C}_{1}=73^{43}(\bmod 143)=57$
$\mathrm{C}_{2}=71^{43}(\bmod 143)=59$
$\mathrm{C}_{3}=65^{43}(\bmod 143)=65$
$\mathrm{C}_{4}=70^{43}(\bmod 143)=86$
$\mathrm{C}_{5}=69^{43}(\bmod 143)=82$
Which means ' 9 ;AVR', totally different from 'IGFAE'
Then we use the public key $(\mathbf{7}, \mathbf{1 4 3})$ to decrypt it

$$
\begin{aligned}
& \mathbf{P}_{1}=57^{7}(\bmod 143)=73 \\
& \mathbf{P}_{2}=59^{7}(\bmod 143)=71 \\
& \mathbf{P}_{3}=65^{7}(\bmod 143)=65 \\
& \mathbf{P}_{4}=86^{7}(\bmod 143)=\mathbf{7 0} \\
& \mathbf{P}_{5}=82^{7}(\bmod 143)=\mathbf{6 9}
\end{aligned}
$$

It becomes 'IGFAE' again

## Hacting

## How do hacking work?

Instead of sending the plaintext 'IGFAE', we send the ciphertext 'S|A<l' instead in the last example.

If an eavesdropper (hacker) get the ciphertext $\mathbf{C =}$ ' $\mathrm{S} \mid \mathrm{A}<1$ ', it needs to be decrypted to reveal the plaintext. But only the public key $(E, N)=(7,143)$ is 'public', how does the hacker know about the private key $(\mathbf{D}, \mathrm{N})=(43,143)$ ?

## Hacting

## How do hacking work?

Instead of sending the plaintext 'IGFAE', we send the ciphertext ' $\mathrm{S} \mid \mathrm{A}<1$ ' instead in the last example.

If an eavesdropper (hacker) get the ciphertext $\mathbf{C =}$ ' $S \mid A<1$ ', it needs to be decrypted to reveal the plaintext. But only the public key $(E, N)=(7,143)$ is 'public', how does the hacker know about the private key $(\mathrm{D}, \mathrm{N})=(43,143)$ ?

We have already seen that the pair of keys are symmetric, so they are not arbitrarily but carefully chosen numbers.

## Design the Kers

## Steps to prepare the key pair

(1) Choose two prime numbers, for example $\mathbf{p}=11$ and $\mathbf{q}=13$
(2) Calculate the large number $\mathbf{N}=\mathbf{p q = 1 4 3}$
(3) Calculate the Euler totient with least common multiple L=Icm(p-1,q-1)=60
(4) Prepare the public key with greatest common factor such that $\operatorname{gcd}(E, L)=1$

For example $\operatorname{gcd}(7,60)=1$ then choose $\mathrm{E}=7$
(5) Prepare the private key with rule such that ED(mod L)=1

For example $7 \times 43(\bmod 60)=1$ then choose $D=43$

## Design the Kers

## Steps to prepare the key pair

(1) Choose two prime numbers, for example $p=11$ and $q=13$
(2) Calculate the large number $\mathbf{N}=\mathbf{p q = 1 4 3}$
(3) Calculate the Euler totient with least common multiple L=Icm(p-1,q-1)=60
(4) Prepare the public key with greatest common factor such that $\operatorname{gcd}(E, L)=1$

For example $\operatorname{gcd}(7,60)=1$ then choose $\mathrm{E}=7$
(5) Prepare the private key with rule such that ED(mod L)=1

For example $7 \times 43(\bmod 60)=1$ then choose $D=43$


This means, if we know $\mathbf{p}$ and $\mathbf{q}$, and the public key ( $\mathbf{E}, \mathbf{N}$ ) as well, we can cauclate the private key ( $\mathbf{D}, \mathrm{N}$ ) easily

## Design the Keys

## Steps to prepare the key pair

(1) Choose two prime numbers, for example $\mathbf{p}=11$ and $\mathbf{q}=13$
(2) Calculate the large number $\mathbf{N}=\mathbf{p q = 1 4 3}$
(3) Calculate the Euler totient with least common multiple L=Icm(p-1,q-1)=60
(4) Prepare the public key with greatest common factor such that $\operatorname{gcd}(E, L)=1$

For example $\operatorname{gcd}(7,60)=1$ then choose $\mathrm{E}=7$
(5) Prepare the private key with rule such that ED(mod L)=1

For example $7 \times 43(\bmod 60)=1$ then choose $D=43$


This means, if we know $\mathbf{p}$ and $\mathbf{q}$, and the public key ( $\mathbf{E}, \mathbf{N}$ ) as well, we can cauclate the private key ( $\mathbf{D}, \mathrm{N}$ ) easily

Now the question is, knowing the number $\mathbf{N}$, how do we find the prime numbers $\mathbf{p}$ and $\mathbf{q}$ ?

In reality, N can be very large, maybe 256 bits, 512 bits or even 1024 bits, so it is extremely difficult to find $\mathbf{p}$ and $\mathbf{q}$.

## Shor's Factoring Algorithm

## factoring Proulem

## Factoring a large number

We've learned that in order to hack, we need to factorize a large number $\mathbf{N}$ into two prime numbers $\mathbf{p}$ and $\mathbf{q}$.

One way to factorize is to convert this problem into a period finding problem
Define a periodic function with an integer $a$ coprime to $\mathbf{N}$ (otherwise we already find the factor)

$$
f(x)=a^{x}(\bmod N)
$$

Then the smallest non-zero integer $r$ that satisfying

$$
f(r)=a^{r}(\bmod N)=1
$$

is called the period.
If it is an even number (if no even $r$, try different $a$ ), then we have

$$
p=\operatorname{gcd}\left(a^{\frac{r}{2}}-1, N\right) \quad \text { and } \quad q=\operatorname{gcd}\left(a^{\frac{r}{2}}+1, N\right)
$$

Since

## [actoring Problem

## Factoring a large number

For example $\mathbf{N}=143$, we choose $a=23$
$f(1)=23^{1}(\bmod 143)=23$
$f(2)=23^{2}(\bmod 143)=100$
$f(3)=23^{3}(\bmod 143)=12$
$f(4)=23^{4}(\bmod 143)=133$
$f(5)=23^{5}(\bmod 143)=56$
$f(6)=23^{6}(\bmod 143)=1$

We find that $r=6$ so that $a^{r / 2}=23^{3}=12167$ We can compute

$$
\begin{aligned}
& \mathrm{p}=\operatorname{gcd}\left(23^{3}-1,143\right)=11 \\
& q=\operatorname{gcd}\left(23^{3}+1,143\right)=13
\end{aligned}
$$

Now the factoring problem is converted to a period finding problem

## Period Finding Problem

## Quantum Algorithm for Period Finding Problem



The idea is very similar to the QPE but different by the following:
(1) Instead of controlled phase gate, one considers a controlled module

$$
U|\psi\rangle=|a \psi(\bmod N)\rangle \text { and } U^{k}|\psi\rangle=\left|a^{k} \psi(\bmod \mathbf{N})\right\rangle
$$

(2) Instead of 1 ancilla qubit in the QPE, Shor's algorithm requires $n$ ancilla qubits such that $2^{n}>\mathbf{N}$

The measurements will result in multiple peaks at $\frac{k}{r}$ with $k \leq r$

## Period Finding Problem

## Quantum Algorithm for Period Finding Problem



It will result in a final state as

$$
\begin{aligned}
& |\phi\rangle=\left[\frac{1}{2^{L}}\left(\sum_{x=0}^{2^{L}-12^{2^{L}-1}} \sum_{y=0}^{1} e^{-2 \pi i x \frac{y}{2 L}}|y\rangle \otimes\left|a^{(\bmod (r)} \psi(\bmod N)\right\rangle\right)\right] \\
& P(y)=\frac{1}{2^{2 L}}\left[r \frac{1-\cos \left(2 \pi\left(2^{L} \| / r\right) r \frac{y}{2^{L}}\right)}{1-\cos \left(2 \pi r r^{L^{L}}\right)}+2^{L}(\text { modr })\right]
\end{aligned}
$$

The measurements will result in periodically multiple peaks at $\frac{k}{r}$ with $k<r$ (see discussions in the jupyter notebook as well as probability analysis in the QPE)

