Review of rare H,Z,W, top decays involving quarkonia

David d'Enterria^(b) and <u>Van Dung Le^{(a)*}</u>

https://arxiv.org/abs/2312.11211

(a) Ho Chi Minh University of Science - Vietnam National University(b) CERN, EP Department, CH-1211 Geneva, Switzerland

* speaker

Introduction

- The work:
 - Comprehensive review of all exclusive decays to quarkonium (BR<10⁻⁵) of the 4 heaviest particles:
 ~100 unobserved channels (~50 upper limits today).
 - Explicitly compute a few new decays (Z,H \rightarrow leptonium+gamma, Higgs FCNC exclusive decays,...).
 - Make projections for HL-LHC/FCC-ee searches: Help guide and prioritize future experimental searches.
- Physics motivations:
 - Searches for BSM physics that might enhance very rare partial decay widths.
 - Probe lighter quark Yukawa couplings: Hcc, Hqq, via exclusive final states with mesons.
 - Stringent tests of the QCD factorization formalism, constraint poorly known nonperturbative hadronic bound-state parameters

Theoretical predictions

For all rare decays collected, we indicate the <u>BR</u> of each channel and the <u>theoretical framework</u> used to compute them

.

- Exclusive hadronic channels are all based on pQCD factorization: cross-section = perturbative
 models of QCD factorization:
 - Light cone (LC): nonperturbative objects described by LCDAs. Applied for light-quark mesons (uds), and double quarkonia decays
 - Soft-Collinear Effective Theory (SCET): Resums multiple scales. Nonperturbative LCDAs. Mostly light mesons.
 - Heavy-Quark Effective Theory (HQET): LCDA describes mixed formation of light-heavy-quark mesons
 - Non-Relativistic QCD (NRQCD): For charmonium & bottomonium objects described by LDMEs
- Leptonium channels: similar to hadronic ones, with much smaller BR. Never computed before. We have applied similar methods and derived the BR predictions.

					Exp.	limits	Producible at		
	${ m H} ightarrow \gamma$ +	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh	
		$ ho^0$	$(1.68 \pm 0.18) \times 10^{-5}$	SCET+LCDA [13]	$< 8.8 \times 10^{-4}$ [74]	$\lesssim 6.8 imes 10^{-5}$	\checkmark	\checkmark	
Evenale		ω	$(1.48 \pm 0.17) \times 10^{-6}$	SCET+LCDA [13]	$< 1.5 \times 10^{-4}$ [76]	$\lesssim 2.2\times 10^{-5}$	\checkmark	\checkmark	
Example:		ϕ	$(2.31 \pm 0.26) \times 10^{-6}$	SCET+LCDA [13]	$< 4.8 \times 10^{-4}$ [74]	$\lesssim 3.7 \times 10^{-5}$	\checkmark	\checkmark	
	-		$(2.95 \pm 0.38) \times 10^{-6}$	SCET+LCDA [13]					
		J/ψ	$(3.01 \pm 0.15) \times 10^{-6}$	NRQCD (NLL)+LDME [7	$< 3.5 \times 10^{-4} [77]$	$\lesssim 5.5 \times 10^{-5}$ [54]	\checkmark	\checkmark	
			$\left(3.0^{+0.2}_{-0.1} ight)\ imes 10^{-6}$	NRQCD+LCDA [79]					

3/26

Experimental limits: Present & projections

- For all rare decays collected, we:
 - Indicate all <u>current limits</u> (LEP, Tevatron, LHC), including most recent ones (not yet on PDG).
 - Provide <u>extrapolation of limits</u> for the HL-LHC either from
 - Existing dedicated CMS/ATLAS studies.
 - Our statistical projection from previous results
 - For LHC limits: scale the 13-TeV bounds down by $\sqrt{2 \times 3 \text{ ab}^{-1} / \mathcal{L}_{int}(13 \text{ TeV})}$ ~ Improvement by ~6.5 factor

					Exp.	limits	Producible at	
	${ m H} ightarrow \gamma$ +	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh
		$ ho^0$	$(1.68 \pm 0.18) \times 10^{-5}$	SCET+LCDA [13]	$< 8.8 \times 10^{-4}$ [74]	$\lesssim 6.8 \times 10^{-5}$	\checkmark	✓
		ω	$(1.48 \pm 0.17) \times 10^{-6}$	SCET+LCDA [13]	< 1.5×10 ⁻⁴ [76]	$\lesssim 2.2 \times 10^{-5}$	\checkmark	\checkmark
Example:		ϕ	$(2.31 \pm 0.26) \times 10^{-6}$	SCET+LCDA [13]	$< 4.8 \times 10^{-4}$ [74]	$\lesssim 3.7 \times 10^{-5}$	\checkmark	\checkmark
	-		$(2.95 \pm 0.38) \times 10^{-6}$	SCET+LCDA [13]				
		J/ψ	$(3.01 \pm 0.15) \times 10^{-6}$	NRQCD (NLL)+LDME [78]	< 3.5×10 ⁻⁴ [77]	$\lesssim 5.5 \times 10^{-5}$ [54]	\checkmark	\checkmark
			$\left(3.0^{+0.2}_{-0.1} ight)~ imes 10^{-6}$	NRQCD+LCDA [79]				
	-							

Experimental limits: Present & projections

- For all rare decays collected, we:
 - Indicate all <u>current limits</u> (LEP, Tevatron, LHC), including most recent ones (not yet on PDG).
 - Provide <u>extrapolation of limits</u> for the HL-LHC either from
 - Existing dedicated CMS/ATLAS studies.
 - Our statistical projection from previous results
 - For LHC limits: scale the 13-TeV bounds down by $\sqrt{2 \times 3 \text{ ab}^{-1} / \mathcal{L}_{int}(13 \text{ TeV})}$ ~ Improvement by ~6.5 factor

Collider	W±	W [±] bosons		Z bosons		osons	top quarks		1	
	σ(W)	<i>N</i> (W)	$\sigma(Z)$	<i>N</i> (Z)	$\sigma(\mathrm{H})$	<i>N</i> (H)	$\sigma(t\bar{t})$	N(top)	i	
LEP	4.0 pb	0.8×10^5	59 nb	2×10^7	~2, 1 fb	~5	-	-	i	
FCC-ee	4.0 pb	5×10^{8}	59 nb	6×10^{12}	200, 30 fb	$1.9 imes 10^6$	0.5 pb	$3.8 imes 10^6$	i	Square root
Increase factor LEP \mapsto FCC-ee	1	6250	1	300,000	70, 30	400,000	-	-	i	numbers
Tevatron (1.96 TeV, 10 fb^{-1})	25.3 nb	2.5×10^{8}	7.6 nb	7.6×10^{7}	1.1 pb	1.1×10^{4}	7.1 pb	1.4 × 10 ⁵	1	
HL-LHC (14 TeV, $2 \times 3 \text{ ab}^{-1}$)	200 nb	1.2×10^{12}	62.5 nb	3.8×10^{11}	58 pb	3.5×10^8	1 nb	1.2×10^{10}	1	
FCC-hh (100 TeV, 30 ab ⁻¹)	1300 nb	4.1×10^{13}	415 nb	1.2×10^{13}	0.93 nb	2.8×10^{10}	35 nb	2.1×10^{12}		
Increase factor Tevatron \mapsto HL-LHC	8	4800	8.2	5000	52.7	31 800	141	86 000	×	
Increase factor HL-LHC → FCC-hh	6.5	34	6.7	32	16	80	35	175		

- For CDF limits, scale bounds down by $\sqrt{N_{\rm X}({\rm HL-LHC})/N_{\rm X}({\rm Tevatron})}$ ~ Improvement (W,Z) by ~70 factor

Future limits: FCC-ee and FCC-hh reaches

- For all rare decays collected, we:
 - Indicate whether the decay will be producible at FCC-ee/FCC-hh by simply checking the relation $[BR(X) \times N(X)] > 1$?

Collider	W±	bosons Z		osons	H bosons		top quarks			Number of
	$\sigma(W) = bosons$ $\sigma(W) = N(W)$		σ(Z)	N(Z)	σ(H)	<i>N</i> (H)	$\sigma(t\bar{t})$	N(top)		I H,₩,∠,top
LEP	4.0 pb	0.8×10^{5}	59 nb	2×10^7	~2, 1 fb	~5	_			,
FCC-ee	4.0 pb 🕻	5 × 10 ⁸) 59 nb 🤇	6×10^{12}	200, 30 ft	1.9 × 10 ⁶	0.5 pb	3.8×10^{6}) 🏑	
Increase factor LEP \mapsto FCC-ee	1	6250	1	300,000	70, 30	400,000	_	<u> </u>	•	
Tevatron (1.96 TeV, 10 fb ⁻¹)	25.3 nb	2.5×10^{8}	7.6 nb	7.6×10^{7}	1.1 pb	1.1×10^{4}	7.1 pb	1.4×10^{5}		
HL-LHC (14 TeV, $2 \times 3 \text{ ab}^{-1}$)	200 nb	1.2×10^{12}	62.5 nb	3.8 × 10 ¹¹	58 pb	3.5 × 10 ⁸	1 nb	1.2×10^{10}		
FCC-hh (100 TeV, 30 ab ⁻¹)	1300 nb	4.1×10^{13})415 nb	1.2×10^{13}	0.93 nb	(2.8×10^{10})	35 nb	2.1×10^{12})	
Increase factor Tevatron → HL-LHC	8	4800	8.2	5000	52.7	31 800	141	86 000		
Increase factor HL-LHC → FCC-hh	6.5	34	6.7	32	16	80	35	175		

Future limits: FCC-ee and FCC-hh reaches

- For all rare decays collected, we:
 - Indicate whether the decay will be producible at FCC-ee/FCC-hh by simply checking the relation $[BR(X) \times N(X)] > 1$?
 - Graphically presented by Vertical (dashed) line for FCC-ee (FCC-hh) in bar-limits plots:

Purple bar below the red line means the process is producible at the FCC-ee <u>Yellow bar</u> reaching the purple bar mean the process is close to be measured at the HL-LHC

Example:

Exclusive Higgs decays: radiative + meson, meson + meson

- Due to the smallness of the H → cc,qq partial widths, it has been proposed to constrain quark Yukawa couplings via exclusive decays of Higgs into:
 - EW boson + 1 meson:
 - Contributions from 2 main mechanisms (direct, indirect) which interfere destructively.
 - · Can be used to probe hZy effective couplings

- double meson:
 - Doubly suppressed \rightarrow very small BR
 - $\rightarrow\,$ Can't be produced until FCC-hh rates
 - Theoretical predictions have included more of these diagrams with time...

sub-dominant

Exclusive Higgs decays $H \rightarrow y + meson$

✓					
 Image: A second s	$H \rightarrow \gamma + \rho^0$				
v	$H \rightarrow \gamma + \omega$				
\checkmark	$H \rightarrow \gamma + \phi$				
	$-$ H $\rightarrow \alpha + 1/\eta$		-	Theoretical BR Current limits	
	$11 \rightarrow \gamma + 5/\psi$			HL-LHC 14 TeV	, 3 ab ⁻¹
	$H \rightarrow \gamma + \psi(2S)$		<u>+</u>	FCC-ee, HZ (2.	4 ab ⁻¹ /yr)
\checkmark	$H \rightarrow \gamma + \Upsilon(1S)$				v,00 ab
	$H \rightarrow \gamma + \Upsilon(2S)$				
\checkmark	$H \rightarrow \gamma + \Upsilon(3S)$				
	- 0	5	10	15	20
1	0	0	10	10	-log(BR)
•					

				Exp.	limits	Produc	cible at
${\rm H} \rightarrow \gamma ~~+~$	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh
	$ ho^0$	$(1.68 \pm 0.18) \times 10^{-5}$	SCET+LCDA [13]	$< 8.8 \times 10^{-4}$ [74]	$\lesssim 6.8 \times 10^{-5}$	\checkmark	\checkmark
	ω	$(1.48 \pm 0.17) \times 10^{-6}$	SCET+LCDA [13]	$< 1.5 \times 10^{-4}$ [76]	$\lesssim 2.2\times 10^{-5}$	\checkmark	\checkmark
	ϕ	$(2.31 \pm 0.26) \times 10^{-6}$	SCET+LCDA [13]	$< 4.8 \times 10^{-4}$ [74]	$\lesssim 3.7\times 10^{-5}$	\checkmark	\checkmark
		$(2.95 \pm 0.38) \times 10^{-6}$	SCET+LCDA [13]				
	J/ψ	$(3.01 \pm 0.15) \ \times 10^{-6}$	NRQCD (NLL)+LDME [78]	$< 3.5 \times 10^{-4}$ [77]	$\lesssim 5.5\times 10^{-5}~[54]$	\checkmark	\checkmark
-		$\left(3.0^{+0.2}_{-0.1} ight)~ imes 10^{-6}$	NRQCD+LCDA [79]				
	$\psi(2S)$	$(1.3 \pm 0.1) \times 10^{-6}$	SCET+LCDA [13]	$< 2.0 \times 10^{-3}$ [80]	$\lesssim 1.6 \times 10^{-4}$	\checkmark	\checkmark
$H \rightarrow \gamma +$		$(4.6^{+3.9}_{-2.8}) \times 10^{-9}$	SCET+LCDA [13]			×	
11 <i>/ y</i> /	$\Upsilon(1S)$	$\left(10.0^{+4.0}_{-3.0} ight) \ imes 10^{-9}$	NRQCD (NLL)+LDME [78]	$< 4.9 \times 10^{-4}$ [80]	$\lesssim 3.8 \times 10^{-5}$		\checkmark
		$\left(5.2^{+2.0}_{-1.7} ight) \ imes 10^{-9}$	NRQCD+LCDA [79]				
		$\left(2.3^{+1.7}_{-2.2} ight) \ imes 10^{-9}$	SCET+LCDA [13]				
	$\Upsilon(2S)$	$\left(2.6^{+1.4}_{-0.9} ight) \ imes 10^{-9}$	NRQCD (NLL)+LDME [78]	$< 5.9 \times 10^{-4}$ [80]	$\lesssim 4.6\times 10^{-5}$	×	\checkmark
		$\left(1.4^{+0.7}_{-0.6} ight)~ imes 10^{-9}$	NRQCD+LCDA [79]				
		$(2.1^{+1.7}_{-2.5}) \times 10^{-9}$	SCET+LCDA [13]				
	$\Upsilon(3S)$	$\left(1.9^{+1.1}_{-0.7} ight)~ imes 10^{-9}$	NRQCD (NLL)+LDME [78]	$< 5.7 \times 10^{-4}$ [80]	$\lesssim 4.4 \times 10^{-5}$	×	\checkmark
		$(10_{-0.7})^{10} \text{ NRQCD+LCDA [79]}$					

- Theory BRs: $O(10^{-5} 10^{-10})$. Exp. limits: $O(10^{-3} 10^{-4})$
- 9 channels studied . 5 (8) producible channels at FCC-ee (FCC-hh).
- $H \rightarrow \gamma + J/\psi$ maybe observed at HL-LHC, with the ratios BR theo/B limit ~ 1/10

Exclusive Higgs decays $H \rightarrow Z + meson$

				Exp.	limits	Produ	cible at
$H \to Z \ +$	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh
	_0	$(2.3 \pm 0.1) \times 10^{-6}$	EFT+LCDA [86]			/	/
	π-	3.0 ×10 ⁻⁶	EFT+NRQM [11]	=	=	v	•
	η	$(8.3 \pm 0.9) \times 10^{-7}$	EFT+LCDA [86]	-	-	✓	✓
	00	$(7.19 \pm 0.29) \ \times 10^{-6}$	EFT+LCDA [86]	$< 1.2 \times 10^{-2}$ [87]	$< 1.8 \times 10^{-3}$./	./
	Ρ	1.2×10^{-6}	EFT+NRQM [11]	< 1.2×10 [07]	≥ 1.8 × 10	•	•
	ω	$(5.6 \pm 0.2) \times 10^{-7}$	EFT+LCDA [86]	-	-	✓	✓
	η'	$(1.24\pm 0.13)\ \times 10^{-6}$	EFT+LCDA [86]	-	-	✓	\checkmark
	đ	$(2.42\pm 0.10)\ \times 10^{-6}$	EFT+LCDA [86]	$< 3.6 \times 10^{-3}$ [87]	$< 5.4 \times 10^{-4}$	1	
	Ψ	2.2×10^{-6}	EFT+NRQM [11]	(5.6/16 [6/]	3 5.4 × 10	•	•
	n	$(1.00\pm 0.01)\ \times 10^{-5}$	EFT+LCDA [88]	_	_	1	1
	40	1.4×10^{-5}	EFT+NRQM [11]			•	<u> </u>
		3.4 ×10 ⁻⁶	NRQCD (NLO)+LMDE [89]				
$H \rightarrow Z +$	Lhk	$(2.3 \pm 0.1) \times 10^{-6}$	EFT+LCDA [86]	$< 1.9 \times 10^{-3}$ [90]	$< 2.9 \times 10^{-4}$ [56]	1	1
	0,0	2.2×10^{-6}	EFT+NRQM [11]	(TB)(TO [DO]	2 20 11 10 [20]		
		3.2×10^{-6}	EFT+NRQM [91]				
	$\psi(2S)$	1.5×10^{-6}	EFT+NRQM [91]	$< 6.6 \times 10^{-3}$ [90]	$\lesssim 1.0 \times 10^{-3}$	 Image: A second s	 Image: A set of the set of the
	$n_{\rm b}$	$(2.69\pm 0.05)\ \times 10^{-5}$	EFT+LCDA [88]	_	_	1	1
	-10	$(4.7^{+0.3}_{-0.2}) \times 10^{-5}$	EFT (NLO)+LCDA [92]				· · ·
		1.7×10^{-5}	NRQCD (NLO)+LMDE [89]				
	$\Upsilon(1S)$	$(1.54\pm 0.06)\ \times 10^{-5}$	EFT+LCDA [86]	-	-	\checkmark	✓
		1.7 ×10 ⁻⁵	EFT+NRQM [91]				
	$\Upsilon(2S)$	$(7.5 \pm 0.3) \times 10^{-6}$	EFT+LCDA [86]	_	_	1	1
	- (20)	8.9 ×10 ⁻⁶	EFT+NRQM [91]				
_	$\Upsilon(3S)$	$(5.63\pm 0.24)\ \times 10^{-6}$	EFT+LCDA [86]	_	_	1	1
	1 (55)	6.7 ×10 ⁻⁶	EFT+NRQM [91]			•	•

- Theory BRs: O(10⁻⁵ 10⁻⁷). Exp. limits: O(10⁻² 10⁻³)
- 4 channels searched for . All channels are producible at FCC-ee
- Botomonia have largest BRs, but no bound set so far
- No observable channel at HL-LHC

Exclusive Higgs decays $H \rightarrow meson + meson$

						Exp.	limits	Produ	cible at				
${\rm H} \rightarrow$	Х	+	Х	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh	_			
	ϕ	+	J/ψ	1.0×10^{-9}	LC+LCDA [96]	-	-	×	\checkmark				
				$(5.8-6.0) \times 10^{-9}$	NRQCD+LDME [101]					$ H \rightarrow \phi + J/\psi$			
				1.7×10^{-10}	RQM [98]								
	J/ψ	+	J/ψ	2.1×10^{-10}	RQM [100]	$< 3.8 \times 10^{-4}$ [90]	$\lesssim 5.8\times 10^{-5}$	×	\checkmark	$H \rightarrow J/\psi + J/\psi$			
				$(5.9 \pm 2.3) \times 10^{-10}$	NRQCD/NRCSM [99]					$\Pi \times I/a_{0} + a_{0}(2\mathbf{S})$			
				1.5×10^{-10}	LC+LCDA [96]					$_{-} \qquad \qquad$			
	$\psi(2S)$	+	J/ψ	5.0 ×10 ⁻¹¹	-	$< 2.1 \times 10^{-3}$ [90]	$\lesssim 3.2\times 10^{-4}$	×	\checkmark	$H \rightarrow I/\eta + \Upsilon(1S)$			
	φ(= 5)	· ·	$\psi(2S)$	$(5.1 \pm 2.0) \times 10^{-11}$	NRQCD/NRCSM [99]	$< 3.0 \times 10^{-3}$ [90]	$\lesssim 4.5 \times 10^{-4}$	×	 Image: A start of the start of	$-$ 11 / 5/ ψ + 1(15)			
	$B_c^{*\mp}$	+	$B_c^{*\pm}$	$(1.4 - 1.7) \times 10^{-10}$	RQM [97]	-	-	×	\checkmark	$H \rightarrow \psi(2S) + \psi(2S)$			Theoretical BR
$H \rightarrow$	B_c^{\mp}	+	B_c^{\pm}	$(2.0 - 3.0) \times 10^{-10}$	RQM [97]	-	-	×	 ✓ 	$- \qquad \qquad$			Current limits
			J/ψ	$(2.7 - 3.6) \times 10^{-10}$	NRQCD+LDME [101]	_	_	×	1	$H \rightarrow B_{a}^{*\pm} + B_{a}^{*\mp}$			HL-LHC 14 TeV, 3 ab ⁻¹
				1.6×10^{-11}	LC+LCDA [96]				-	-			FCC-ee, HZ (2.4 ab ⁻¹ /yr)
				$(8.5 - 9.2) \times 10^{-10}$	NRQCD+LDME [101]					$H \rightarrow B_c^{\pm} + B_c^{\mp}$			FCC-hh 100 TeV,30 ab ⁻¹
	$\Upsilon(1S)$	+		1.8×10^{-10}	RQM [98]								
			$\Upsilon(1S)$	2.3 ×10 ⁻⁹	RQM [100]	$< 1.7 \times 10^{-3}$ [90]	$\lesssim 2.6 \times 10^{-4}$	×	\checkmark	$H \to \Upsilon(1S) + \Upsilon(1S)$			
				$(4.3 \pm 0.9) \times 10^{-10}$	NRQCD/NRCSM [99]								
				2.3 ×10 ⁻⁹	LC+LCDA [96]					$_{-}$ H \rightarrow I (2S) + I (2S)			
	$\Upsilon(2S)$	+	$\Upsilon(2S)$	$(1.0 \pm 0.2) \times 10^{-10}$	NRQCD/NRCSM [99]	-	-	×	v	$\mathbf{H} \rightarrow \mathbf{x}(\mathbf{a}\mathbf{c}) + \mathbf{x}(\mathbf{a}\mathbf{c})$			
	$\Upsilon(3S)$	+	$\Upsilon(3S)$	$(5.7 \pm 1.2) \times 10^{-11}$	NRQCD/NRCSM [99]	-	-	×	v	$H \rightarrow I(35) + I(35)$			
	$\Upsilon(mS)$) +	$\Upsilon(nS)$		-	$< 3.5 \times 10^{-4}$ [90]	$\leq 1.5 \times 10^{-5} [56]$	×	×	$-\mathbf{U} \times \mathbf{\gamma}(\mathbf{m}\mathbf{Q}) + \mathbf{\gamma}(\mathbf{n}\mathbf{Q})$			
										$(\operatorname{an}) + (\operatorname{ann}) + (\operatorname{ann})$			
										ĺ	$)$ $\frac{1}{5}$	10	15 2

- Theory BRs: $O(10^{-9}-10^{-11})$. Exp. limits: $O(10^{-3}-10^{-4})$.
- 5 channels searched-for. No (all) producible channels at FCC-ee (FCC-hh)
- Many predictions for double-QQbar from adding more contributing diagrams.

-log(BR)

Exclusive Z decays

- Exclusive Z decays:
 - Similar mechanism to the exclusive Higgs radiative decays.
 - Large Z boson yields at colliders.

Provides valuable information both theoretical (SCET & NRQCD validation, and LCDAs/LDMEs' params) and experimental (optimization of search techniques to study exclusive Higgs boson decays).

- Exclusive Z decays into:
 - γ ,W + 1 meson:

• Double mesons:

Exclusive Z decays: $Z \rightarrow \gamma$ + charm meson

				Exp.	limits	Producible at
$Z \rightarrow \gamma$ +	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee
		$(9.5 \pm 0.2) \times 10^{-9}$	NRQCD (NNLO+NLL) [120]			
		$(7.42 \pm 0.61) \times 10^{-9}$	NRQCD (NLO+NLL) [121]			/
	η_c	6.6 ×10 ⁻⁹	NRQCD+LDME [122]	-	-	v
		$(9.4 \pm 1.0) \times 10^{-9}$	LC+LCDA [122]			
		$(5.75^{+0.08}_{-0.09}) \times 10^{-8}$	NRQCD (NNLO+NLL) [120]			
		$\left(9.0^{+1.5}_{-1.4} ight)~ imes 10^{-8}$	LC+LCDA [123]			
	I/μ	4.5 ×10 ⁻⁸	NRQCD+LDME [122]	< 1.4×10 ⁻⁶ [114]	$< 4.4 \times 10^{-7}$ [54]	1
	J/ψ	$(8.8\pm 0.9)\ \times 10^{-8}$	LC+LCDA [122]	< 1.4×10 [114]	2 III X IO [01]	•
		$(9.96 \pm 1.86) \ \times 10^{-8}$	NRQCD+LDME [119]			
		$(8.02\pm 0.45)\ \times 10^{-8}$	SCET+LCDA [58]			
7		$(3.74 \pm 0.05) \times 10^{-10}$	NRQCD+LDME [124]			
$L \rightarrow \gamma +$	χ_{c0}	1.4×10^{-10}	NRQCD+LDME [122]	-	-	\checkmark
		$(5.0\pm 2.0)\ \times 10^{-10}$	LC+LCDA [122]			
		$(2.38^{+0.01}_{-0.02}) \times 10^{-9}$	NRQCD+LDME [124]			
	χ_{c1}	8.7×10^{-10}	NRQCD+LDME [122]	-	-	\checkmark
		$(5.6 \pm 2.0) \times 10^{-9}$	LC+LCDA [122]			
		$(3.49^{+0.21}_{-0.23}) \times 10^{-9}$	NRQCD+LDME [124]			
	h_c	3.0 ×10 ⁻⁹	NRQCD+LDME [122]	-	-	\checkmark
		$(1.0\pm 0.4)\ \times 10^{-8}$	LC+LCDA [122]			
		$(3.38^{+0.19}_{-0.22}) \times 10^{-10}$	NRQCD+LDME [124]			
	χ_{c2}	2.9 ×10 ⁻¹⁰	NRQCD+LDME [122]	-	-	\checkmark
		$(1.0 \pm 0.4) \times 10^{-9}$	LC+LCDA [122]			

- Theory BRs: O(10⁻⁸ 10⁻¹⁰). Multiple calculations (LC, SCET, NRQCD). Exp. limits: O(10⁻⁶).
- 1 channel searched for. 6 producible channel at FCC-ee
- $Z \rightarrow \gamma$ + J/ ψ maybe visible at HL-LHC

- Theory BRs: O(10⁻⁸ 10⁻¹⁰). Multiple calculations (LC, SCET, NRQCD). Exp. limits: O(10⁻⁶).
- 3 channels searched-for (ATLAS). 10 producible channel at FCC-ee

 $Z \rightarrow \gamma +$

 $Z \rightarrow \gamma +$

X

 η_b

 $\Upsilon(1S)$

 $\Upsilon(2S)$

 $\Upsilon(3S)$

 $\Upsilon(4S)$

 $\Upsilon(nS)$

 χ_{b0}

 χ_{b1}

 h_{h}

 χ_{b2}

• $Z \rightarrow \gamma$ +Y(1S), might be visible at HL-LHC, (BR = 1/4 projected limit)

- Z \rightarrow 3 γ decay is very suppressed in the SM (6.4 10⁻¹⁰).
- $Z \rightarrow \gamma + a(\gamma \gamma)$ is a typical ALP/graviton search channel. 10 mesonic channels share same final state
- $Z \rightarrow \gamma$ + meson($\gamma\gamma$) provides about 30% extra contributions to the SM BR[$Z \rightarrow 3\gamma$]

Exclusive Z decays $Z \rightarrow c$ -meson + c-meson

									Exp. li	mits	Producible at		
$Z \rightarrow$	X	+	X	Branching fraction	Framev	vork			2023	HL-LHC	at FCC-ee		
				$(1.5 \pm 0.4) \times 10^{-11}$	NRQC	D/NRC	CSM	[130]				-	
			J/ψ	$(1.8 - 2.7) \times 10^{-11}$	NRQC	D+LD	ME [128]	-	_	\checkmark		
				2.7×10^{-14}	NRQC	D+LD	ME [131]					
				2.3 ×10 ⁻¹²	NRQC	D+LD	ME [131]			./	_	
			χ_{c0}	$(2.3 \pm 1.0) \times 10^{-12}$	LC+LC	CDA [1	31]		-	—	v		
	η_c	+	Xc1	5.4 ×10 ⁻¹⁴	NRQC	D+LD	ME [131]	-	-	×	_	
			h	2.1 ×10 ⁻¹³	NRQC	D+LD	ME [131]	J.J. ATV		/		
			n_c	$(1.0 \pm 0.5) \times 10^{-12}$			-		1.5 ×10 ⁻¹²	NRQCD+LDME [13]]		
				9.7 ×10 ⁻¹³				h_c	$(9.5 \pm 5.0) \times 10^{-12}$	LC+LCDA [131]	-	-	v
			χ_{c2}	$(4.6 \pm 2.0) \times 10^{-12}$			-		$(9.6 - 24.8) \times 10^{-13}$	NRQCD+LDME [128	3]		
-				$(1.1 \pm 0.2) \times 10^{-10}$				χ_{c2}	1.4×10^{-13}	NRQCD+LDME [13]	.) –	-	✓
				$(1.1 \pm 0.3) \times 10^{-10}$					$(9.3 \pm 4.0) \times 10^{-13}$	LC+LCDA [131]			
				$(1.1^{+0.5}_{-0.2}) \times 10^{-10}$					7.6 ×10 ⁻¹⁴	NRQCD+LDME [13]	1]		~
			J/ψ	$(1.1 - 1.3) \times 10^{-10}$				χ_{c1}	$(1.4 \pm 1.0) \times 10^{-12}$	LC+LCDA [131]	-	-	^
				2.3×10^{-14}		χ_{c0}	+ -	h_c	3.5 ×10 ⁻¹⁶	NRQCD+LDME [13]	.) –	-	×
				2.7×10^{-11}				χ_{c2}	6.4 ×10 ⁻¹⁵	NRQCD+LDME [13]] –	-	×
				(1.1. 4.1) ×10 ⁻¹²				χ_{c1}	3.9 ×10 ⁻¹⁶	NRQCD+LDME [13]] –	-	×
				$(1.1 - 4.1) \times 10$			-	,	2.9 ×10 ⁻¹⁴	NRQCD+LDME [13]	l)		
			χ_{c0}	8.3×10^{-14}		χ_{c1}	+	h_c	$(6.1 \pm 5.0) \times 10^{-13}$	LC+LCDA [131]	-	-	*
	J/ψ	+		$(4.7 \pm 2.0) \times 10^{-13}$			-		1.3 ×10 ⁻¹³	NRQCD+LDME [13]]		
$Z \rightarrow$				(3.5 - 4.4) ×10 ⁻¹²				χ_{c2}	$(2.8 \pm 2.0) \times 10^{-12}$	LC+LCDA [131]	-	-	×
			χ_{c1}	3.5×10^{-15}				h_c	9.9 ×10 ⁻¹⁷	NRQCD+LDME [13]	-	_	×
				0.0 //10		n_c	+	χ_{c2}	2.3 ×10 ⁻¹⁶	NRQCD+LDME [13]		_	×
						χ_{c2}	+	χ_{c2}	1.3 ×10 ⁻¹⁶	NRQCD+LDME [13]	- []	-	×

- Theory BRs: O(10⁻¹⁰ 10⁻¹⁷). Exp. limits: O(10⁻⁶)
- 1 channel searched for. 10 producible channels at FCC-ee
- Large uncertainty, variation between theoretical predictions. LC approach $Z \rightarrow \chi_{c2} + \chi_{c2} + \chi_{c2}$ is more preferable
- Most promising place to study double-charmonia decay.

Exclusive Z decays $Z \rightarrow b$ -meson + b-meson

- Theory BRs: $O(10^{-10} 10^{-17})$. Exp. limits: $O(10^{-4} 10^{-7})$
- 5 channels searched for. 7 producible channels at FCC-ee
- Most promising place to study double-bottomonium decays.

Exclusive W decays

- Exclusive W decays:
 - Similar mechanism to exclusive Z and H decays.
 - Provides cross-check of pQCD factorization models and info on open-flavour meson form factors.
 - Exclusive Z decays into:
 - γ + 1 charged meson

• Meson + charged meson

Exclusive W decays $W \rightarrow \gamma$ + meson

				Exp. limits		Producible at							
$W^{\mp} ightarrow \gamma$ +	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh						
	π^{\pm}	$(4.0 \pm 0.8) \times 10^{-9}$	SCET+LCDA [58]	< 1.9×10 ⁻⁶ [136, 137]	$\lesssim 2.9 \times 10^{-7}$	✓	✓	-					
	ρ^{\pm}	$(8.74 \pm 1.91) \times 10^{-9}$	SCET+LCDA [58]	< 5.2×10 ⁻⁶ [136]	$\lesssim 7.9\times 10^{-7}$	\checkmark	\checkmark						
	K^{\pm}	$(3.25 \pm 0.69) \times 10^{-10}$	SCET+LCDA [58]	$< 1.7 \times 10^{-6}$ [136]	$\lesssim 2.6\times 10^{-7}$	×	\checkmark				<u> </u>	-	
	$K^{*\pm}$	$(4.78 \pm 1.15) \times 10^{-10}$	SCET+LCDA [58]	-	_	×	\checkmark	$W \to \gamma + \pi^{\pm \gamma}$			I.		
	D^{\pm}	$(1.4^{+0.5}_{-0.3})$ ×10 ⁻⁹	SCET+LCDA [58]	-	_	×	\checkmark	$W \rightarrow \alpha + a^{\pm}$					
		$(3.7^{+1.5}_{-0.8}) \times 10^{-8}$	SCET+LCDA [58]					= w r r r					
$W^{\mp} ightarrow \gamma$ +	D_s^{\pm}	4.7 ×10 ⁻⁹	NRQCD+LDME [138]	$< 6.5 \times 10^{-4}$ [115]	$\lesssim 1.2 \times 10^{-5}$	\checkmark	\checkmark	$W \rightarrow \gamma + K^{\pm}$			_		
		3.4 ×10 ⁻⁹	LC+LCDA [138]					$W \rightarrow \alpha + K^{*\pm}$				neoretical BR	
	D*±	8.9 ×10 ⁻¹⁰	NRQCD+LDME [138]			v	1	$- vv \rightarrow \gamma + ix$			н	L-LHC 14 TeV, 3 ab	-1
	D_s	3.4×10^{-9}	LC+LCDA [138]	_	—	Ŷ	v	$W \rightarrow \gamma + D^{\pm}$				CC-ee, W ⁺ W ⁻ (4.8 a	ab ⁻¹ /yr)
		$(1.6^{+0.8}_{-0.6}) \times 10^{-12}$	SCET+LCDA [58]					$\mathbf{W} \rightarrow \mathbf{D}^+$			FC	56-nn 100 lev,30 a	0 *
	B^{\pm}	$(2.6^{+3.1}_{-1.3}) \times 10^{-12}$	HQET+LCDA [139]	_	_	×	\checkmark	$W \rightarrow \gamma + D_{\rm s}^{\pm \gamma}$					
		$\left(2.0^{+2.5}_{-0.8} ight)~ imes 10^{-12}$	SCET+LCDA ^a [139]					$W \rightarrow \gamma + D_s^{*\pm}$			_		
								$W \rightarrow \gamma + B^{\pm}$					
									0	5	10	15	

- Theory BRs: O(10⁻⁸ 10⁻¹²). Exp. limits: O(10⁻⁴ 10⁻⁶)
- 4 channels searched-for.
- 3 (5) channels producible at FCC-ee (FCC-hh)

-log(BR)

Exclusive W decays W→ meson + meson

··· v							E	2xp. limits	Pro	oducible at			
$W^{\pm} \rightarrow$	X	+	X	Branching fraction	Framework		2023	HL-LHC	FCC-ee	e FCC-hh			
			D^{\pm}_{\pm}	2.1×10^{-12}	NRCSM+LCI	DA [140]	_	_	×				
	<i>n</i> _	+ -	- 3	$(1.3^{+0.3}_{-0.2}) \times 10^{-11}$	LC+LCDA [1	40]							
	<i>'n</i> ^c		$D^{*\pm}$	3.0 ×10 ⁻¹²	NRCSM+LCI	DA [140]	_	_	×	1			
			23	$(1.5^{+0.4}_{-0.2}) \times 10^{-11}$	LC+LCDA [1	40]							
				2.6×10^{-12}	NRQCD+LD	ME [138]							
			D_s^{\pm}	2.1×10^{-12}	NRCSM+LCI	DA [140]	-	-	×	\checkmark			
	Lbk			$(1.8^{+0.4}_{-0.2}) \times 10^{-11}$	LC+LCDA [1	40]							
	J/ψ	Τ.		1.7×10^{-12}	NRQCD+LD	ME [138]							
			$D_s^{*\pm}$	3.0 ×10 ⁻¹²	NRCSM+LCI	DA [140]	-	-	×	\checkmark			
				$(2.0^{+0.5}_{-0.2}) \times 10^{-11}$	LC+LCDA [1	40]							
			D_s^{\pm}	5.1 ×10 ⁻¹¹	NRQCD+LD	ME [138]	-	-	×	\checkmark			
	$\psi(23)$	+	$D_s^{*\pm}$	7.4 ×10 ⁻¹²	NRQCD+LD	ME [138]	-	-	×	\checkmark			
				9.4 ×10 ⁻¹⁴	NRQCD+LD	ME [138]							
			D_s^{\pm}	4.7 ×10 ⁻¹⁴	NRC		L	D_{s}^{\pm} (1.4	4 ×10 ⁻¹³	NRCSM+LCDA [140]	-	-	×
				$(7.1^{+3.5}_{-3.1}) \times 10^{-13}$	LC+I	h_c	+	(2.1+1.0	$) \times 10^{-12}$	LC+LCDA [140]			
	χ_{c0}	+ ·		1.2 ×10 ⁻¹³	NRQ		L	$D_s^{*\pm}$ (2.4±1.1	0×10^{-12}	NRCSM+LCDA [140]	-	-	×
			$D_s^{*\pm}$	8.1×10^{-14}	NRC			(2.4_0.9	$\frac{1}{2} \times 10^{-14}$	NROCD+LDME [138]			
				$(8.0^{+3.7}_{-3.1}) \times 10^{-13}$	LC+I		L	D± 9,	6 ×10 ⁻¹⁴	NRCSM+LCDA [140]	_	_	×
				2.0 ×10 ⁻¹³	NRQ			(1.4+0.6) ×10 ⁻¹²	LC+LCDA [140]			
$W^{\pm} \rightarrow$			D_s^{\pm}	2.9 ×10 ⁻¹³	NRC	χ_{c2}	+	3.	9 ×10 ⁻¹⁴	NRQCD+LDME [138]			
				$(7.8^{+3.4}_{-3.0}) \times 10^{-12}$	LC+I		L	$P_s^{*\pm} = 1.4$	4 ×10 ⁻¹³	NRCSM+LCDA [140]	-	-	×
	χ_{c1}	+ ·		2.0 ×10 ⁻¹³	NRO			$(1.6^{+0.7}_{-0.6})$) ×10 ⁻¹²	LC+LCDA [140]			
			$D_s^{*\pm}$	4.0×10^{-13}	NRC	B_s^0	+ E	^{*±} 2.	0×10^{-12}	NRQCD+LDME [138]		-	×
				$(8.8^{+3.5}) \times 10^{-12}$	LC+I		E	r_{c}^{\pm} 2.	5 ×10 ⁻¹²	NRQCD+LDME [138]		-	×
				1.4 ×10 ⁻¹³	NRC	B_s^*	+ #	^{**} 2.	7 ×10 ⁻¹²	NRQCD+LDME [138]	-	-	×
			D^{\pm}				E	c 2.	/ ×10 ⁻¹²	NRQCD+LDME [138]		-	×

×

x

x

- Theory BRs: $O(10^{-11} 10^{-14})$. No existing exp. Limit
- 0 channels searched-for. 0 (13) channels producible at FCC-ee (FCC-hh)
- Tiny rates. No searches so far anywhere

Semi-exclusive top decays

• two-body t \rightarrow (qq) + q' decay can provide an alternative top mass extraction

Semi-exclusive decays $t \rightarrow meson + c/u quark$

10

5

15

1

0

						Exp. limits	Producible at					
t \rightarrow	M +	q	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh		r		_
	$\overline{\mathbf{p}}^0$ +	с	$\left(2.1^{+2.1}_{-1.1}\right) \times 10^{-6}$	NRQCD+LDME [26]	_	_	 Image: A second s	~	$t \rightarrow c + \overline{B}^0$			
	В т	u	$\left(4.0^{+4.0}_{-2.0} ight) imes 10^{-5}$	NRQCD+LDME [26]	-	_	\checkmark	\checkmark	$t \rightarrow u + \overline{B}^0$			
	$\overline{\mathbf{D}}^0$	с	$(4.0^{+4.0}_{-2.0}) \times 10^{-5}$	NRQCD+LDME [26]		$\lesssim 4.0 \times 10^{-5}$ [26]	\checkmark	\checkmark				
	B _s +	u	$\left(2.1^{+2.1}_{-1.1} ight) imes 10^{-6}$	NRQCD+LDME [26]	-	_	\checkmark	\checkmark	$t \rightarrow c + B_s^{o}$			
			4.3×10^{-10}	NRQCD+CSM [174]				√	$t \rightarrow u + \overline{B}_{a}^{0}$			
	$\Upsilon(1S) +$	c	$(1.0 - 1.5) \times 10^{-9}$	NRQCD+LDME [26]	-	-	×		$1 \rightarrow 1 \rightarrow \infty$			
	I(15) +		$(6.4 \pm 1.3) \times 10^{-10}$	NRQCD+COM [173]					$t \to c + 1(15)^{-1}$			Theoretical BR
t _>		u	$(1.0 - 1.5) \times 10^{-11}$	NRQCD+LDME [26]	-	_	×	\checkmark	$t \rightarrow u + \Upsilon(1S)^{-1}$			Current limits
ι →		C	2.1×10^{-10}	NRQCD+CSM [174]		_	×	1	$t \rightarrow c + \Upsilon(2S)$			HL-LHC 14 TeV, 2x3 ab FCC-ee, N(t)= 3.8×10^6
	$\Upsilon(2S)$ +	C	$(1.7 - 5.3) \times 10^{-10}$	NRQCD+LDME [26]		_	^	•	0 7 C + 1(20)			FCC-hh, N(t)= 2.1×10^{12}
		u	$(1.7 - 5.3) \times 10^{-12}$	NRQCD+LDME [26]	-	-	×	\checkmark	$t \rightarrow u + \Upsilon(2S)^{-1}$			
		C	1.6×10^{-10}	NRQCD+CSM [174]			×	/	$t \rightarrow c + \Upsilon(3S)$			
	$\Upsilon(3S)$ +	C	$(2.7 - 3.8) \times 10^{-10}$	NRQCD+LDME [26]	_	_	.	•	20 (20)			
		u	$(2.7 - 3.8) \times 10^{-12}$	NRQCD+LDME [26]	-	_	×	\checkmark	$t \rightarrow u + T(3S)$			
	$\Upsilon(nS) +$	с	$\left(1.9^{+0.2}_{-0.1}\right) \times 10^{-9}$	NRQCD+LDME [26]	-	_	×	\checkmark	$t \rightarrow c + \Upsilon(nS)$			
	1(IIS) +	u	$\left(1.9^{+0.2}_{-0.1} ight) imes 10^{-11}$	NRQCD+LDME [26]	-	-	×	\checkmark	$t \rightarrow u + \Upsilon(nS)$			
									v / u + I(ID)			

- Theory BRs: $O(10^{-5} 10^{-11})$. No existing exp. limits
- No channel searched for. 4 (9) visible channels at FCC-ee (FCC-hh)
- <u>Note</u>: $t \rightarrow B+c/u$ -quark have "large" BR: $4 \cdot 10^{-5}$

20

-log(BR)

Extension to leptonium

• S state quarkonium and leptonium share the same relation between the leptonic decay constant

$$f_{\rm X}^2 = \frac{N_c m_{\rm X}}{4\pi Q_{\rm X}^2 \alpha^2(m_{\rm X})} \Gamma({\rm X} \to l^+ l^-)$$

and the wave function at the origin at leading order

$$f_{\rm X}^2 = 4N_{\rm c} \frac{|\phi_{\rm X}(0)|^2}{m_{\rm X}}.$$

- We have therefore reused the Z,H>QQbar+γ results to compute the Z,H>(II)+γ decays

Exclusive Higgs decays $H \rightarrow \gamma/Z$ + leptonium

					Exp. limits		Producible at	
$H \rightarrow V$ +	ŀ	(ll)	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh
		(ee) ₁	3.5×10^{-12}	(this work)		-	×	×
$H \rightarrow \gamma +$	-	(μμ) ₁	3.5×10^{-12}	(this work)	-	-	×	×
		$(\tau \tau)_1$	2.2×10^{-12}	(this work)	—	-	×	×
		(ee) ₁	5.1×10^{-10}	(this work)	-	-	×	1
		(<i>μμ</i>) ₁	5.5×10^{-13}	(this work)	-	-	×	×
$H \rightarrow 7 +$		$(\tau \tau)_1$	1.2×10^{-11}	(this work)	_	-	×	×
		(ee) ₀	2.7×10^{-16}	(this work)	—		×	×
		(μμ) ₀	1.1×10^{-14}	(this work)		-	×	×
		$(\tau \tau)_0$	3.2×10^{-12}	(this work)	-	-	×	×

- Tiny BRs $O(10^{-11} 10^{-16})$. First time computed here.
- No channel searched for. No (4) producible channels at FCC-ee (FCC-hh)
- Note: Leptonia are long-lived = LLP signature (displaced γ , e, μ vertices) •

-30 -loa(BR)

- Tiny BRs: $O(10^{-14} 10^{-23})$. First time computed here.
- No channel searched-for. No producible channel at FCC-ee.
- Note: Leptonia are long-lived = LLP signature (displaced γ , e, μ vertices)

Summary

- Comprehensive survey of the theoretical & experimental status of more than 100 exclusive few-body decays into quarkonium of the 4 heaviest SM particles (H,Z,W,t): BR≈10⁻⁵ – 10⁻²⁰
 - Backgrounds to many BSM decays (H,Z \rightarrow ALPs, gravitons, dark γ , ...), and allow study of QQbar production approaches and the ingredients: LDMEs,LCDAs,.
- Up-to-date collection of TH BRs and EXP limits from the literature.
- Calculation of new rare decay channels: radiative leptonium.
 - Tiny. Very hard to measure.
- Estimation of reachabilities of HL-LHC, FCC-ee/FCC-hh observations (if not BSM-enhanced):
- HL-LHC can potentially observe a few of them: $H \rightarrow \gamma + \rho$, $Z \rightarrow \gamma + \omega$, $Z \rightarrow \gamma + J/\psi$,... all channel listed in the table below
- FCC-ee can discover about 50% of such experimentally unobserved decays
- FCC-hh can produce most of those decays channels

			Exp. limits								
			Branching fraction	2023	HL-LHC	$\mathcal{B}(th)/\mathcal{B}(exp)$					
п	γ +	J/ψ	$(2.95 \pm 0.17) \times 10^{-6}$	< 2.6× 10 ⁻⁴ [84, 86]	$\lesssim 3.9 \times 10^{-5}$ [55]	~ 1/10					
п→	Z +	Υ(1S)	1.7×10^{-5}	÷.	-	575					
7		J/ψ	$(9.96 \pm 1.86) \times 10^{-8}$	$< 6.0 \times 10^{-7}$ [86, 127]	$\leq 3.1 \times 10^{-7}$ [55]	~ 1/3					
$L \rightarrow$	γ +	Υ(1S)	$(4.93 \pm 0.51) \times 10^{-8}$	< 2.8× 10 ⁻⁶ [83]	$\lesssim 2.2 \times 10^{-7}$	~ 1/4					
$t \rightarrow$	<mark>c</mark> +	$\overline{\mathbf{B}}_{s}^{0}$	$(4.0^{+4.0}_{-2.0}) \times 10^{-5}$		$\leq 4.0 \times 10^{-5}$ [26]	~ 1/1					

backup

- Theory BRs: $O(10^{-5} 10^{-10})$. No Exp. Limits.
- No search-performed so far.7 (4) producible channels at FCC-ee (FCC-hh)

-log(BR)

Exclusive decays: $Z \rightarrow \gamma$ + light meson

Z ^q m	← light quarks (u, d ,s)
- Mr. v	

				Exp. lin	Producible at	
$Z \rightarrow \gamma +$	М	Branching fraction	Framework	2023	HL-LHC	FCC-ee
	π^0	$(9.8 \pm 1.0) \times 10^{-12}$	SCET+LCDA [62]	< 2.0× 10 ⁻⁵ [122]	$\leq 2.8 \times 10^{-7}$	1
	η	$(1.0 - 17.0) \times 10^{-10}$	SCET+LCDA [131]	< 5.1× 10 ⁻⁵ [130]	-	1
	$ ho^0$	$(4.19 \pm 0.47) \times 10^{-9}$	SCET+LCDA [62]	< 2.5× 10 ⁻⁵ [82]	$\lesssim 1.8 \times 10^{-6}$	1
7	ω	$(2.82 \pm 0.41) \times 10^{-8}$	SCET+LCDA [62]	< 3.8× 10 ⁻⁷ [85]	$\lesssim 5.7 \times 10^{-8}$	1
$L \rightarrow \gamma +$	η'	$(3.1 - 4.8) \times 10^{-9}$	SCET+LCDA [131]	< 4.2× 10 ⁻⁵ [130]	-	1
		$(1.17 \pm 0.08) \times 10^{-8}$	LC+LCDA [132]	< 0.0× 10-7 [92]	<66× 10-8	-1
	φ	$(1.04 \pm 0.12) \times 10^{-8}$	SCET+LCDA [62]	< 9.0x 10 [82]	50.0 × 10	
	D ⁰	1.0×10^{-15}	SCET+LCDA [62, 129]	< 2.1× 10 ⁻³ [129]	$\leq 3.8 \times 10^{-5}$	×

- Theory BRs: O(10⁻⁸ 10⁻¹¹). Exp. Limits: O(10⁻⁵ 10⁻⁷)
- 6 channels searched for. 6 producible channels at FCC-ee.
- $Z \rightarrow \gamma + \omega$ is very close to be detected at HL-LHC (BR = $\frac{1}{2}$ of projected limit)
- All channels will be visible at FCC-ee

Exclusive Z decays $Z \rightarrow W + meson$

- Theory BRs: O(10⁻¹⁰ 10⁻¹¹). Exp. limits: O(10⁻⁵)
- 2 channels searched for. 6 producible channel at FCC-ee

$\begin{array}{l} \text{Semi-exclusive decays} \\ t \ \rightarrow \ \text{meson} + \ b \ \text{quark} \end{array}$

 $t \rightarrow b + B_c^+$

						Exp. limits		Producible at		$t \rightarrow h \perp \pi^+$			
t \rightarrow	X	+	Y	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh	0 7 0 1 1			
	π^+	+	b	1.3 ×10 ⁻⁷	EFT+LCDA This work	_	_	×	\checkmark	$t \rightarrow b + \rho^+$			
	$ ho^{\scriptscriptstyle +}$	+	b	6.4×10^{-8}	EFT+LCDA This work	_	_	×	\checkmark	$t \rightarrow b + K^{+}$ $t \rightarrow b + K^{*+}$ $t \rightarrow b + D^{+}$ $t \rightarrow b + D^{*+}$ $t \rightarrow b + B^{+}$			
	K^+	+	b	2.9×10^{-9}	EFT+LCDA This work	-	-	×	\checkmark				
	K^{*+}	+	b	2.7×10^{-9}	EFT+LCDA This work	_	_	×	\checkmark				
	D^+	+	b	1.5×10^{-9}	EFT+LCDA This work	_	_	×	\checkmark			Theoretical BR Current limits HL-LHC 14 TeV, 3 ab ⁻¹ FCC-ee, tī (0.9 ab ⁻¹ /yr) FCC-hh 100 TeV,30 ab ⁻¹	
	D^{*+}	+	b	2.3×10^{-9}	EFT+LCDA This work	_	_	×	\checkmark				
t→	D_s^+	+	b	3.4×10^{-8}	EFT+LCDA This work	_	-	×	\checkmark				
	D_s^{*+}	+	b	5.1 $\times 10^{-8}$	EFT+LCDA This work	_	-	×	\checkmark				
	B^+	+	b	1.1×10^{-13}	EFT+LCDA This work	_	_	×	×				
	B^{*+}	+	b	9.8 $\times 10^{-14}$	EFT+LCDA This work	_	_	×	×				
	B_c^{*+}	+	b	5.5 $\times 10^{-11}$	EFT+LCDA This work	_	_	×	\checkmark				
	B_c^+	+	b	5.7 $\times 10^{-11}$	EFT+LCDA This work	_	_	×	\checkmark	$t \rightarrow b + B^{*+}$			
										$t \rightarrow b + B_c^{*+}$			

- Theory BRs: $O(10^{-7} 10^{-14})$. No existing exp. Limits
- 0 channel searched for. 0 (10) visible channels at FCC-ee(FCC-hh)
- First time those decays have been computed.

20 -log(BR)

15

10

5