Discussion

Prospects for Exclusive measurements
Definitions, Isolation, Gaps, ZDCs




Photoproduction types

= Coherent Vector Meson (VM) photoproduction: @

= Photon couples coherently to all nucleons (whole nucleus)
" <p"M>~1/R,, ~50 MeV/c

—> 8 Target ion stays intact Aconerent
* Incoherent VM photoproduction:
= Photon couples to a single nucleon
" <p;"M>~1/R,~ 400 MeV/c

= Target ion breaks, nucleon stays intact
= » Usually accompanied by neutron emission

= Exclusive VM photoproduction on target proton:

Alncoherent

= Photon couples to a single proton ‘w:u b .
" <p,M>~1/R,~ 400 MeV/c A M
= Target proton stays intact (similar to coherent) in p-Pb case . =
e g = Dissociative (or semiexclusive) VM photoproduction: ’ i
selsErEr e e 2 P P : Eur. Phys. J. C (2019) 79:277
— Photon interacts with a single nucleon and excites it P B
_ _ — <p,'M>~1GeV/c *§¢ﬁ¢
Coherent = always intact? — Target nucleon and ion break (in heavy ion collision) . T
— Target proton breaks (in p-Pb) p'_“\‘{\ .
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Coherent m Target Comment
+ Target Dissociation )
Coherent  Exclusive ok
Coherent : c N
+ Source Dissociation Coherent  Dissociative nuclear excitation?
Incoherent Exclusive no? Nucleus must break up?

Incoherent
+ Source intact ? Incoherent Dissociative both break?



Motivation

= Where is gluon saturation?
Why? = — Saturation scale enhanced for nuclei by factor AY/3: (Q*)? = cQ,? [A/x]*/3
= Coherent vector meson (p°, J/wv, y(2S),Y(nS)) photoproduction particularly
sensitive to the gluon shadowing
— Nuclear gluon shadowing factor R.A(x,Q%)=g,(x,Q%)/Ag,(x,Q%) < 1
= — Saturation may contribute to nuclear shadowing
— Search for saturation at low xg
Source of shadowing at high X? = How well do we model photon flux?

Source of shadowing atlow x? , ¢4 nirain parameters of models
= pQCD test

~ Eskola et ali: Eur. Phys. J. C 82 (2022) 413
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The photon / VM must pass through a gluon-rich region
(gluons in nucleons / gluons between nucleons)

How much is linear QCD? How much is non-linear?
Define saturation
State what would be considered proof of existence of saturation.



Motivation — cont.

Mantysaari, Schenke, PLB 772 (2017) 832

Pb+Pb — J/¥ + Pb + Pb, /s = 502 TeV,y = 0

Do we really know these T I ¥

— Ge'ornelric z‘and Q, fﬁljctuationsl in the nl‘Jcleons
. . . === No subnucleon fluctuations
distributions to the E of 9 . -
5 Incoherent . {0.8
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in incoherent interactions, ‘ =
|S |t proof Of hot_Spots’? v 00" 0.0 03 03 ('l;l 05 06 07 —1t
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= Variations in nucleon positions and/or gluonic x[fm] [fm]

A h I . h . h f hOt SpOtS - quantum ﬂuctuations Event by event fluctuations of proton density profile
re the relative elg tso = Larger |t| range — scatter of smaller object H. Mantysaari, B. Schenke, PRD 94 (2016) 034042,
the peaks a robust = Coherent vs. Incoherent vs. Dissociative J/y e g
. g ) — Access to different scales: nucleus, nucleon,
prediction” hot spots
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Impact parameter dependence

No breakup (OnOn) = Excitation of the nuclei possible through the

= secondary photon exchange
ER Pb = Giant dipole resonance
Relative mode”ing of All protons vibrating against all neutrons —
. . = Knocks out neutrons
GDR (one neutron excitation) and P

genuine break-up?

y *
Single breakup (XnOn + OnXn) e

. # ¢ F 1 = P -
cms Pb-Pb 1.52 nb”" (5.02 TeV) ' 2RA "

dcw 1 dy (mb)

RS = 0nOn class has the largest statistics, Pb Pb Y
: XnXn — the lowest one '

= Complementary measurements from

1
1
".l‘ :
i
CMS and ALICE # p: = \
= Sensitivity to test theoretical models Pb Pb* + X & 05 : STARLiGHT —
ol =  Good test of photon fluxes : ;H:I beam energy
/ — Ondn
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YN — XnXn
Pb 0 '“110"!: e ""'16;_'_" EE— "']'c,
Known with sufficient s

preCiSiOn tO Separate e UPC event clasifier: OnOn, OnXn, XnXn

Pb Pb* +X — via electromagnetic dissociation (EMD)
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: CMS PbPb 1.52 nb™* (5.02 TeV)
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ZDCs at ALICE, ATLAS, and CMS can of resolve single to few neutron emissions.

pPb 8.16 TeV
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EZDC

We estimate the background reducing potential of the ZDC in a data driven way.
Assumptions:

@ Photoproduction events have no neutron emissions

© Hadroproduction events have at least 1 neutron emission

© Only 1-neutron events contaminate O-neutron events with a probability €
© We assume something of the shape of the background (x; = B/A)

Kate: Modelling of these zero emissions classes needed.
Can we say anything for hadroproduction?



