Quarkonia as Tools, Jan. 2024, Aussois (France)

Recent quarkonium results in AA collisions at the LHC

Andry Rakotozafindrabe

pre-equilibrium dynamics

QGP hydrodynamic expansion

• Large b(c) mass \rightarrow produced in the early hard scattering stage

• High density of color charges in QGP \rightarrow bounded QQ pairs undergo color screening \rightarrow their binding is weakened

hot hadronic phase ch. freeze-out

free streaming kin. freeze-out

detection

initial conditions

hard scatterings

QGP

and the bath temperature, for e.g. $\Upsilon(nS)$:

A. Rakotozafindrabe (CEA Saclay)

hot hadronic phase

free streaming

detection

In-medium dynamics: progressive dissolution of the quarkonium states, depending on their binding strength

time

A. Rakotozafindrabe (CEA Saclay)

Mocsy et al., [Int.J.Mod.Phys.A 28 (2013) 1340012]

Y(3S) in PbPb collisions at LHC

CMS [arXiv : 2303.17026]

First $\Upsilon(3S)$ measurement in AA collisions

• 5.6 σ signal for Y(3S)

Our favourite observable

Nuclear modification factor for a quarkonium in AA collisions

with $\langle T_{AA} \rangle$: nuclear overlap function

Y(nS) : a GQP thermometer in PbPb ?

Y(1S) CMS [PLB 790 (2019) 270] ALICE [PLB 822 (2021) 136579] ATLAS [PRC 107 (2023) 054912] Y(2S) and Y(3S) CMS [arXiv : 2303.17026]

Y(nS) : a GQP thermometer in PbPb ?

- Sequential suppression pattern in more central events i.e. ordered by binding energy :
 - All states are suppressed, with a larger suppression observed for the excited states
 - $\Upsilon(3S)$ seems more suppressed than $\Upsilon(2S)$

Y(1S) CMS [PLB 790 (2019) 270] ALICE [PLB 822 (2021) 136579] ATLAS [PRC 107 (2023) 054912] Y(2S) and Y(3S) CMS [arXiv : 2303.17026]

Mocsy et al., [Int.J.Mod.Phys.A 28 (2013) 1340012]

► Using S-wave differential cross-section measurements from ATLAS or CMS in pp at √s = 7 TeV + LHCb P-wave to S-wave ratio measurements

 ATLAS [PRD 87 (2013) 052004]
 CMS [PLB 727 (2013) 101]
 CMS [PLB 749 (2015) 14]
 LHCb [EPJC 74 (2014) 3092]

• Using S-wave differential cross-section measurements from ATLAS or CMS in pp at $\sqrt{s} = 7$ TeV + LHCb P-wave to S-wave ratio measurements

 ATLAS [PRD 87 (2013) 052004]
 CMS [PLB 727 (2013) 101]
 CMS [PLB 749 (2015) 14]
 LHCb [EPJC 74 (2014) 3092]

• Extract feed-down fraction from fits to S-wave and P-wave diff. cross-section and PDG branching ratios

 $\Upsilon(1S)$ feed-down fraction at $< p_T > \gamma_{(1S)} \sim 5.8$ GeV

ATLAS + LHCb: 1S		
State	$\langle p_T \rangle$ feed-down fraction	
$\Upsilon(1S)$	0.763 ± 0.010	
$\Upsilon(2S)$	0.0625 ± 0.0019	
$\chi_b(1P)$	0.127 ± 0.009	
$\Upsilon(3S)$	0.00786 ± 0.00018	
$\chi_b(2P)$	0.039 ± 0.004	

Boyd et al. [PRD 108 (2023) 094024]

► Using S-wave differential cross-section measurements from ATLAS or CMS in pp at √s = 7 TeV + LHCb P-wave to S-wave ratio measurements

 ATLAS [PRD 87 (2013) 052004]
 CMS [PLB 727 (2013) 101]
 CMS [PLB 749 (2015) 14]
 LHCb [EPJC 74 (2014) 3092]

• Extract feed-down fraction from fits to S-wave and P-wave diff. cross-section and PDG branching ratios

 $\Upsilon(1S)$ feed-down fraction at $< p_T > \gamma_{(1S)} \sim 5.8$ GeV

	ATLAS + LHCb: 1S	
State	$\langle p_T \rangle$ feed-down fraction	
$\Upsilon(1S)$	0.763 ± 0.010) direct
$\chi_b(1P)$	$\begin{array}{c} 0.0625 \pm 0.0019 \\ 0.127 \pm 0.009 \end{array}$	
$\Upsilon(3S)$ $\chi_{h}(2P)$	$\begin{array}{c} 0.00786 \pm 0.00018 \\ 0.039 \pm 0.004 \end{array}$	

Boyd et al. [PRD 108 (2023) 094024]

► Using S-wave differential cross-section measurements from ATLAS or CMS in pp at √s = 7 TeV + LHCb P-wave to S-wave ratio measurements

ATLAS [PRD 87 (2013) 052004] CMS [PLB 727 (2013) 101] CMS [PLB 749 (2015) 14] LHCb [EPJC 74 (2014) 3092]

• Extract feed-down fraction from fits to S-wave and P-wave diff. cross-section and PDG branching ratios

 $\Upsilon(1S)$ feed-down fraction at $< p_T > \gamma_{(1S)} \sim 5.8$ GeV

	ATLAS + LHCb: 1S	
State	$\langle p_T \rangle$ feed-down fraction	
$\Upsilon(1S)$ $\Upsilon(2S)$ $\chi_b(1P)$ $\Upsilon(3S)$ $\chi_b(2P)$	$\begin{array}{c} 0.763 \pm 0.010 \\ 0.0625 \pm 0.0019 \\ 0.127 \pm 0.009 \\ 0.00786 \pm 0.00018 \\ 0.039 \pm 0.004 \end{array}$) direct feed-do

Boyd et al. [PRD 108 (2023) 094024]

wn

• Using S-wave differential cross-section measurements from ATLAS or CMS in pp at $\sqrt{s} = 7$ TeV + LHCb P-wave to S-wave ratio measurements

ATLAS [PRD 87 (2013) 052004] CMS [PLB 727 (2013) 101] CMS [PLB 749 (2015) 14] LHCb [EPJC 74 (2014) 3092]

• Extract feed-down fraction from fits to S-wave and P-wave diff. cross-section and PDG branching ratios

 $\Upsilon(1S)$ feed-down fraction at $< p_T > \gamma_{(1S)} \sim 5.8$ GeV

	ATLAS + LHCb: 1S	
State	$\langle p_T \rangle$ feed-down fraction	
$\Upsilon(1S)$ $\Upsilon(2S)$ $\chi_b(1P)$ $\Upsilon(3S)$ $\chi_b(2P)$	$egin{array}{c} 0.763 \pm 0.010 \ 0.0625 \pm 0.0019 \ 0.127 \pm 0.009 \ 0.00786 \pm 0.00018 \ 0.039 \pm 0.004 \end{array}$) direct feed-down

Boyd et al. [PRD 108 (2023) 094024]

Only conjecturing the melting of the excited states feeding down Y(1S) is not enough

- cold nuclear matter (CNM) effects ? direct $\Upsilon(1S)$ melting ?

CMS [arXiv : 2303.17026]

- Similar suppression seen at RHIC and at LHC (x 25 in \sqrt{s}):

 - but different CNM effects

Y(1S) : RHIC (200 GeV) vs LHC (5.02 TeV)

CMS [PLB 790 (2019) 270] ALICE [PLB 822 (2021) 136579] ATLAS [PRC 107 (2023) 054912] STAR [PRL 130 (2023) 112301]

- in favour of a negligible melting of the direct $\Upsilon(1S)$ (i.e. dissociation temperature not reached yet at LHC)

Charmonium regeneration

Up to 100 cc pairs in central Pb-Pb collisions @ 5.5 TeV (x10 RHIC @ 0.2 TeV)

- + Color charges mobility in the QGP
- Possible (re)combination of uncorrelated c and \overline{c}
- during QGP evolution and/or at hadronization (chemical freeze-out)

P. Braun-Munziger, J.Stachel [PLB 490 (2000) 196] R. Thews et al. [PRC 63 (2001) 054905]

Charmonium regeneration

Up to 100 cc pairs in central Pb-Pb collisions @ 5.5 TeV (x10 RHIC @ 0.2 TeV)

- + Color charges mobility in the QGP
- Possible (re)combination of uncorrelated c and \overline{c}
- during QGP evolution and/or at hadronization (chemical freeze-out)

P. Braun-Munziger, J.Stachel [PLB 490 (2000) 196] R. Thews et al. [PRC 63 (2001) 054905]

► To first approximation :

- Crucial parameter of the models : the charm production cross-section
- Regeneration will interfere with the sequential suppression pattern for charmonia

At LHC : higher ε , but moderate suppression of inclusive J/ ψ

NA50 [EPJC 39 (2005) 335] PHOBOS [PRC 83 (2011) 024913] ALICE [PRL 116 (2016) 222302] STAR [PLB 797 (2019) 134917] ALICE Run 1-2 review [arXiv:2211.04384] ALICE [arXiv:2303.13361]

> • At LHC, the (presumably) larger suppression from color screening at higher ε is compensated by a sizeable regeneration

• Regeneration \propto

$$\left(\frac{dN_{c\bar{c}}}{dy}\right)$$

A. Rakotozafindrabe (CEA Saclay)

J/ψ regeneration vs y and vs pt

- ▶ The density of charm quarks is larger at mid-y and at low p_T
- At low pt, R_{AA} (mid-y) > R_{AA} (fwd-y)

A. Rakotozafindrabe (CEA Saclay)

ALICE [arXiv:2303.13361]

▶ Therefore, we can expect an enhanced regeneration component at mid-y compared to fwd-y at low p_T

J/ψ regeneration : inherit parent (anti)charm elliptic flow

Elliptic flow v_2 :

- second-order coefficient of the Fourier decomposition of the azimuthal angle distribution
- measured w.r.t. event plane

- in the v2 measurement of prompt D hadrons)
- elliptic flow, in particular at low p_T
- Regeneration models : test vs both the measured R_{AA} and v_2

ALICE [PRL 119 (2017) 242301] CMS [EPJC 77 (2017) 252] ATLAS [EPJC 78 (2018) 784]

► (Anti)charm quarks (at least partially) participate to the motion in-medium collective dynamics (as seen

• We can expect J/ψ from regeneration mechanism to inherit (at least part of) their parent (anti)charm

(TAMU) Du and Rapp [NPA 943 (2015) 147]

Transport model TAMU:

Continuous charmonium dissociation and regeneration in the QGP, described by a rate equation

- Larger suppression of $\psi(2S)$ with respect to J/ψ , on the whole p_T range
- ▶ Both states are enhanced at low p_T, which is successfully described by the TAMU model which includes a regeneration component

CMS [EPJC 78 (2018) 509] ALICE [JHEP 02 (2020) 041] ALICE [arXiv:2210.08893]

J/ψ polarisation measured w.r.t event plane

Huge magnetic field (short lived) and very large angular momentum (highest in semi-central collisions)

- present at the QGP formation
- in the direction orthogonal to the event-plane in the center of mass of the colliding beams
- may affect the system evolution

Kharzeev et al. [NPA 803 (2008) 227] Becattini et al. [PRC 77 (2008) 024906]

Small but significant polarisation, particularly in the 40-60% centrality range (3 σ effect)

ALICE [PRL 131 (2023) 042303]

Theoretical models needed to distinguish between B and L contributions

Fixed-target at LHCb : $J/\psi / D^0$ in PbNe at $\sqrt{s} = 68.5$ GeV

To better understand charmonium suppression: measure of charmonium yields and the overall charm quark production.

Most of the charm quarks hadronise into open charm D⁰ mesons.

 \rightarrow Use D⁰ production yield as reference for the study of the charmonium yield modification, assuming that D0 production is not modified by the medium.

LHCb [EPJC 83 (2023) 658]

• Linear trend of J/ψ / D^o ratio in pNe vs PbNe \rightarrow consistent with nuclear absorption

A. Rakotozafindrabe (CEA Saclay)

- system in PbPb collisions
- This QCD laboratory provides :
 - harvest of results involving ground and excited states, from all LHC experiments

► Today : a biased selection of recent LHC results on hidden charm and beauty in the quarkonium

- means to study the hot medium, in particular the dynamics in the suppression and regeneration mechanisms, confront them to EFT on the lattice, hydrodynamic and transport models

Thanks for your attention

SPARE SLIDES

Charmonium system

A. Rakotozafindrabe (CEA Saclay)

PDG [Prog. Theor. Exp. Phys. 2022, 083C01]

Bottomonium system

A. Rakotozafindrabe (CEA Saclay)

PDG [Prog.Theor.Exp.Phys. 2022, 083C01]

Uncertainties on the dissociation temperature

PHENIX [PRC 91 (2015) 02413]

A. Rakotozafindrabe (CEA Saclay)

Pseudo-rapidity density, energy density at LHC

ALICE [PLB 845 (2023) 137730]

Charged-particle pseudo-rapidity density

Estimate of the lower bound of the Bjorken transverse energy density

Pseudo-rapidity density vs collision energy

Collision energy dependence of the charged-particle pseudo-rapidity density at mid-rapidity normalised to the average number of participants, for different systems (pp, pA, AA)

A. Rakotozafindrabe (CEA Saclay)

ALICE [arXiv:2211.04384]

J/ ψ polarisation in pp collisions $\sqrt{s} = 7, 8$ TeV, forward-y

ALICE [PRL 108 (2012) 082001] ALICE [EPJ C 78 (2018) 7, 562] LHCb [EPJ C 73 (2013) 11, 2631]

CGC + NRQCD, Ma et al. [JHEP 12 (2018) 057]

ICEM, Cheung, Vogt [PRD 104 (2021) 9, 094026]

