Multiplicity-dependent quarkonium measurements

Óscar Boente García* 10/01/2024

Quarkonia As Tools 2024 *oscar.boente@cern.ch

Why measuring quarkonia with multiplicity?

- Quarkonium production mechanism in hadronic collisions is not yet fully understood
 - Several approaches (NRQCD with different LDMEs parametrizations; ICEM) coexist

- New observables are needed!
- Measurements of hadron multiplicity produced along with the quarkonia may reveal new information:
 - extra gluons from octet produce additional particles in the final state, but underlying event (UE) activity is very similar to that from the octet \rightarrow see Lidia's talk of yesterday
 - general purpose generators are, in general, not able to describe underlying event activity of quarkonia events
 - ***** We need to have a good description of the UE
 - * Charged particle multiplicity is a first proxy of the UE
- In this talk, I will review of some of the quarkonia studies at LHC that are looking into this concept

From small to large systems: quarkonia

- Multiplicity dependent studies in small systems can help benchmark quarkonium studies in AA
 - Help understanding complex dynamics of large systems, many effects at play
- Study case: quarkonia final-state effects
 - usually claimed to explain excited-to-ground state suppression
 - in comover scenario, stronger effect in backward region of *p*Pb due to higher multiplicity (JHEP 10 (2018) 094)
 - can we see this also in *pp* at high-multiplicity?
 - *pp data would offers larger statistics to better characterise the mechanism
- Accurate quantification of this effect needed for interpretation of quarkonium data in AA

Multiplicity-dependent quarkonium measurements

From small to large systems with multiplicity

- Charged hadron multiplicity is becoming more and more used as a proxy for medium energy density
- An alternative to collision centrality, which has large biases in small systems
- Pro: use same variable across different systems
- Con: less direct connection to phenomenology
- In *pp* collisions, multiplicity can be related with multiple parton interactions (MPI)
- Important notes: particle multiplicity is not a "universal" variable as it depends on:
 - detector acceptance, also in relation with quarkonia kinematics
 - charged particles $p_{\rm T}$ (soft-hard scale)
 - if detector efficiencies and backgrounds are corrected
 - charged particle definition (see <u>ALICE-</u> <u>PUBLIC-2017-005</u>)
- Special care when comparing measurements from different experiments

Observables studied so far

Self-normalised production with multiplicity

- Study multiparton interactions effect on quarkonia production
- Ratio excited-to-ground state with multiplicity
 - Study presence of final-state effects sensible to quarkonium binding energy/size

Focus of this talk

Azimuthal correlations with multiplicity → See talk by Chenxi tomorrow!

Quarkonia with multiplicity from ALICE

Quarkonia production with multiplicity in ALICE

Central barrel |y| < 0.9

- only
$$J/\psi \rightarrow e^+e^-$$
 (hard $\psi(2S)$ or Υ ,
low statistics)
- prompt & non-prompt separation

Muon arm -4 < y < -2.5

- decay
$$\rightarrow \mu^+\mu^-$$
; J/ψ , $\psi(2S)$, Υ
- inclusive measurement

Multiplicity determination

- Define activity classes with SPD (midrapidity) or V0 (forward+backward)
- Average charged particle multiplicity in each mult. class measured at midrapidity (with SPD)

V0 activity classes

Multiplicity-dependent quarkonium measurements

J/ψ production with multiplicity

- Midrapidity: faster than linear growth
 - No difference observed when using SPD or V0 event activity classes
- Forward: mostly linear trend, but there is a 4.9σ deviation from linear at $\sqrt{s} = 13 \,\mathrm{TeV}$
- Inclusive measurement \rightarrow harder to interpret, as non-prompt production comes from *B* decays
 - Good prospects for Run 3, prompt & non-prompt separation with MFT
 - MFT might be able to directly measure multiplicity in the forward region

forward 5, 13TeV: JHEP 06 (2022) 015 midrapidity J/ψ (Run 1) PLB 712 (2012) 165-175 midrapidity J/ψ (Run 2) PLB 810 (2020) 135758 central 丫: arXiv:2209.04241

Óscar Boente García

Multiplicity-dependent quarkonium measurements

J/ψ production with multiplicity: model comparison

Óscar Boente García

Multiplicity-dependent quarkonium measurements

$\Upsilon(1S)$ production with multiplicity

- ALICE $\Upsilon(nS)$ with forward muon arm:
 - Linear trend, similar pattern as J/ψ

- growth faster than linear, similar to J/ψ

ALICE forward 5, 13TeV: <u>JHEP 06 (2022) 015</u> CMS midrapidity Υ: <u>JHEP 04 (2014) 103</u>

Excited-to-ground state ratio with multiplicity

• ALICE measured ratios of $\psi(2S)/J/\psi$ and $\Upsilon(nS)/\Upsilon(1S)$

 $\psi(2S), J/\psi:$ JHEP 06 (2023) 147

Υ: <u>arXiv:2209.04241</u>

- only in forward region with muon arm, inclusive $\psi(2S), J/\psi$

No significant deviation from unity is seen

- Color reconnection (CR) in PYTHIA almost no effect
 - Need more precision to distinguish decreasing trend of comover model

Ratios $\Upsilon(nS)/\Upsilon(1S)$ with event activity from CMS

$\Upsilon(nS)$ cross-section ratios in *pp* collisions

- Study cross-section ratios of $\Upsilon(nS)$ as a function of multiplicity
- Use $p_{\rm T} > 7 \,\text{GeV}$ (trigger requirement in high-statistics sample)
- Multiplicity N_{tracks} : tracks with $p_{\text{T}}^{\text{track}} > 0.4 \,\text{GeV}/c$, $|\eta^{\text{track}}| < 2.4$, efficiency corrected

Óscar Boente García

13

JHEP 11 (2020) 001

JHEP 04 (2014) 103

$\Upsilon(nS)$ ratios: local multiplicity dependence

- Use $\phi^{\mu\mu}$ to study dependence with local multiplicity and underlying event
 - distinguish effects from feed-down and production (linked to toward & backward) from UE (transverse)

- Similar trend for the three regions, main differences at low $N_{\rm track}^{\Delta\phi}$
- Decrease also observed in transverse region
 - * could indicate of correlation with UE
- keep in mind correlation between different $N_{\rm track}^{\Delta\phi}$ estimators

$\Upsilon(nS)$ ratios: dependence on isolation

- Define a cone around Υ : $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} < 0.5$
- Need to correct for some feed-downs:
 - significant bias at low multiplicity from $\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$

$\Upsilon(nS)$ ratios: dependence on event isotropy

JHEP 11 (2020) 001

Sphericity: $S_{\rm T} = \frac{2\lambda_2}{\lambda_1 + \lambda_2}, \quad S_{xy}^T = \frac{1}{\sum_i p_{\rm Ti}} \sum_i \frac{1}{p_{\rm Ti}} \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} \\ p_{xi}p_{yi} & p_{yi}^2 \end{pmatrix}$ p_i : momentum of every event charged particle Interpretation: - $S_{\rm T} = 1 \implies$ isotropic event 0.5 CMS 4.8 fb⁻¹ (7 TeV) 4.8 fb⁻¹ (7 TeV) 0.5 Y(2S) / Y(1S) Y(2S) / Y(1S) $\begin{array}{l} - \ 0.00 \leq {\sf S}_{\sf T} < \ 0.55 \\ - \ 0.55 \leq {\sf S}_{\sf T} < \ 0.70 \end{array}$ $+ N_{\text{track}}^{\Delta R} = 0$ 0.4 0.4 $\rightarrow N_{\text{track}}^{\Delta R} = 1$ $-0.70 \le S_{T}^{\prime} < 0.85$ Y(nS) / Y(1S) 0.0 5.0 5.0 Y(nS) / Y(1S) 2.0 7 $+ N_{\text{track}}^{\Delta R} = 2$ $-0.85 \le S_{T} \le 1.00$ $-N_{\text{track}}^{\Delta R} > 2$ (**3S)** / Y(**1S**) --- 0.00 \leq S_T < 0.55 Y(3S) / Y(1S) $-0.55 \le S_{T} < 0.70$ $\rightarrow N_{\text{track}}^{\Delta R} = 0$ $+ N_{\text{track}}^{\Delta R} = 1$ $-N_{\text{track}}^{\Delta R} = 2$ $N_{\text{track}}^{\Delta R} > 2$ 0.1 0.1 $p_{\tau}^{\mu\mu} > 7 \text{ GeV}, |y^{\mu\mu}| < 1.2$ $p_{\tau}^{\mu\mu} > 7 \text{ GeV}, |y^{\mu\mu}| < 1.2$ 0.0^L 0.0^L 60 60 20 20 80 120 40 80 100 40 100 140 120 140 $N_{
m track}$ $N_{
m track}$

$\psi(2S)/J/\psi$ with multiplicity from LHCb

$\psi(2S)/J/\psi$ with multiplicity from LHCb

- New LHCb measurement: <u>arXiv:2312.15201</u>
- Measure multiplicity dependency of $\psi(2S)/J/\psi$ ratio in pp collisions at $\sqrt{s} = 13 \,\text{TeV}$
- Key points:
 - Exploits huge LHCb dataset in pp from Run 2 \rightarrow double-differential study in y and $p_{\rm T}$
 - Charmonia measured precisely down to very low $p_{\rm T}$
 - Separation between prompt and non-prompt (from B hadrons) charmonia
 - Event multiplicity variable: normalised number of PV tracks

18

arXiv:2312.15201

New!

$\psi(2S)/J/\psi$ cross-section ratio

New! arXiv:2312.15201

• High precision using full 2016 dataset of 2 fb^{-1} !

CGC+NRQCD, NLO NRQCD: <u>PRL 113, 192301</u> Measurements: <u>PR C95 (2017) 034904</u> (refs. therein)

Event multiplicity determination at LHCb

- Three multiplicity variables:
 - N_{forward}^{PV} : tracks in forward direction used in primary vertex (PV) reconstruction
 - N_{backward}^{PV} : tracks in backward direction used in PV reconstruction
 - $N_{\text{tracks}}^{PV} = N_{\text{backward}}^{PV} + N_{\text{forward}}^{PV}$
- VELO not forward-backward symmetric:
 - more tracking stations in the forward region
 - Use region of $-60 < z_{PV} < 180 \text{ mm}$ to ensure constant acceptance and self-normalised ratios
 - Tracks not efficiency corrected (VELO efficiency >95~% in forward)

$\psi(2S)/J/\psi$ with multiplicity from LHCb

New! arXiv:2312.15201

• $p_{\rm T}$ and y integrated result in $0.3 < p_{\rm T} < 20 \,{\rm GeV}/c$ and 2.0 < y < 4.5

- No significant dependency for non-prompt ratio
 - expected in principle as both J/ψ and $\psi(2S)$ decay from B hadrons
- Decreasing trend seen in prompt ratio
- Comover interaction model
 describes decreasing trend
 - Estimates break-up of $\psi(2S)$ and J/ψ from partons or hadrons
 - Sets $< N_{\rm ch} >_{NB} = 1$ as reference (no suppression)
 - $\psi(2S)$ preferentially broken as a result of $E_b^{J/\psi} > E_b^{\psi(2S)}$

Normalised = divided by multiplicity-integrated $\sigma_{\psi(2S)}/\sigma_{J/\psi}$

Phys. Lett. B731 (2014) 57

$\psi(2S)/J/\psi$: dependence with multiplicity classifier

$\psi(2S)/J/\psi$: dependence with multiplicity classifier

$\psi(2S)/J/\psi$ vs mult.: kinematic dependence

New! arXiv:2312.15201

- Significant $p_{\rm T}$ dependence for prompt ratio
 - Gradual variation, little decreasing trend at high $p_{\rm T} \rightarrow$ consistent with CMS observation with Υ
 - Possible explanation: As event multiplicity bulk is rather low- $p_{\rm T}$, could indicate that effect emerges from interaction between comovers and the charmonium
- No significant $p_{\rm T}$ or y dependence for non-prompt ratio
- No significant y dependence for prompt ratio

Conclusions

- We discuss several measurements to help describing interplay between quarkonium hadroproduction and the underlying event:
 - quarkonia self normalised ratios: faster than linear trend seen by ALICE (J/ψ) and CMS ($\Upsilon(nS)$ at midrapidity:
 - * a variety of mechanisms are able to explain the data
 - CMS observed a decreasing trend of $\Upsilon(3S)/\Upsilon(1S)$ and $\Upsilon(2S)/\Upsilon(1S)$ with multiplicity, which could be linked to the underlying event, but confirmation is needed
 - new LHCb measurement shows a decrease of $\psi(2s)/J/\psi$ ratio with multiplicity, which can be explained by comover break up
- We need to better understand UE in events with quarkonia production:
 - for example, measuring isolated quarkonia relies on a good UE description by generators
 - need to propagate knowledge from measurements to generators (RIVET and tuning)
- Important to gradually build a global picture between systems of different size → evolve from self-normalised ratios to direct multiplicity measurement
 - self-normalised ratios do not allow to compare multiplicities across different systems due to different $\langle N_{\rm ch}\rangle_{\rm NB}$
- Many improvements achievable with Run 3 data (new ALICE MFT, much larger statistics thanks to new trigger scheme; LHCb, larger statistics, easier access to unconventional quarkonia with new trigger, upgrade of fixed-target program) → see Rita's talk for more details!

$\psi(2S)/J/\psi$ vs mult.: non-prompt kinematic dependence

New! arXiv:2312.15201

- No significant $p_{\rm T}$ dependence for non-prompt ratio
- No significant y-dependence for nonprompt ratios

$\psi(2S)$ production with multiplicity

Forward: JHEP 06 (2023) 147

J/ψ production with multiplicity: $p_{\rm T}$ dependence

30 INEL>0 ALICE pp \sqrt{s} = 13 TeV <u>{dN,_{ψ/L}Nb}}</u> Inclusive J/ ψ , Iyl < 0.9 25 SPD event selection Data PYTHIA $p_{_{T}}$ (GeV/c) 15..40 20 8..15 4...8 15 0...4 10 5 2 3 5 4 6 7 8 $dN_{ch}/d\eta^{|\eta|<1}$ ⟨dN INEL>0

midrapidity J/ψ (Run 2) PLB 810 (2020) 135758