Review on quarkonium production and CGC

Yan-Qing Ma Peking University

Quarkonia As Tools 2024 Centre Paul Langevin, France, 2024/01/10

Outline

I. Introduction

- II. Resummation at low p_T region
- III. Resummation at high p_T region
- IV. Resummation at all p_T region
- **V. Current difficulties**
- VI. Outlook

QCD

Extremely hard

- Asymptotic freedom: perturbative at short distance
- Confinement: nonperturbative at long distance

Confinement and hadronization

Confinement

- 1/7 millennium prize problems in 21st century
- Not yet understood
- Equivalent: why and how produced quarks and gluons become hadrons?

Hadronization-QaT

- Light hadrons: factorization → fragmentations functions, do not know how to compute
- Heavy quarkonium: localized color charge, perturbative QCD can help, the simplest system
- HQ production: 50 years after the discovery, still not well understood

Clay Mathematics Institute About Programs & Awards People The Millennium Prize Problems Online resources Events News Home – Millennium Problems – Yang-Mills & The Mass Gap Unsolved Yang-Mills & The Mass Gap

Experiment and computer simulations suggest the existence of a "mass gap" in the solution to the quantum versions of the Yang-Mills equations. But no proof of this property is known.

Space-time picture for production

Production of an off-shell heavy-quark pair and hadronization

- Time scale for producing heavy quark pair: 1/(2m)
- Time scale for expansion: 1/(mv)
- Time scale for forming bound state: $1/(mv^2)$

> Expand intermediate heavy-quark pair around on-shell limit

- Off-shellness is small, comparing with *m*
- If lucky enough: factorization \rightarrow disentangle nonperturbative interactions

NRQCD factorization

• *n*: quantum numbers of the pair: color, spin, orbital angular momentum,

total angular momentum, spectroscopic notation ${}^{2S+1}L_{I}^{[c]}$

> A glory history-thanks to color-octet mechanism

- Solved IR divergences in P-wave quarkonium decay
- Explained ψ' surplus, χ_{c2}/χ_{c1} production ratio,

BUT: also many phenomenological difficulties

Resummations: improving NRQCD

> Low $p_T \ll m$: k_T -dependent factorization

- Color Glass Condensate, or high energy factorization
- **Resum Sudakov log** $\ln(p_T/m)$, small-x log $\ln(x)$

> High $p_T \gg m$: Collinear factorization

- Power expansion, double parton fragmentation
- **Resum large log** $\ln(p_T/m)$

> All p_T : Soft gluon factorization

YQM, Chao, 1703.08402 Chen, YQM, 2005.08786

- Kinematic effect in NRQCD can be very important
- **Resum** a series of v^2 corrections

YQM, Venugopalan, 1408.4075 Watanabe, Xiao, 1507.06564 Lansberg, Nefedov, Ozcelik, 2112.06789

Kang, Qiu, Sterman, 1109.1520 Fleming, Leibovich, Mehen, Rothstein 1207.2578 Kang, YQM, Qiu, Sterman, 1401.0923 Kang, YQM, Qiu, Sterman, 1411.2456

Outline

I. Introduction

II. Resummation at low p_T region

- III. Resummation at high p_T region
- IV. Resummation at all p_T region
- V. Current difficulties
- VI. Outlook

Low p_T quarkonium production

- > Moderate p_T region: fine
- > Small p_T region
- When $p_T \ll m_H$, fixed order gives $\frac{d\sigma}{dp_T} \propto \frac{1}{p_T}$, data goes to zero
- Dominate the total cross section

Small p_T and small x

Sudakov double logarithm

Berger, Qiu, Wang, 0404158 Sun, Yuan, Yuan, 1210.3432

- Sudakov resummation: $\ln^2(p_T/m_H)$ important at small p_T regime
- Sudakov resummation can be dominant for Y production (large mass scale)
- But, itself still hard to explain the J/ψ data

> Why $\ln^2(p_T/m_H)$ resummation is not enough?

- Total cross section is free of $\ln(p_T/m_H)$
- Total cross section can be negative
- Fixed order NRQCD fails to explain data

Small-x effect can be important

• The only large logarithm is $\ln(x^2) \sim \ln(m_H^2/S)$

Feng, Lansberg, Wang, 1504.00317

CGC effective field theory

Color Glass Condensate

McLerran, Venugopalan, 9309289

- An effective field theory of QCD
- A tool to deal with small-x physics : separate $x < x_0$ configuration from $x > x_0$ configuration
- Small-*x* configuration: large saturation scale, perturbatively calculable
- Large-*x* configuration: $\Delta t^+ \sim \frac{1}{k^-} = \frac{2k^+}{k_\perp^2} \sim x$, life time of parton is long, determined before the

collision, randomly distributed, CGC average

• JIMWLK evolution: guarantees the independence of separation point x_0

CGC+NRQCD

> CGC: production of $Q\bar{Q}$ -pair

Kang, YQM, Venugopalan, 1309.7337

- Using CGC to calculate gluon distribution
- Small *x* resummation is accounted by solving JIMWLK or BK evolution equations

> NRQCD factorization:

- Control the formation of quarkonium from $Q\bar{Q}$ -pair
- Via many channels, both CS and CO

Scope of application:

- Assume a dilute-dense formula, factorization is possible
- High energy p+A or p+p collision
- Quarkonium produced in forward rapidity region

$$d\sigma_H = \sum_{\kappa} d\hat{\sigma}^{\kappa} \langle \mathcal{O}_{\kappa}^H \rangle$$

High p_T and NLO

> With LO calculation: can only describe small p_T region data!

- No final state radiation
- Correct only if initial state radiation dominate (p_T can not be much larger than the saturation scale)
- To describe higher- p_T data in CGC+NRQCD, NLO is needed

Small p_T region

\succ CGC+NRQCD : comprehensive description of $\psi(nS)$ production

High energy factorization

Resum large log $\ln(m_H^2/S) \sim \ln(x^2)$ •

Lansberg, Nefedov, Ozcelik, 2112.06789

Resolve the problem of negative total cross section

See Maxim Nefedov's talk

var

var

LO

102

Exp. data 🛏 🗕

10

I. Introduction

II. Resummation at low p_T region

III. Resummation at high p_T region

IV. Resummation at all p_T region

V. Current difficulties

VI. Outlook

Collinear factorization for high p_T production

> When $p_T \gg m_H$, power expansion m_H^2/p_T^2 first, then α_s

> LP: collinear factorization, single parton fragmentation

Collins, Soper (1982) Braaten, Yuan, 9303205 Nayak, Qiu, Sterman, 0509021

> NLP: important for $p_T < 10m_H$, double parton fragmentation

Kang, Qiu, Sterman, 1109.1520 Fleming, Leibovich, Mehen, Rothstein 1207.2578 Kang, YQM, Qiu, Sterman, 1401.0923 Kang, YQM, Qiu, Sterman, 1411.2456

Collinear factorization approach

Factorization correct to all orders

Qiu, Sterman (1991) Kang, YQM, Qiu, Sterman, 1401.0923

Predictive power

Calculation of short-distance hard parts in pQCD:

Kang, YQM, Qiu, Sterman, 1411.2456

• Power series in α_s , without large logarithms

Calculation of evolution kernels in pQCD:

• Power series in α_s , without large logarithms Kang, YQM, Qiu, Sterman, 1401.0923

> Universality of input fragmentation functions at the initial scale μ_0

• Fit data, or compute them using other methods, like NRQCD

Reproducing plain NRQCD

YQM, Qiu, Sterman, Zhang, 1407.0383

LO LP+NLP comparing with NLO NRQCD

- Compute input functions using NRQCD
- LO analytical results reproduce NLO NRQCD calculations (numerical) !

 \succ For $p_T = 5 m$

- LP dominates: ${}^{3}S_{1}^{[8]}$ and ${}^{3}P_{I}^{[8]}$ channels
- NLP dominates: ${}^{1}S_{0}^{[8]}$ and ${}^{3}S_{1}^{[1]}$ channels

I. Introduction

II. Resummation at low p_T region

III. Resummation at high p_T region

IV. Resummation at all p_T region

V. Current difficulties

VI. Outlook

Relativistic corrections in NRQCD

- ➤ Relativistic (power) corrections
 Equations of motion of NRQCD EFT: $(iD_0 \frac{D^2}{2m} + \cdots)\psi = 0$
 - **NRQCD** factorization: use EOM to remove V_0 , leaving operators like:

(Warning: here D replaced by ∇ , needs proper gluon fields to make them gauge invariant)

Corrections in type 3 widely studied, for charmonium production in pp collision, about 30%-50% corrections

CS-channel: Fan, YQM, Chao, 0904.4025 **CO-channel**: Xu, Li, Liu, Zhang, 1203.0207 S-D mixing-channel: He, Kniehl, 1507.03882 LP in p_T , all order in v: Li, Chen, Huang, YQM, 1909.03554

However, more relativisticcorrection terms may be needed!

Soft gluon emission

Soft gluon emission in color-bleaching process

- P_{ψ} is different from $P, P = P_{\psi}[1 + O(\lambda)]$
- **NRQCD** expand *P* around P_{ψ} ٠

Bad convergence of NRQCD expansion

Cross section approximately $\propto P^{-4} = P_{\psi}^{-4} [1 + O(\lambda)]^{-4}$

YQM. Voat. 1609.06042

0.3

$$\int_{-1}^{1} \frac{d\cos\theta}{2(1+\lambda+\lambda\cos\theta)^4} = 0.42 = 1 - 4\lambda + \frac{40}{3\lambda^2} - 40\lambda^3 + \cdots$$

$$= 1 - 1.2 + 1.2 - 1.08 + 0.91 - 0.73 + \cdots$$
Mangano, Petrelli, 9610364
With $\lambda \approx v^2 \approx 0$.

Soft gluon momentum should be kept but not expanded, which means to resum relativistic corrections (due to kinematic effects) to all powers in v!

Soft gluon factorization

Different way to use EoM in NRQCD EFT

- NRQCD factorization: use EOM to remove V_0
- SGF: remove relative derivatives $\overleftrightarrow_0, \overleftrightarrow_2$, leaving only total derivatives

Factorization formula

 $P = P_H + P_X$: momentum of $Q\bar{Q}$

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} \approx \sum_n \int \frac{d^4 P}{(2\pi)^4} \mathcal{H}_n(P) F_{n \to H}(P, P_H)$$

- \mathcal{H}_n : perturbatively calculable hard parts
- $F_{n \rightarrow H}$: nonperturbative soft gluon distributions (SGDs)
- UV renormalization scale is suppressed

$$F_{n \to H}(P, P_H) = \int d^4 b e^{-iP \cdot b} \langle 0 | [\overline{\Psi} \mathcal{K}_n \Psi]^{\dagger}(0) (a_H^{\dagger} a_H) [\overline{\Psi} \mathcal{K}_n \Psi](b) | 0 \rangle_{\mathrm{S}}$$

• Subscript "S": evaluate the matrix element in the region where offshellness of all particles is much smaller than heavy quark mass

Ma, Chao, 1703.08402 Chen, Ma, 2005.08786

Fragmentation functions in SGF

Chen, YQM, Meng, 2304.04552

≻ Gluon FFs $g \rightarrow Q\overline{Q}({}^{3}P_{J}^{[1]}) + X$

In NRQCD: plus-function result in negative results

$$\hat{d}^{(2)}_{g \to {}^{3}P^{[1]}_{J}} = \frac{4}{9N_{c}} \left\{ \left[\frac{Q_{J}}{2J+1} - \frac{1}{2} \ln \left(\frac{\mu_{\Lambda}^{2}}{4m_{Q}^{2}} \right) \right] \delta(1-z) + \frac{z}{(1-z)_{+}} + \frac{P_{J}(z)}{2J+1} \right\}$$

• In SGF: plus-functions are factorized into nonperturbative functions, can be positive

$$\hat{D}_{g \to Q\bar{Q}[^{3}P_{0}^{[1]}]}^{LO,(0)} = \frac{32\alpha_{s}^{2}}{M_{H}^{5}N_{c}} \frac{2}{9} \left[\frac{1}{36} z(837 - 162z + 72z^{2} + 40z^{3} + 8z^{4}) + \frac{9}{2}(5 - 3z)\ln(1 - z) \right]$$

Fragmentation functions in SGF

Figure 7. Left figure: Comparison of the gluon FF obtained in different approximations. Right figure: $\bar{\Lambda}$ dependence of gluon FF at NLO.

$$R^{X}(n) \equiv \frac{\int_{0}^{1} dz z^{n} D_{g \to H}^{X}(z, M_{H}, m_{Q}, \mu)}{\int_{0}^{1} dz z^{n} D_{g \to H}(z, M_{H}, m_{Q}, \mu)},$$

 $R^{NRQCD} \approx 6$

Yan-Qing Ma

Negative differential cross sections in NRQCD

\succ Cross sections become negative at exceptionally high p_T

$$d\sigma(\chi_{cJ}) = (2J+1)d\hat{\sigma}[{}^{3}S_{1}^{[8]}] \frac{\langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]})\rangle}{m_{c}^{2}} \left[r(\chi_{c0}) + \frac{d\hat{\sigma}[{}^{3}P_{J}^{[1]}]}{d\hat{\sigma}[{}^{3}S_{1}^{[8]}]}\right] \qquad r(\chi_{c0}) \equiv \frac{\langle \mathcal{O}^{\chi_{c0}}({}^{3}S_{1}^{[8]})\rangle}{\langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]})\rangle/m_{c}^{2}}$$

Resolve negative differential cross section in SGF

$\succ \chi_{cJ}$ production

- $\chi^2/d. o. f = 0.63/8$, as good as NRQCD
- No substantial cancellations
- Cross sections are positive at high p_T

See also resummation within NRQCD framework

Chung, 2303.17240

I. Introduction

- II. Resummation at low p_T region
- III. Resummation at high p_T region
- IV. Resummation at all p_T region
- V. Current difficulties
- VI. Outlook

1. Hierarchy and universality problems

> Fit J/ψ yield data at Tevatron with $p_T > 7$ GeV

- Due to p_T^{-4} and p_T^{-6} behaviors, constrain two combinations
- $M_0 = \langle O({}^{1}S_0^{[8]}) \rangle + 3.9 \langle O({}^{3}P_0^{[8]}) \rangle / m_c^2 \approx (7.4 \pm 1.9) \times 10^{-2} \text{GeV}^3$
- $M_1 = \langle O({}^3S_1^{[8]}) \rangle 0.56 \langle O({}^3P_0^{[8]}) \rangle / m_c^2 \approx (0.05 \pm 0.02) \times 10^{-2} \text{ GeV}^3$

YQM, Wang, Chao, 1009.3655

See also: Butenschoen, Kniehl, 1105.0820 Gong, Wan, Wang, Zhang, 1205.6682

> Two orders difference: hierarchy problem

Velocity scaling rule of NRQCD

 $\langle O\left(\ {}^{1}S_{0}^{[8]} \right) \rangle \sim \langle O\left(\ {}^{3}S_{1}^{[8]} \right) \rangle \sim \langle O\left(\ {}^{3}\boldsymbol{P}_{0}^{[8]} \right) \rangle / m_{c}^{2}$

• Thus natural expectation: $M_0 \sim M_1$

Upper bound from Belle total cross section

$M_0 < 2 \times 10^{-2} {\rm GeV^3}$

• No universality of NRQCD LDMEs!

Zhang, YQM, Wang, Chao, 0911.2166

2. Polarization puzzle

LO NRQCD

• Dominated by ${}^{3}S_{1}^{[8]}$, LO NRQCD predicts transversely polarized $\psi(nS)$, contradicts with CDF data

FIG. 4 (color online). Prompt polarizations as functions of p_T : (a) J/ψ and (b) $\psi(2S)$. The band (line) is the prediction from NRQCD [4] (the k_T -factorization model [9]).

Polarization puzzle at NLO

Bodwin, Chung, Kim, Lee, 1403.3612

Faccioli, Knunz, Lourenco, Seixas, Wohri, 1403.3970

$\gg \psi(2S)$: cancelation weak, hard to understand data

Shao, Han, YQM, Meng, Zhang, Chao, 1411.3300 Yan-Qing Ma Bodwin et al., 1509.07904

3. η_c production

Heavy quark spin symmetry (HQSS)

 Using the J/ψ LDMEs extracted by various groups, NLO NRQCD predictions greatly overshoot the LHCb data Butenschoen, He, Kniehl,1411.5287 $\left\langle \mathcal{O}^{\eta_c} \begin{pmatrix} {}^3 S_1^{[8]} \end{pmatrix} \right\rangle = \left\langle \mathcal{O}^{J/\psi} \begin{pmatrix} {}^1 S_0^{[8]} \end{pmatrix} \right\rangle,$ $\left\langle \mathcal{O}^{\eta_c} \begin{pmatrix} {}^1 S_0^{[8]} \end{pmatrix} \right\rangle = \frac{1}{3} \left\langle \mathcal{O}^{J/\psi} \begin{pmatrix} {}^3 S_1^{[8]} \end{pmatrix} \right\rangle,$ $\left\langle \mathcal{O}^{\eta_c} \begin{pmatrix} {}^1 P_1^{[8]} \end{pmatrix} \right\rangle = \frac{3}{2J+1} \left\langle \mathcal{O}^{J/\psi} \begin{pmatrix} {}^3 P_J^{[8]} \end{pmatrix} \right\rangle.$

Possible solutions: large cancelation between S-wave and P-wave (results in hierarchy)

Han, YQM, Meng, Shao, Chao, 1411.7350 Zhang, Sun, Sang, Li, 1412.0508

4. Double J/ψ production

Cannot explain data

- 3 orders of discrepancy between data and single-parton scattering
- 1 order discrepancy still exist after including double-parton scattering
- What is missing?

Sun, Han, Chao, 1404.4042

Lansberg, Shao, 1410.8822

5. Beyond NLO

> Very big high order correction!

See also Jian-Xiong Wang's talk

- Higher orders can fail to describe exclusive data
- Breaking down of perturbation theory? Or other mechanism?

- I. Introduction
- II. Resummation at low p_T region
- III. Resummation at high p_T region
- IV. Resummation at all p_T region
- V. Current difficulties

VI. Outlook

1. Heavy quark spin symmetry broken?

> With finite quark mass, the symmetry is broken

- But how large of the breaking effect? $O(v^2)$? Other?
- Production involves more scales, broken effect may be large
- Relevant to understand polarization puzzle and η_c production data

Experimental input

- $J/\psi \Leftrightarrow \eta_c$
- $\psi(2S) \Leftrightarrow \eta_c(2S)$
- $\chi_{cJ} \Leftrightarrow h_c$

 χ_{cJ} : 3 particles with 1 unknown LDME, very well described theoretically

Measure the *h_c* production

2. Observables more sensitive to production channels

> Quarkonium produced in a jet

Sensitive to different production mechanisms

Kang, Qiu, Ringer, Xing, Zhang, 1702.03287

Bain, Dai, Leibovich, Makris, Mehen, 1702.05525

2. Observables more sensitive to production channels

> Measure the energy emitted during hadronization

- Distinguish different production mechanism
- E.g., to produce J/ψ , ${}^{3}S_{1}^{[8]}$ channel emits two gluons, while ${}^{1}S_{0}^{[8]}$ channel emits one gluon

> Quarkonium-energy correlators

$$\langle \Psi | \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \cdots \mathcal{E}(\vec{n}_k) | \Psi \rangle$$

- Tag a J/ψ and measure the energy for each pixel
- An observable under study ...

Chen, Liu, YQM, to appear soon

Summary

- > Current difficulties: polarization puzzle, hierarchy problem, universality problem, J/ψ -pair puzzle, high-order puzzle,...
 - Very hard to understand

> Quarkonium production mechanism: a very important topic

- New theoretical ideas needed
- New data needed: confirm previous data; measure the spin symmetry broken effects; measure the energy emitted during hadronization; ...

Thank you!

Over subtraction

 $\succ \text{Eg. } \chi_{cI} \text{ production: } d\sigma_{\chi_{cJ}}/(2J+1) \approx d\hat{\sigma}_{{}^{3}P_{J}^{[1]}}\langle O\left({}^{3}P_{0}^{[1]}\right)\rangle + d\hat{\sigma}_{{}^{3}S_{1}^{[8]}}\langle O\left({}^{3}S_{1}^{[8]}\right)\rangle$

Braaten, Chen, 9610401 YQM, Wang, Chao, 1002.3987

- Soft gluon in P-wave: factorized to S-wave matrix element
- Subtraction scheme: at <u>zero momentum</u>, which contributes the largest production rate.
 Over subtracted! P-wave negative!
- Big cancellation between S-wave and P-wave! Perturbation unstable
- Solution: soft gluon momentum should be kept during subtraction process, or resum kinematic effects to all powers in *v*.

Threshold region

> At threshold region

• Large logarithms appear: can be resummed by introducing shape functions

Beneke, Rothstein, Wise, 9705286 Fleming, Leibovich, Mehen, 0306139 Leibovich, Liu, 0705.3230

• Soft gluon momentum: has leading contribution for quarkonium momentum distribution, cannot be ignored

Combination of logs and powers resummation needed

• Keep soft gluon momentum unexpanded is the first step.

Comments

\succ Relativistic corrections with fixed power in v

- Bad convergence, too many terms are needed
- Involves too many LDMEs, very hard to fix them
- Solution: resum all LDMEs to obtain a function!

(Like resum twist-2 local operators to obtain PDFs)

> What do we need to resum?

- Type 0 ($\chi^{\dagger}\psi, \chi^{\dagger}\sigma^{i}\psi, \chi^{\dagger}T^{a}\psi, \chi^{\dagger}\sigma^{i}T^{a}\psi$): finite number, can be studied exclusively
- Type 1-2 insertion ($\chi^{\dagger}gE^{i}\psi$, $\chi^{\dagger}\overleftrightarrow^{i}\psi$): usually not enhanced, less important
- Type 3 and 4 insertion ($\chi^{\dagger} \overleftrightarrow^2 \psi$, $\nabla^i (\chi^{\dagger} \psi)$): kinematic effects, enhanced if the observable has a steep distribution. E.g., p_T distribution in pp collision, momentum distribution in endpoint region.

Preliminary applications

> Application to $e^+e^- \rightarrow J/\psi({}^3P_I^{[8]}, {}^1S_0^{[8]}) + X$

Chen, Jin, Ma, Meng, 2201.04492 **Partonic differential cross sections** ---- SGF --- SGF -- NLO+NLL --- NLO+NLL NROCD NROCD 1/ơ^p ×dô_P/dz 1/o^{'0}×dô_s/dz 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 7 z

Figure 4. The differential cross sections in SGF and NRQCD factorization approaches.

Smaller partonic cross section, larger LDMEs allowed

$$M_k^X = \langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]}) \rangle + k \frac{\langle \mathcal{O}^{J/\psi}({}^3P_0^{[8]}) \rangle}{m_c^2} \qquad \qquad M_{3.9}^{\text{NRQCD}} < (2.4 \pm 0.7) \times 10^{-2} \,\text{GeV}^3, \\ M_{3.9}^{\text{NLO+NLL}} < (5.8 \pm 1.8) \times 10^{-2} \,\text{GeV}^3, \\ M_{2.5}^{\text{SGF}} < (7.2 \pm 2.2) \times 10^{-2} \,\text{GeV}^3.$$

• LDMEs in e^+e^- can be consistent with that extracted in pp

 $pp: M_0 = \langle O\left({}^{1}S_0^{[8]}\right) \rangle + 3.9 \langle O\left({}^{3}P_0^{[8]}\right) \rangle / m_c^2 \approx (7.4 \pm 1.9) \times 10^{-2} \text{GeV}^3$