Total cc cross section measurements and prospects for LHC in the fixed-target mode with LHCb

Gabriel Ricart gabriel.ricart@cea.fr

Quarkonia as Tools 2024

Charmonium as probe of deconfinement

- Search for signatures of deconfinement form a key research area in heavy-ion physics.
- Heavy quarkonia are model systems to study color charge interaction at T=0 (vacuum) and finite temperature (in medium).
- Quarkonium suppression via color screening historically used as a probe of deconfinement in heavy-ion collisions.
- Additional non-primordial production is another sign of deconfinement.

Total cc cross section as baseline for charmonia modification

- Charm is conserved in QGP, which acts as a charm reservoir.
- Total cc cross section emerges as a natural normalisation for charmonia modification.
- Large contributions from several mesons and baryons.
- Extensive study needed to get a result.

ALICE-PHO-SKE-2015-004

cea

irfu

Charm fragmentation fractions from e+eannihilation and lepton-nucleon DIS.

Charm fragmentation universality

 $f\left(c
ightarrow H
ight) =\sigma(H)/\sigma(c)$.

 $f\left(c
ightarrow H
ight) =\sigma(H)/\sum_{w.d.}\sigma(H)$

- Simplest assumption, fragmentation universal:
 - No energy dependence
 - No colliding system dependence (e⁺e⁻, pp, ep, ...)
 - No production process dependence (photoproduction, DIS, ...)
- Then, total cc cross section at the LHC can be extrapolated from a single charm hadron measurement, typically D⁰.

irfu

Are charm fragmentation fractions really universal?

ALICE results in pp 5 and 13 TeV

- Significant enhancement of charm baryon contribution to the cc cross-section compared to e⁺e⁻ and ep data.
- To be confirmed by other experiments.
- Need measurement of all ground state open charm hadrons.
- Needs to be measured in pPb in PbPb.

List of open charm ground states

Mesons

- D⁰ (cu)
 - Straightforward hadronic 2 body decay (~4%).
 - ο cτ ~ 120 μm
- D⁺ (cd̄)
 - Hadronic 3 body decay (~9%).
 - о ст ~ 310 µm
- $D_{s}^{+}(c\overline{s})$
 - Hadronic 3 body decay (~5%).
 - о ст ~ 150 µm

Baryons

- Λ_{c}^{+} (udc)
 - Hadronic 3 body decay in pK π (~6%).
 - ο **ст ~ 60 μm**
 - ∃_c+ (usc)
 - Decay via long lived strange baryons, Cabibbo-favored.
 - Hadronic 3 body decay in pK π , Cabibbo-suppressed (~.5% with 50% uncertainty).
 - ο cτ ~ 130 μm
- Ξ_c^0 (dsc)
 - Decay via long lived strange baryons.
 - Hadronic 4 body decay (~.5%)
 - ο cτ ~ 50 μm
- Ω_c⁰ (ssc)
 - No absolute branching fraction has been measured yet.
 - ο cτ ~ 100 μm

irfu

Exploring charm production with LHC fixed-target.

Recombination at fixed-target LHC energies

- Opportunity to test deconfinement at:
 - Expected lower energy density
 - Expected lower charm quark density
- **Recombination** of cc into charmonia expected to be lower than at LHC energies.

irfu

D^0 as proxy for total $c\overline{c}$ cross section

- J/Ψ over D^0 ratio measured in both fixed-target *p*Ne and PbNe.
- PbNe data splitted in several centrality bins and matched to the number of binary nucleon-nucleon collisions (N_{coll}).
- Assume $\sigma_{J/\Psi}$ scaling in $\langle N_{coll} \rangle^{\alpha'}$.
- D⁰ used as proxy for total cc̄ cross-section: σ_{D°} scaling in <N_{coll}>.
- However, additional effects can affect
 D⁰ production via charm hadronization
 with the target valence quarks.

Eur. Phys. J. C83 (2023) 658

irfu

D⁰ production asymmetry

- Open charm charge asymmetry tendency observed in fixed-target *p*Ne at LHCb.
- Additional fragmentation fraction non universality.
- Needs confirmation with other open charm hadrons and colliding systems.

$$A=rac{N(car{q})-N(ar{c}q)}{N(car{q})+N(ar{c}q)}$$

irfu

Qualitative explanation

- Charge production asymmetry expected when a charm quark recombines with a valence quark of the target nucleon.
- As valence region of the target nucleon is dominated by u and d quarks, expect a negative asymmetry increasing at backward rapidity.
- Need to measure rapidity dependance of all mesons and baryons.

Feasibility at fixed-target LHCb

- Negative half hemisphere nearly fully covered.
- All charm hadrons accessible thanks to longitudinal boost and excellent vertexing.

irfu

Open charm production in fixed-target proton-Neon collisions with LHCb

Fixed target LHCb

- LHCb forward acceptance becomes backward (-2.3 < y* < 0) with fixed-target configuration.
- Allows to probe large Bjorken-x values of the target nucleon using charm.

irfu

Decay chains currently studied in pNe collisions

 $D^+_{
m s}
ightarrow K^+ K^- \pi^+$

 $D^{*+}
ightarrow \left(D^0
ightarrow K^- \pi^+
ight) \pi^+$

 $\Lambda_c^+ o p K^- \pi^+$

and charge conjugates

Dataset

- *p*Ne data taken with SMOG in 2017.
- 2.5 TeV proton beam.
- √s_{NN} = 68.5 GeV
- Luminosity : $L_{pNe} = 21.7 \pm 1.4 \text{ nb}^{-1}$

	y* range	p _t range		
D^{\pm}				
D_{s}^{\pm}	[-2.3, 0]	[1.5, 6] Gev		
D*±				
Λ_{c}^{\pm}		[0, 0] Gev		

- Ongoing analysis for cross-section and asymmetry measurements.
- Limited low p_T reach for D⁺ and D_s⁺ due to tight cuts in high level trigger.
- Lesson learned for SMOG2!

SMOG2

- Gas storage cell upstream of the VELO.
- Higher pressure than SMOG.
- Possible parallel running with proton-proton data taking.
- Dedicated open charm trigger lines for total cc cross section measurements.
- Numerous noble gas: ⁴He, ²⁰Ne, ⁴⁰Ar, (⁸⁴Kr, ¹³²Xe)
- But also non-noble gas: H², D², N², O²

Candidates

140

120

-200

0

400

200

SMOG2 pH commissioning data

LHCB-FIGURE-2023-008

Λ⁰ and K_s⁰ invariant mass peaks observed in fixed-target pH during SMOG2 commissioning from 18 minutes of data taking in 2022.

SMOG2 charm commissioning data

LHCB-FIGURE-2023-008

• Both open and hidden charm invariant mass peaks observed in fixed-target pAr during SMOG2 commissioning from 18 minutes of data taking in 2022.

irfu

Conclusion

- Total charm production arises as the natural normalisation for charmonium modification in QGP studies.
- Charm fragmentation universality questioned.
- Need measurement of all ground state open charm hadrons.
- At fixed target energy, hint of further charm hadronization universality breaking by hadronization with target valence quarks.
- Total cc cross-section measurements are feasible with LHCb in its fixed-target configuration.
- Rich SMOG2 charm program will allow to explore hadronization in numerous colliding systems.

RHIC

- Total cc cross-section measured with a combination of reconstructed D⁰, low p_T muons and single electrons.
- Linear scaling with N_{binary} expected for point-like production.
- Comparison with FONLL predictions (I) with updated uncertainties (II).
- PHENIX data compatible with FONLL while STAR data lays on the upper limit.

Combined charm FF analysis

- Combined analysis with results from several experiments:
 - **B-factories**: ARGUS, 0 BABAR, BELLE, CLEO
 - HERA: ZEUS, H1 Ο
 - LEP: ALEPH, DELPHI, OPAL Ο
 - LHC: ALICE, ATLAS, LHCb 0
- Only measurement in pp collisions from LHCb at 7 TeV.
- Universality seems to hold.

irfu

Charm production at fixed-target LHCb

- Knock-off of a charm quark from the target nucleon.
- Expected to enhance the D-meson cross-section at backward rapidity.
- However effect remains small, at the percent level.

Physics Letters B 835 (2022)

irfu

Charm production at fixed-target LHCb

- Backward D-meson production models are still not completely understood.
- Fixed-target LHCb allows to directly probe this kinematic region.
- Leading contribution from "standard" QCD gluon-gluon fusion process.

Physics Letters B 835 (2022)

irfu

ed SMOG2 performances						<u>cea</u> irfu	
	C.						
	SI	MOG2 pro	ojected performance	es			1
DAQ time	Non coll. bunches	$\begin{array}{c} \text{Lumi} \\ (\text{nb}^{-1}) \end{array}$	Decays	SMOG yields	Scale factor	SMOG2 proj. yields	
18 h	684	~ 2	$\begin{array}{cccc} D^0 \rightarrow K^- \pi^+ \\ D^+ \rightarrow K^- \pi^+ \pi^+ \\ D^+_s \rightarrow K^- K^+ \pi^+ \\ D^{*+} \rightarrow D^0 \pi^+ \\ \Lambda^+_c \rightarrow p K^- \pi^+ \\ J/\psi^+ \rightarrow \mu^+ \mu^- \\ \psi' \rightarrow \mu^+ \mu^- \end{array}$	6450 975 131 2300 50 500 20	62	$ \begin{array}{c} 400 \ k \\ 60 \ k \\ 8 \ k \\ 140 \ k \\ 3 \ k \\ 30 \ k \\ 1.2 \ k \end{array} $	-
84 h	648	7.6	$ \begin{array}{ccc} J/\psi^+ & \rightarrow & \mu^+\mu^- \\ \psi' & \rightarrow & \mu^+\mu^- \end{array} $	$500 \\ 20$	19.6	$\begin{array}{c} 10 k \\ 0.4 k \end{array}$	

pHe

84 h

pAr

Reaction

How many $c\overline{c}$ pairs are produced in PbA SMOG2 conditions?

Х

- Charm cross-section across $\sqrt{s_{\text{NN}}}$: - $\sigma_{c\bar{c}}^{5.5 \ TeV} \sim 10 \times \sigma_{c\bar{c}}^{200 \ GeV} \sim 100 \times \sigma_{c\bar{c}}^{70 \ GeV} \sim 1000 \times \sigma_{c\bar{c}}^{20 \ GeV}$
- Then, for 0 10% centrality at RHIC:
 - $N_{c\bar{c}} = 597.10^{-3} \text{ mb} \times 22.8 \text{ mb}^{-1} = 13$
- Therefore, we expect, on average:
 - $\sim 100 \ c\overline{c}$ pairs produced at 5.5 TeV
 - $\sim 10 \ c\overline{c}$ pairs produced at $200 \, \text{GeV}$
 - $\sim 1 \ c\overline{c}$ pairs produced at $70 \ {
 m GeV}$
 - $\sim 0.1 \ c\overline{c}$ pairs produced at $20 \, {
 m GeV}$

PRC 94, 054908 (2016)

Centrality (%)	N _{coll}	$T_{AA} \text{ (mb}^{-1}\text{)}$	$\frac{1}{T_{AA}} \frac{dN_{c\bar{c}}}{dy} \big _{y=0} \ (\mu b)$	$N_{c\bar{c}}/T_{AA}$ (µb)
Minimum bias	258 ± 25	6.14 ± 0.45	$143 \pm 13 \pm 36$	$622 \pm 57 \pm 160$
0-10	955 ± 94	22.8 ± 1.6	$137 \pm 21 \pm 35$	597 ± 93 ± 156
10-20	603 ± 59	14.4 ± 1.0	$137 \pm 26 \pm 35$	$596 \pm 115 \pm 158$
20-40	297 ± 31	7.07 ± 0.58	$168 \pm 27 \pm 45$	731 ± 117 ± 199
40-60	91 ± 12	2.16 ± 0.26	$193 \pm 47 \pm 52$	$841 \pm 205 \pm 232$
60-92	14.5 ± 4.0	0.35 ± 0.10	$116 \pm 87 \pm 43$	$504 \pm 378 \pm 190$

TABLE I. Centrality bin, number of NN collisions, nuclear overlap function, charm cross section per NN collision, and total charm multiplicity per NN collision, in $\sqrt{s_{NN}} = 200$ GeV Au + Au reactions.

PRL 94, 082301 (2005)

scar Boente García	Latest heavy-ion and fixed-target results at LHCb	19/09/2023
--------------------	---	------------