

Recent measurements of excited state quarkonium production in pA collisions

Kara Mattioli

Laboratoire Leprince Ringuet, CNRS

11 January 2024

Quarkonia as Tools, Aussois, France

Outline

- 1. Motivation for studying quarkonia in pA collisions
- **2**. Recent results for charmonia in pPb
- 3. Recent results for bottomonia in pPb
- 4. Future opportunities

pA results discussed elsewhere in the workshop:

- LHCb fixed target-> see Gabriel Ricart and Shinichi Okamura's talks
- Flow results in *p*A -> see Chenxi Gu's talk
- RHIC results in *p*A -> see Krista Smith's talk
- Detailed summary of recent pA measurements -> see Óscar Boente García's talk from QaT2023

A small caveat: this talk was prepared on extremely short notice given the late cancellation of the original speaker. I apologise if your favorite result is not included!

Why study quarkonia production in *p*A collisions?

The traditional approach:

pp collisions:

probe quarkonia production mechanisms in "vacuum"

pA collisions:

probe cold nuclear matter effects on quarkonia production, baseline for AA

AA collisions:

probe hot nuclear matter effects on quarkonia production

- *p*A collision systems are intermediate between extremely large nuclear systems (AA collisions) and the QCD "vacuum" system of *pp* collisions
- *p*A provides access to study and constrain non-QGP nuclear effects, so-called Cold Nuclear Matter (CNM) effects
- because pA collisions are interesting in their own right, not just as baselines for AA! Access to studying nuclear structure and emergence of largescale nuclear properties from partonic interactions -> connecting particle and nuclear physics

Quarkonia meausurements in pA are crucial for measuring melting in a QGP

To measure sequential dissociation of quarkonia due to color charge screening in a QGP...

Temperature (Energy density)

...we have to understand the CNM effects that can <u>also</u> dissociate quarkonia:

Nuclear structure & internal parton dynamics (nPDFs)

Parton energy loss

Breakup due to "co-moving" particles

Nuclear "absorption" breakup by the interaction with the nucleus

Charmonia in *pPb*: J/ψ

- $J/\psi R_{pPb}$ has been measured extensively at the LHC. ALICE measured it most recently at $\sqrt{s} = 8.16$ TeV
- Compare to LHCb data which has more statistics at $\log p_T$
- Suppression can be described by nPDFs

Prompt $J/\psi R_{pPb}$ as a function of y*

- Several theoretical models incorporating different CNM effects are able to describe the data
 - Agreement with data is great! But how can we go further towards determining which CNM effects are dominant / the relative contributions of different CNM effects?

ALICE: JHEP 07 (2023) 137 LHCb: PLB 774 (2017) 159

Non-prompt J/ψ in *p*Pb

- Less suppression than for prompt J/ψ
- FONLL + nPDF calculations are able to describe the data

ALICE: JHEP 07 (2023) 137 LHCb: PLB 774 (2017) 159

Measuring the χ_c in *p*Pb collisions at LHCb

- Decay channel: $\chi_c \to J/\psi(\to \mu^+\mu^-)\gamma$, $\chi_c = \chi_{c1} + \chi_{c2}$
- Challenging to measure experimentally due to the low-energy photon reconstruction and the large combinatorial background from $\pi^0 \to \gamma \gamma$ decays
- LHCb measurement is the 3rd measurement in pA collisions and the first in pPb collisions at the LHC

Candidate selection criteria :

Identified using dedicated muon stations in LHCb

 $p_T > 600 \text{ MeV/c}, p > 8 \text{ GeV}, 2 < \eta_{\mu} < 5 \text{ (LHCb acceptance)}$

Identified as isolated clusters in LHCb electromagnetic calorimeter (ECAL), clusters must be incompatible with a π^0 or charged particle hypothesis

$$p_T$$
 > 400 MeV/c, 2 < η_{γ} < 4.5 (LHCb ECAL acceptance)

 J/ψ

μ

γ

 $m(\mu^+\mu^-)$ within 80 MeV of known J/ψ mass $p_T > 1$ GeV/c, Prompt J/ψ (not from b-decay)

arxiv: 2311.01562

$\mu\mu\gamma$ invariant mass spectrum contributions

• Fit the invariant mass difference, $\Delta M = M(\mu^+\mu^-\gamma) - M(\mu^+\mu^-)$ to reduce the impact of the dimuon pair mass resolution

3 components to invariant mass distribution:

$$Y_{\mu^+\mu^-\gamma}(\Delta M) = N_{CBG}Y_{CBG}(\Delta M) + N_{corr}Y_{corr}(\Delta M) + N_{\chi_c \to J/\psi\gamma}Y_{\chi_c}(\Delta M)$$

CombinatorialCorrelated χ_c signalarxiv: 2311.01562background (CBG)background χ_c signal

Kara Mattioli (LLR/CNRS)

Correlated background and χ_c signal

Combinatorial background:

• Estimated by combining J/ψ and γ candidates from different events (mixed event background subtraction)

Correlated background:

- Radiative J/ψ : $J/\psi \rightarrow \mu^+ \mu^- \gamma$
- Partially reconstructed $\psi(2S)$: $\psi(2S) \rightarrow J/\psi \pi^0 \pi^0 \rightarrow \mu^+ \mu^- \gamma$
- Parameters fixed from simulation:

$$Y_{\rm corr}(\Delta M) = \frac{A_{\rm corr} e^{B \cdot \Delta M}}{1 + e^{-\frac{\Delta M - \Delta M_0}{\sigma_{\Delta M_b}}}},$$

χ_c signal:

- Sum of two Gaussians with a common resolution
- $f_{\chi_{c1}}$ = fraction of χ_{c1} in total χ_c yield, 0.4-0.6

•
$$\Delta M_{1,2} = M(\chi_{c2}) - M(\chi_{c1})$$

$$Y_{\chi_c}(\Delta M) = f_{\chi_{c1}}G(\Delta M; \Delta M_{\chi_{c1}}, \sigma_{\Delta M}) + (1 - f_{\chi_{c1}})G(\Delta M; \Delta M_{\chi_{c1}} + \Delta M_{1,2}, \sigma_{\Delta M})$$

arxiv: 2311.01562

Fraction of χ_c in prompt J/ψ decays

Prompt $\psi(2S)$ in pPb collisions at $\sqrt{s} = 8.16$ TeV

- New more precise result with $\times 20$ larger dataset than previous one (at $\sqrt{s} = 5$ TeV)
 - compare with J/ψ (<u>PLB774 (2017) 159</u>) in *p*Pb, described by initial state effects

• Suppression at low p_T more pronounced at forward rapidity

LHCb-PAPER-2023-024, in preparation

Sequential suppression – color screening

 $\Psi(2S)$

2nd step

3rd step

 J/Ψ

Double ratio of $\psi(2S)$ and $J/\psi R_{pPb}$ at $\sqrt{s} = 8.16$ TeV

• $\psi(2S)$ is more suppressed than J/ψ across almost the entire p_T range studied LHCb-PAPER-2023-024, in preparation

Double ratio of $\psi(2S)$ and $J/\psi R_{pPb}$ as a function of y*

- Non-prompt double ratio still compatible with unity
- Prompt double ratio shows suppression of $\psi(2S)$, compatible with break-up for comovers and CGC
 - CGC models shown on plot also include comover interactions

LHCb-PAPER-2023-024, in preparation

new!

Non-prompt $\psi(2S)$ in pPb collisions at $\sqrt{s} = 8$ TeV

• Non-prompt R_{pPb} is consistent with one, indicating little to no nuclear effects for $\psi(2S)$ mesons produced from *b*-decays

LHCb-PAPER-2023-024, in preparation

Bottomonia in pPb

• The most recent measurement of bottomonia R_{pPb} are from CMS:

- Clear sequential suppression is observed for the three upsilon states, with the $\Upsilon(3S)$ being the most suppressed
- No strong p_T dependence of the suppression

PLB 835 (2022) 137397

Comparisons with Comover + nPDF calculations

- Comover Interaction Model (CIM) + nPDFs with shadowing can describe the suppression of all three Υ states
 - EPS09 is a pre-LHC nPDF set and does not include any LHC data
 - nCTEQ15 is more recent and includes LHC data
 - Both are consistent with the data within the large experimental and theoretical uncertainties

Comparisons with energy loss calculations

- Comparisons to the $\Upsilon(1S) R_{pPb}$ were made with and without nuclear shadowing effects (added via EPS09 PDFs)
- Shadowing + energy loss calculation is in better agreement with the data

What do we know about quarkonia dissociation in pPb?

ratio	reference	y^*	$\sqrt{s_{\rm NN}}$	p_{T}
$rac{\psi(2S)}{J\!/\!\psi}$	[12]	[-5.0, -2.5]	$8.16\mathrm{TeV}$	< 14 GeV/c
$rac{\chi_c}{J/\psi}$	this Letter	[-5.0, -2.5]	$8.16\mathrm{TeV}$	$2 < p_{\mathrm{T},J/\psi} < 20\mathrm{GeV}\!/c$
$rac{J/\psi}{D^0}$	[8]	[-4.0, -2.5]	$5\mathrm{TeV}$	$< 10 \mathrm{GeV}\!/c$
$rac{\Upsilon(3S),\Upsilon(2S)}{\Upsilon(1S)}$	[33]	[-4.5, -2.5]	$8.16\mathrm{TeV}$	$<25{\rm GeV}\!/c$
$\frac{\Upsilon(1S)}{B \to J/\psi}$	[33]	[-4.5, -2.5]	$8.16\mathrm{TeV}$	$<25{\rm GeV}\!/c$

- Look at the double ratio of the ratio of states measured in *p*Pb to the ratio in *pp* collisions, as a function of the binding energy of the quarkonium state
- The χ_c and $\Upsilon(3S)$ have almost exactly the same binding energy, but the $\Upsilon(3S)$ breaks up while the χ_c does not
 - If melting in a hot medium occurred, both states should break up.
 - The fact that the χ_c remains intact suggests that the $\Upsilon(3S)$ could be breaking up from comover interactions

Towards the future

- pPb is clearly a valuable collision system for studying CNM effects and an important baseline for quarkonia measurements in PbPb collisions
- However, pPb alone is not sufficient to fully constrain and understand CNM effects we need pA data in a variety of nuclei and kinematic regions
- It is not yet known if we will have pPb data-taking during the LHC Run 3. At the moment, priority seems to be given to PbPb and OO/pO collisions.
- pO collisions at the LHC are expected in 2025
- pA collisions with the LHCb fixed-target system, SMOG2 are planned in 2024 (and 2025)
 - pAr, pH for sure in 2024 and possibly other targets as well, such as pHe
- PbA collisions with the LHCb fixed-target system, SMOG2 are also planned
 - PbAr in 2024, other targets also possible in the future (H, Kr, Xe...)

Conclusions

- $p{\rm A}$ collision systems provide an important baseline for measuring cold nuclear matter effects on quarkonia production
- $J/\psi R_{pPb}$ has been studied extensively at the LHC, but all three charmonium states: the J/ψ , χ_c and $\psi(2S)$ are needed to establish a CNM baseline for sequential suppression in PbPb collisions
- LHCb has measured for the first time the fraction of χ_c in prompt J/ψ decays in *p*Pb collisions
- New measurement of $\psi(2S) R_{pPb}$ also available from LHCb paper in preparation
- Upsilon suppression in pPb can be described by several models incorporating different CNM effects
- The $\Upsilon(3S)$ breaks up in *p*Pb collisions while the χ_c does not break up, which implies that the dissociation mechanism is not temperature related and therefore not due to the formation of a hot medium in *p*Pb collisions

Thank you for your attention!