

Quarkonium-nuclear-modification-factor computations for LHC and EIC

Anton Safronov (Warsaw University of Technology)

Jan 11, 2024 Centre Paul Langevin Quarkonia as Tools 2024

Motivation

- Study quark and gluon content of nucleons and nuclei in
 - hadron-hadron scattering,
 - hadron-nucleus scattering,
 - or any asymmetric reactions (nucleus/hadron A + nucleus/hadron B),

described by Parton Distribution Functions (PDF)

- Evaluate the baseline for more sophisticated studies, like:
 - new state of matter in heavy-ion collisions,
 - charm and beauty quark production,
 - quarkonium productions and
 - the interpretation of the LHC,RHIC, EIC data.

Framework – Collinear factorization

Cross sections in collinear factorization and perturbative QCD $d\sigma = \sum_{a,b} \int dx_a dx_b f_a(x_a, \mu_F) f_b(x_b, \mu_F) d\hat{\sigma}_{ab \to K}(\hat{s}, \mu_F, \mu_R)$ Parton density functions Parton-level (differential) **Cross section** where the partonic cross section is calculated using: $\hat{\sigma} = \sigma^{Born} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots\right)$ Leading order Next-to-leading order Next-to-next-to-leading order

For charm, beauty, quarkonium production, the scales are small and α_s is large (0.15 ~ 0.25), NLO corrections are very large and cannot be neglected.

Such processes are usually accompanied with the **largest nuclear corrections** in proton-nucleus and nucleus-nucleus collisions

Framework - PDFs

Parton-distribution functions (PDFs): essential link between hadronic cross sections and perturbatively calculable partonic cross sections

Challenging situation for PDFs of nucleons inside nuclei (nPDFs): nuclear data significantly more complex to collect with two additional degrees of freedom (protons and neutrons)

nPDFs and PDFs give information on:

- the nuclear / hadronic structure in terms of quarks and gluons;
- the initial state of relativistic heavy-ion collisions,

to use **perturbative probes** of the **Q**uark **G**luon **P**lasma to study its properties

- nPDFs cannot be computed and similarly, to the proton PDFs are fit to experimental data. Only the evolution is perturbative
- Collinear factorization in terms of nPDFs is assumed and should be tested case by case
- Automating computations of cross sections with nPDFs up to NLO is highly desirable

Quark nPDFs

Since the early 1980s, from the ratio of structure functions F_2 , we know that the **nuclei** are **not** a simple collection of **free nucleons**.

In other words, **nPDFs deviate** from a simple **sum of nucleon PDFs**. To **study** such deviations, it is customary to rely on **NMFs**, like:

$$R_{i}^{A}(x,\mu_{F}) = \frac{Zf_{i}^{p/A} + (A-Z)f_{i}^{n/A}}{Zf_{i}^{p} + (A-Z)f_{i}^{n}}$$

One expects:

- $R_q^A > 1$ for x $\gtrsim 0.8$ (Fermi-motion region),
- $R_q^A < 1$ for $0.25 \leq x \leq 0.8$ (EMC region),
- $R_q^A > 1$ for $0.1 \le x \le 0.25$ (antishadowing region)
- $R_q^A < 1$ for x ≤ 0.1 (shadowing region)
- $R_q^A \sim 1$: absence of nuclear effects

Nuclear Modification Factors

For rare/hard probes $[\sigma_{NN}^{probe} \ll \sigma_{NN}^{inel}]$ $\sigma_{AB}^{probe} = A \times B \times \sigma_{NN}^{probe}$ [Each probe is produced independently]

We can define <u>nuclear modification factors</u> (R_{AA}, R_{pA}) :

$$R_{AB} = \frac{\sigma_{AB}}{AB \ \sigma_{pp}}$$

$$R_{pA} \equiv \frac{\sigma_{pA}}{\left(1 \times A \times \sigma_{pp}\right)}$$

These factors are defined such that:

 $R_{pA} \sim 1$: absence of nuclear effects

nPDFs and event generators

Any PDFs can be used in up to NLO like proton PDFs with LHAPDF library

Currently only the symmetric mode is implemented

Reminder: we **assume** that

- the factorization of the cross section even in presence of nuclear effects
- all the nuclear effects can be accounted by nPDFs and thus can be computed by event generators.

MG5_aMC@NLO

2020-03-17

set lhapdf to /projet/pth/safronov/MG5/MG5_aMC_v2_7_2/HEPTools/lhapdf6/bin/lhapdf-config

Using default text editor "vi". Set another one in ./input/mg5_configuration.txt Using default eps viewer "evince". Set another one in ./input/mg5_configuration.txt Using default web browser "firefox". Set another one in ./input/mg5 configuration.txt

WELCOME to MADGRAPH5 a MC @ NLO

The MadGraph5_aMC@NLO Development Team - Find us at https://server06.fynu.ucl.ac.be/projects/madgraph

and http://amcatnlo.web.cern.ch/amcatnlo/

Type 'help' for in-line help.

Type 'tutorial' to learn how MG5 works Type 'tutorial aMCatNLO' to learn how aMC@NLO works Type 'tutorial MadLoop' to learn how MadLoop works

set ninja to /projet/pth/safronov/MG5/MG5_aMC_v2_7_2/HEPTools/lib

INFO: Restrict model sm with file ../models/sm/restrict_default.dat . INFO: Run "set stdout_level DEBUG" before import for more information.

Defined multiparticle all = q u c d s u~ c~ d~ s~ a ve vm vt e- mu- ve~ vm~

Checking if MG5 is up-to-date... (takes up to 2s)

INFO: Change particles name to pass to MG5 convention Defined multiparticle $p = g u c d s u \sim c \sim d \sim s \sim$ Defined multiparticle $j = q u c d s u \sim c \sim d \sim s \sim$

No new version of MG5 available Loading default model: sm

Defined multiparticle l+ = e+ mu+ Defined multiparticle l- = e- mu-Defined multiparticle vl = ve vm vt Defined multiparticle vl~ = ve~ vm~ vt~

MG5 aMC>

set collier to /projet/pth/safronov/MG5/MG5_aMC_v2_7_2/HEPTools/lib set fastjet to /projet/pth/safronov/fastjet-install/bin/fastjet-config

VERSION 2.7.2

- Matrix element generator written in Python
- Can compute cross section and generates events at NLO with QCD corrections automatically
- Using LHAPDF can compute the cross section for any PDF in it with negligible additional CPU time (but only for symmetrical beam species)
- Scale and PDF uncertainties automatically computed and stored

Framework – Collinear factorization

Cross sections in collinear factorization and perturbative QCD

 $d\sigma = \sum_{a,b} \int dx_a dx_b f_a(x_a, \mu_F; LHAID) f_b(x_b, \mu_F; LHAID) d\hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$

• Asymmetric collisions for hadron-hadron

done by Anton Safronov

 $d\sigma_{AB\to X} = \sum_{a,b} \int dx_a dx_b \quad f_a^A(x_a, \mu_F; LHAID1) f_a^B(x_b, \mu_F; LHAID2) \quad d\hat{\sigma}_{ab\to X}(\hat{s}, \mu_F, \mu_R)$

Photoproduction

done by Laboni Manna

 $d\sigma_{\gamma H \to X} = \sum_{e,h} \int dx_{\gamma} dx_{h} f_{\gamma}^{e} (x_{\gamma}; Q_{max}^{2}) f_{h}^{H} (x_{b}, \mu_{F}; LHAID) d\hat{\sigma}_{\gamma h \to X} (x_{\gamma}, x_{h}, \mu_{F}, \mu_{R})$ $\underline{PoS(EPS-HEP2023)274}$

Example: c production in pPb collision at LHC

For charm production, μ_F uncertainty nearly as large as the **nPDF uncertainty**

Scale and PDF uncertainties are automatically computed

Example: c production at *fixed-target* collisions at LHC

uncertainty

Example: *b* production in *p*Pb collision at LHC

Bottom quark production

Example: *Drell-Yan* production in πW collision

Phys.Rev.D 39 (1989) 92-122

 m_{ll} $\tau =$

$$x_F = x_{pion} - x_{nucleus}$$
$$x_{pion} = \sqrt{\tau}e^{Y}$$
$$x_{nucleus} = \sqrt{\tau}e^{-Y}$$

Example: *Drell-Yan* production in πW collision

 $\mathrm{d}^2 \pmb{\sigma}^{ ext{dys}}$

 $d\sqrt{\tau} dx_F$

 $\sqrt{\tau} = 0.335$

0.2

 $\sqrt{\tau} = 0.243$

 $\sqrt{\tau} = 0.288$

0.6

0.8

0.4

E615

Example: *Drell-Yan* production in πW collision

21

$$R_{eA}=rac{\sigma_{eA}}{A \, \sigma_{ep}}\equiv R_g$$
 (at LO)

Measurement of the J/Psi production leads to accuracy improvements of the PDFs (reweighting)

arXiv:2012.11462v2 [hep-ph] 8 Jan 2021

27

28

 γ + g > cc g, \sqrt{s} = 45 GeV

Conclusions

- Using collinear factorization and MadGraph5 it became possible to make:
 - The first NLO fixed-order calculation of A-B and γN collisions
 - Quarkonium production is still not possible by MG5,

but soon will be developed by Chris and Alice

- New codes are flexible in terms of PDFs due to the usage of the LHAPDF libraries
 - This makes possible NLO predictions for charm mesons (like D0) or bottom mesons (like B+, B0) productions at LHC
 - Usage of PDFs for photon or pion is also possible
- Predictions done by Helac-Onia and MG5 for

NMFs in eAu collisions (photoproduction at EIC) shown in terms of:

- rapidity of the J/ψ and
- c.m.s energy of the γN

Backup

Validations of MG5 in asymmetric collisions

Validation vs MCFM for W production in proton-lead collisions at NLO

- Very good agreement between MG5 and MCFM-based computations both for central value and uncertainties
- Uncertainties match, if MCFM-based computation done with asymmetric error estimation

Validations of MG5 in asymmetric collisions

Validation vs MCFM for CT14 + EPPS16 for W production at NLO

- Good agreement between MG5 and MCFM-based computations for EPPS16
- Good agreement between MG5 and experimental data
- Slight difference in the uncertainty since MCFM-based computation done with symmetric uncertainties

MadGraph in NLOAccess

MG5_aMC@NLO is now available online with its full NLO version on NLOAccess (<u>https://nloaccess.in2p3.fr/MG5/</u>)

https://nloaccess.in2p3.fr/

About NLOAccess:

- available tools: HELAC-Onia, MG5_aMC@NLO
- secure two-step registration process
- protected OwnCloud storage is given
- file input as first way to submit a run
- live user run status
- user run history
- guided input file creation and submission both for HELAC-Onia and MG5

MG5 extension to asymmetric collisions will be included on NLOAccess

