Inclusive onium measurements in p+p collisions at RHIC

 $\bullet \bullet \bullet$

Jakub Češka (CTU)

Quarkonia as Tools 2024 Centre Paul Langevin, Aussois, France 7. - 13. 1. 2024

Relativistic Heavy Ion Collider (RHIC)

- Located in Brookhaven National Laboratory (BNL), NY, USA
- World's only polarised hadron collider

RHIC collider

$\sqrt{s_{\rm NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	Au+Au	$20{ m B}~/~40~{ m nb^{-1}}$	2023 + 2025
200	$p{+}p$	235 pb^{-1}	2024
200	$p{+}\mathrm{Au}$	$1.3 {\rm ~pb^{-1}}$	2024

Experiments at RHIC

Finished data-taking in 2016

Production models

- Color Singlet Model
 - pair produced directly in same state as quarkonium, associated with a gluon
- Color Octet Model
 - pair produced in any state
 - long distance matrix elements (LDMEs) bound state probability

• (Improved) Color Evaporation Model

• quantum numbers neglected, fixed production probability

• Color Dipole Model

- projectile radiates gluon in target rest frame
- \circ gluon fluctuates into Q $\overline{ ext{Q}}$ dipole
- dipole interacts with target producing quarkonium via CS channel

[Phys.Rev.D 100 (2019) 5, 052009]

(a)

PHENIX J/ Ψ data (left) follow the Ap_T/[1+(p_T/b)²]ⁿ lineshape and agree with NLO NRQCD predictions.

STAR measured J/ Ψ p_T spectrum up to 20 GeV/c (right), with both **NRQCD+FONLL and ICEM+FONLL** predictions overestimating the data at lower transverse momenta. NLO NRQCD+FONLL also underestimates at high p_r.

Y p_T spectra

[J. Phys.: Conf. Ser., 1667(1), 012022]

The CGC+NRQCD model overestimates the STAR data at low and high p_T. The CEM model predictions are consistent with the measurements.

J/ Ψ rapidity spectra

[Phys.Rev.D 85 (2012) 092004]

The **PHENIX data is best described by the scaled CTEQ6M model**, with GRV98 not reproducing the data trend.

Y rapidity spectra

[Phys.Rev.C 91 (2015) 2, 024913]

[L. Kosarzewski, QM22]

10

The STAR Y->e⁺e⁻ data is best described by the CEM model, whereas the other models do not describe the data well.

J/ Ψ mean <p_T²>

[Phys.Rev.C 93 (2016) 6, 064904]

Broadening of the spectra due to **Cronin effect.**

PHENIX and STAR measurements of mean J/Ψ mean p_{T} are **consistent with world's data**.

Onium-hadron correlations

Onium-hadron azimuthal correlations

- GBW model predicts a double-peak structure for central Drell-Yan dileptons and associated forward pions
- This should hold true for quarkonia in colour dipole approach
- PYTHIA8 does not reproduce the double-peak structure

 $C(\Delta\phi)$

[E. Basso et al., PoS, EPS-HEP2015, 191 (2016)]

13

J/Ψ -hadron azimuthal correlations

[Phys.Rev.C 80 (2009) 041902]

STAR measurements show **two peaks**, which consists of a single away-side peak contribution of prompt J/ Ψ and a double peak from B to J/ Ψ decays with the near-side peak having larger magnitude.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\vartheta\mathrm{d}\varphi} \propto 1 + \lambda_{\vartheta}\cos^2\vartheta + \lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi + \lambda_{\varphi}\sin^2\vartheta\cos2\varphi + \dots$$

Polarisation

Helicity (HX) - quarkonium momentum direction Collins-Soper (CS) - beam angle bisection Gottfried-Jackson (GJ) - beam direction

J/Ψ polarisation

[Phys.Rev.D 102 (2020) 7, 072008]

PHENIX measurements of $\lambda_{\theta\phi}$ are consistent with 0 in C-S and G-J frames, whereas it is positive in HX at low P_{T} .

The data for λ_{ϕ} are consistent with 0 in all frames. The C-S data does not match NRQCD prediction, but the HX data agree within errors.

J/Ψ polarisation

[Phys.Rev.D 102 (2020) 7, 072008]

PHENIX data for λ_{μ} are **consistent with 0 in all frames** in both p_{T} and rapidity dependent measurements.

In p_T dependent measurements **he C-S data match NRQCD prediction** within errors, but the **HX data do not agree with the predictions**.

J/Ψ polarisation

The STAR results for J/ Ψ in two decay channels show differences in λ_{θ} and λ_{ϕ} between HX and CS frames.

Data consistent with no polarisation except for λ_{θ} for |y| < 0.5 dimuon data at high p_{T}

CGC+NRQCD offers best description, other models not ruled out due to large uncertainties

Multiplicity dependence

J/Ψ multiplicity dependence

[Phys.Lett.B 786 (2018) 87-93]

The STAR data for mid-rapidity J/ Ψ show a stronger than linear increase consistent with world data. The data is **described well via PYTHIA8 and EPOS3.2**, whereas the percolation model underestimates the data at large multiplicities.

J/Ψ multiplicity dependence

[Universe 2023, 9(7), 322]

The PHENIX measurements allow for measuring forward- and backward-rapidity J/Ψ , which are mostly **consistent with world data** with the exception of the last bin in the backwards produced J/Ψ .

The analysis also highlights a strong dependence of the rapidity window used for N_{ch} calculation.

Y multiplicity dependence

[L. Kosarzewski, MPI@LHC 2023]

The STAR measurements of Y exhibit the same stronger-than-linear increase with high- p_T data having a larger magnitude than p_T -integrated ones.

Feed-down and ratio measurements

$\Psi(2S)$ and J/ Ψ ratio

[Phys.Rev.D 100 (2019) 5, 052009]

The CEM prediction underestimates the PHENIX data at intermediate $p_{T^{-}}$

The ICEM model underestimates the STAR data point.

$\Psi(2S)$ and J/ Ψ ratio

[JongHo Oh, QM23]

PHENIX analysis show measurements in different $|\Delta \eta|$ intervals. In all, **the ratio changes minimally with multiplicity**. PYTHIA8 Monash and Detroit tune describe the data well at lower multiplicities.

$B \to J/\Psi$ fraction

[Phys.Rev.D 95 (2017) 9, 092002]

[Phys.Lett.B 722 (2013) 55-62]

STAR 200 GeV data at central rapidity and PHENIX 500 GeV data at forward/backward rapidity **consistent with FONLL+CEM calculations** within errors

$\chi_{c} \rightarrow J/\Psi$ branching ratio

[*Phys.Rev.D* 85 (2012) 092004]

PHENIX measurements of χ_c to J/ Ψ feed-down fraction consistent with CEM predictions.

Quarkonia and jets

PYTHIA8 predicts a larger fraction of jet-associated J/Ψ compared to STAR data. Theoretical model calculations needed.

J/Ψ production within jets

Should provide constraints to LDMEs.

No significant *z* dependence in data observed. J/Ψ production less isolated in data compared to PYTHIA8 prediction.

Outlook

• STAR:

- Forward upgrade installed
 - 2.5 < y < 4 (FST and sTGC tracking, EM and h calorimetry)
 - High integrated luminosity at mid and forward rapidity
- Better precision J/ Ψ and Y dependence on N_{ch} with 2017 and 2022 datasets
 - Higher integrated luminosities sampled (up to a factor of 10 in 2017 data compared to 2011)
 - 2017 dataset analyses ongoing [J. Ceska, A. Knospe, QM23]
 - Better model discrimination
- sPHENIX:
 - Quarkonia are an essential part of the physics program
- RHIC
 - 200 GeV polarised p+p collisions planned for Run24

Summary

- RHIC and its experiments have a rich quarkonium programme
 - Spectra
 - Onium-hadron correlations
 - Polarisation
 - Multiplicity dependent measurements
 - Feed-down and ratio measurements
 - Quarkonia and jets
 - Single-spin asymmetry, ...
- Exciting new results
- Data taking still ongoing
- Plenty of data yet to be analysed

Thank you for your attention!

Backup

Multiplicity dependence

[Universe 2023, 9(7), 322]

The analysis also highlights a **strong dependence of the rapidity window used for N_{ch}** calculation.

Single-spin asymmetry

https://inspirehep.net/literature/870935

Taken from erratum

FIG. 1: (color online) Transverse single-spin asymmetry in J/ψ production as a function of x_F for 2006 and 2008 data sets separately, and the combined result; the points for the combined result have been offset by 0.01 in x_F for visibility. The error bars shown are statistical and type A systematic uncertainties, added in quadrature. Type B systematic uncertainties are not included but are 0.003 or less in absolute magnitude and can be found in Table IIII Not shown is an additional uncertainties of 3.4%, 3.0%, and 2.4% for the 2006, 2008, and combined 2006 + 2008 data sets, respectively.

37

https://inspirehep.net/literature/1467456

FIG. 3. $A_{LL}^{J/\psi}$ as a function of p_T (top panel) and |y| (bottom panel). The black error bars show the statistical uncertainty. The red boxes show only the Type A systematic uncertainty ties. There are additionally a 4×10^{-4} global systematic uncertainty from the relative luminosity determination and a 6.5% global scaling systematic uncertainty from the polarization magnitude determination for all p_T or |y| bins. The blue curve with shaded band is our $A_{LL}^{J/\psi}$ estimation using PYTHIA6 [29] simulation with NNPDF data sets under the as-

sumption of $\hat{a}_{LL}^{gg \to J/\psi + X} = 1$. The solid blue curve is the central value and the blue shaded band is the $\pm 2 \sigma$ uncertainty range. See details in the text.

https://inspirehep.net/literature/1671782

FIG. 4. (a) Backward $[x_F < 0]$ and (b) forward $[x_F > 0] A_N^{J/\psi}$ vs p_T for open [black] circles p+p, closed [red] circles p+Al, and closed [blue] boxes p+Au collisions. The shaded [gray] boxes show the systematic uncertainty. The data points for p+Al and p+Au collisions have been shifted in p_T for clarity.