EIC and quarkonia

Charlotte Van Hulse University of Alcalá

Comunidad de Madrid

Quarkonia as Tools 2024 January 08 – 13, 2024 Aussois, France

The electron-ion collider (EIC)

- Based on RHIC:
 - use existing hadron storage ring energy: 41–275 GeV
 - add electron storage ring in RHIC tunnel energy: 5–18 GeV

The electron-ion collider (EIC)

- Based on RHIC:
 - use existing hadron storage ring energy: 41–275 GeV
 - add electron storage ring in RHIC tunnel energy: 5–18 GeV

$$\rightarrow \sqrt{s_{NN}} = 29 - 141 \ (90) \ {
m GeV}$$

- $\overrightarrow{e} + \overrightarrow{p}^{\uparrow}$, $\overrightarrow{d}^{\uparrow}$, $\overrightarrow{He}^{\uparrow}$, unpolarised ions up to U
 - ~ 70% polarisation

The electron-ion collider (EIC)

- Based on RHIC:
 - use existing hadron storage ring energy: 41–275 GeV
 - add electron storage ring in RHIC tunnel energy: 5–18 GeV

$$\rightarrow \sqrt{s_{NN}} = 29 - 141 \ (90) \ {\rm GeV}$$

- $\overrightarrow{e} + \overrightarrow{p}^{\uparrow}$, $\overrightarrow{d}^{\uparrow}$, $\overrightarrow{He}^{\uparrow}$, unpolarised ions up to U
 - ~ 70% polarisation
- $\mathscr{L} = 10^{33-34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
 - $\leftrightarrow \mathscr{L}_{\text{int}} = 10 100 \text{ fb}^{-1}/\text{year}$

Luminosity and centre-of-mass energy: ep collisions

Luminosity for eA similar within factor 2–3

- Based on RHIC:
 - use existing hadron storage ring energy: 41–275 GeV
 - add electron storage ring in RHIC tunnel energy: 5–18 GeV

 $\rightarrow \sqrt{s} = 29 - 141 \text{ GeV}$

- $\overrightarrow{e} + \overrightarrow{p}^{\uparrow}$, $\overrightarrow{d}^{\uparrow}$, $\overrightarrow{He}^{\uparrow}$, unpolarised ions up to U
 - ~ 70% polarisation
- $\mathscr{L} = 10^{33-34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
 - $\leftrightarrow \mathscr{L}_{int} = 10 100 \text{ fb}^{-1}/\text{year}$

The electron-proton/ion collider (ePIC) detector

The electron-proton/ion collider (ePIC) detector

+ far forward

The electron-proton/ion collider (ePIC) detector

+ far forward

Electron Endcap EMCal

PbWO₄ crystals

• Backward EMCAL: high-precision lead-glass PbWO₄ + Si sensors

Electron Endcap EMCal

PbWO₄ crystals

- Backward EMCAL: high-precision lead-glass PbWO₄ + Si sensors
- Barrel EMCAL: 3D imaging with MAPS and sampling Pb/ scintillating fibres with Si sensors

Electron Endcap EMCal

PbWO₄ crystals

- Backward EMCAL: high-precision lead-glass PbWO₄ + Si sensors
- Barrel EMCAL: 3D imaging with MAPS and sampling Pb/ scintillating fibres with Si sensors
- Forward EMCAL: finely segmented W powder/scintillating fibres

• Backward HCAL: steel/scintillator sandwich as tail catcher

• Backward HCAL:

steel/scintillator sandwich as tail catcher

• Barrel HCAL: Fe/scintillator sandwich: detection of neutrals

• Backward HCAL:

steel/scintillator sandwich as tail catcher

- Barrel HCAL: Fe/scintillator sandwich: detection of neutrals
- Forward HCAL: W/scintillator sandwich longitudinally segmented, high granularity: good E resolution

Particle identification

Particle identification

Far-backward region

Far-backward region

Far-backward region

Far-forward region

Far-forward region

nucleon spin

nucleon spin

spin-dependent nucleon multi-dimensional structure

nucleon spin

spin-dependent nucleon multi-dimensional structure

probing saturation

nucleon spin

spin-dependent nucleon multi-dimensional structure

probing saturation

nucleon spin

spin-dependent nucleon multi-dimensional structure

probing saturation

 x_B

nucleon spin

spin-dependent nucleon multi-dimensional structure

probing saturation

A^{1/3} enhancement of saturation effect for ions

nucleon spin

spin-dependent nucleon multi-dimensional structure

probing saturation

A^{1/3} enhancement of saturation effect for ions

nucleon spin

spin-dependent nucleon multi-dimensional structure

probing saturation

 x_B

hadronisation

A^{1/3} enhancement of saturation effect for ions

Luminosity and COM E needs for physics topics

Kinematic coverage at the EIC

14

Helicity structure of the nucleon: gluons

ECCE consortium, 10.5281/zenodo.6537587

- · · · · · · · · · · · · · · · · · · ·	
ECCE Simulation [–] DJANGOH <i>ep</i> , 10 fb ⁻¹	
002 ↓ 5x41 GeV	
.0003 I IOX275 GEV	
 via tracking of scattered lepton or 	nly
= 0.0008 stat. unc.+ unfoldir	ng
$x_B = 0.0013$	
$x_B = 0.0020$	
• • $x_B = 0.0032$	
• • • $x_B = 0.0051$	
• • • = $x_B = 0.0082$	
• • • • $x_B = 0.0129$	
$x_B = 0.0205$	
$x_B = 0.0325$	
$x_{B} = 0.0515$ -	
$x \Rightarrow x_B = 0.0815$	
$\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x}_B = 0.1292$	
e e i i i i i k $x_B = 0.2048$	
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet $	
$\bullet \bullet $	
$\underline{\Phi} \underline{\Phi} \underline{\Phi} \underline{\Phi} x_B = 0.8155$	
$10^2 10^3 10^4 10^5$	
15 Q ² (GeV ²)	

Helicity structure of the nucleon: gluons

ECCE consortium, 10.5281/zenodo.6537587

Helicity structure of the proton: sea quarks

Semi-inclusive measurements, via good hadron PID \rightarrow access to sea-quark spin

16

Helicity structure of the proton:

Semi-inclusive measurements, via good hadron PID \rightarrow access to sea-quark spin

CVH et al., NIM A 1056 (2023) 168563

16

Helicity struct

Semi-inclusive measurements, via good hadron PID \rightarrow access to sea-quark spin

TMD PDFs: Sivers

TMD PDFs: Sivers

Sivers asymmetry

 $\sigma^{h}(\phi,\phi_{S}) \propto S_{T} 2\langle \sin(\phi-\phi_{S}) \rangle_{UT}^{h} \sin(\phi-\phi_{S}) \longrightarrow \mathcal{C}[f_{1T}^{\perp} \times D_{1}^{q \to h}]$

TMD PDFs: Sivers

Sivers asymmetry

 $\sigma^{h}(\phi,\phi_{S}) \propto S_{T} 2 \langle \sin(\phi-\phi_{S}) \rangle_{UT}^{h} \sin(\phi-\phi_{S}) \longrightarrow \mathcal{C}[f_{1T}^{\perp} \times D_{1}^{q \to h}]$

Decrease of asymmetry with increasing $Q^2 \rightarrow$ need high precision (<1%) to measure asymmetry at high Q^2 17

Impact of EIC on Sivers TMD PDF

R. Seidl, A. Vladimirov et al., NIM A 1055 (2023) 168458

Impact of EIC on Sivers TMD PDF

R. Seidl, A. Vladimirov et al., NIM A **1055** (2023) 168458

Impact of EIC on Sivers TMD PDF

would give access to gluon TMD PDFs

R. Seidl, A. Vladimirov et al., NIM A **1055** (2023) 168458

Di-hadron production and jets in eA

 Complementarity region covered by dihadron and jet production

Exclusive measurements on p with the EIC

What object are we probing?

What object are we probing?

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

Incoherent interaction: interaction with constituents inside target.

target does not remain in same quantum state.
 Ex.: target dissociation, excitation

Exclusive measurements on nuclear targets What object are we probing? γ coherent scattering incoherent scattering Incoherent/Breakup do/dt Coherent/Elastic Coherent interaction: interaction with target as a whole. \sim target remains in same quantum state. Incoherent interaction: interaction with constituents inside target. \sim target does not remain in same quantum state. Ex.: target dissociation, excitation |t| ^t3 t₂

Coherent eA production

 \rightarrow probe gluon saturation

 \rightarrow nuclear imaging in position space:

$$\int_{0}^{\infty} d\Delta_{\perp} \operatorname{GPD}(x, 0, \Delta_{\perp}) e^{-ib_{\perp}\Delta_{\perp}}$$

Experimentally limited by maximum transverse momentum. Need measured p_T range as extended as possible. ~third diffractive minimum.

Coherent eA production

Toll, Ulrich, PRC 87 (13) 0249

- \rightarrow probe gluon saturation
- \rightarrow nuclear imaging in position space:

Experimentally limited by maximum transverse momentum. Need measured p_T range as extended as possible. ~third diffractive minimum.

- - increasing t.
 - veto of events where nuclei break up \rightarrow use entire far-forward detector systems
- - Need precise determination of t
 - reconstruction via scattered lepton and exclusively produced vector meson/photon

 \rightarrow resolving minima is crucial

 Need 90%, 99%, and > 99.8% veto efficiency for incoherent production, for the respective minima at

Incoherent production

$$\sigma_{\rm tot} \sim \langle |A|^2 \rangle$$

$$\sigma_{\rm coh} \sim |\langle A \rangle|^2$$

$$\sigma_{\mathrm{incoh}} \sim \sum_{f \neq i} |\langle f | A | i \rangle|^2$$

$$=\sum_{f} \langle i|A|f \rangle^{\dagger} \langle f|A|i \rangle - \langle i|A|i \rangle^{\dagger} \langle i|A|i \rangle$$

$$= \left(\langle |A|^2 \rangle - |\langle A \rangle|^2 \right)$$

average over amplitudes squared

average amplitude over target configurations: probes average distributions

Incoherent = difference between both: probes event-by-event fluctuations

Incoherent production

$$\sigma_{\rm tot} \sim \langle |A|^2 \rangle$$

$$\sigma_{\rm coh} \sim |\langle A \rangle|^2$$

$$\sigma_{\mathrm{incoh}} \sim \sum_{f \neq i} |\langle f | A | i \rangle|^2$$

$$=\sum_{f} \langle i|A|f \rangle^{\dagger} \langle f|A|i \rangle - \langle i|A|i \rangle^{\dagger} \langle i|A|i \rangle$$

$$= \left(\langle |A|^2 \rangle - |\langle A \rangle|^2 \right)$$

average over amplitudes squared

average amplitude over target configurations: probes average distributions

Incoherent = difference between both: probes event-by-event fluctuations

H. Mäntysaari and B. Schenke. Phys. Rev. D 98, 034013 (2018)

Exclusive measurements on A with the EIC

Summary

EIC with ePIC can address various aspects of the nucleon and nuclear structure through:

- Precise inclusive (spin-dependent) DIS measurements via high-resolution EM calorimeters.
- Measurements for 3D (spin-dependent) tomography in momentum space provided by good Cherenkov-based and TOF AC-LGAD hadron PID detectors and tracking.
- Exclusive measurements on protons, using the far-forward detector system
- Diffractive and exclusive measurements with coherent/incoherent separation via very precise EM calorimeters and far-forward detector system.
- Quarkonium production offers large possibility to study hadron structure and quarkonium production Possibilities for ePIC with current design and muon detection for second detector

need to be investigated!