

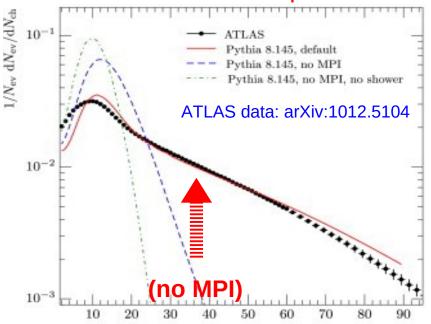
Double & Triple quarkonium production in p-p, p-A, A-A colls.

Quarkonia As Tools

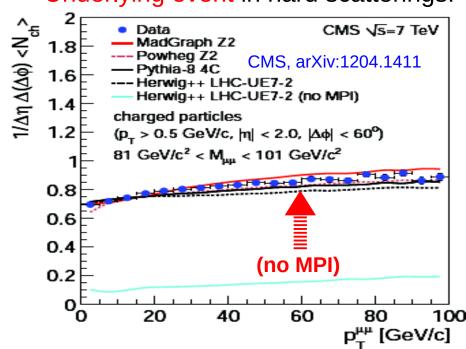
Aussois, Savoie, 12th Jan. 2024

David d'Enterria CERN

(*) Details in DPS/TPS/NPS in pp, pA, AA review:

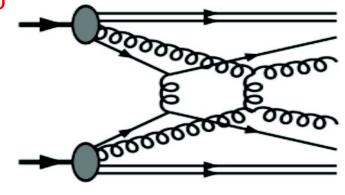

D.d'E & A.Snigirev: arXiv:1708.07519 [Adv.Ser.Direct.High.En.Phys. 29 (2018) 159]

Multi-parton interactions at the LHC


MPI are intrinsic component of hadron collisions (p,Pb) = non-pointlike objects with finite transverse size and increasingly larger gluon density with √s.

■ MPI O(1-3 GeV) clearly observed at hadron colliders:

Underlying event in hard scatterings:



■ Double hard parton scatts. $(p_{\tau}, m_{x}>3 \text{ GeV})$ happen also & been observed

 $N_{\rm ch}$

Double Parton Scattering x-sections (p-p)

Assuming that the probability to produce two hard collisions is independent, one can simply write double parton scatterings (DPS) cross section as the product of two single-parton scatterings (SPS) ones:

$$\sigma^{\text{DPS}}_{(hh'\to ab)} = \left(\frac{m}{2}\right) \frac{\sigma^{\text{SPS}}_{(hh'\to a)} \cdot \sigma^{\text{SPS}}_{(hh'\to b)}}{\sigma_{\text{eff}}}$$

normalized by an effective x-section ($\sigma_{\rm eff}$), with a simple combinatorial factor (m) to avoid double-counting in case of same particles produced.

- How to interpret σ_{eff} ? What values one would naively expect for it?
- Let's start with the most generic expression for DPS cross section:

$$\sigma^{\text{DPS}}_{(hh'\to ab)} = \left(\frac{m}{2}\right) \sum_{i,j,k,l} \int \Gamma_h^{ij}(x_1, x_2; \mathbf{b_1}, \mathbf{b_2}; Q_1^2, Q_2^2) \times \hat{\sigma}_a^{ik}(x_1, x_1', Q_1^2) \, \hat{\sigma}_b^{jl}(x_2, x_2', Q_2^2) \\ \times \Gamma_{h'}^{kl}(x_1', x_2'; \mathbf{b_1} - \mathbf{b}, \mathbf{b_2} - \mathbf{b}; Q_1^2, Q_2^2) \, dx_1 dx_2 dx_1' dx_2' d^2b_1 d^2b_2 d^2b$$

$$\text{Generalized PDFs} = \mathbf{f}(\mathbf{x}, \mathbf{Q}^2, \mathbf{b})$$

Double Parton Scattering x-sections (p-p)

Assumption 1: Generalized PDFs factorize into longitudinal & transverse components:
transverse transv. density = f(b)

$$\Gamma_h^{ij}(x_1, x_2; \mathbf{b_1}, \mathbf{b_2}; Q_1^2, Q_2^2) = D_h^{ij}(x_1, x_2; Q_1^2, Q_2^2) f(\mathbf{b_1}) f(\mathbf{b_2})$$
p-p transv. overlap function (mb⁻¹): $t(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} - \mathbf{b}) d^2 b_1$

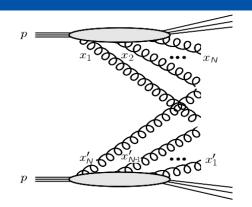
Assumption 2: The longitudinal double-PDF is the product of 2 single PDF (i.e. no parton correlations in colour, momentum, flavour, spin,...)

$$D_h^{ij}(x_1, x_2; Q_1^2, Q_2^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2)$$

 $\sigma_{\rm eff} = <$ Interparton transv. separation>². Derivable from geometric p-p overlap with naive expected size of $\sigma_{\rm eff} \approx 30$ mb

$\sigma_{\rm eff} = \int d^2b (t^2(\mathbf{b}))$
--

But experimentally: $\sigma_{\text{eff}}(\text{exp}) \approx 15 \text{ mb.}$ proton "hard" radius: r = 0.3-0.7 fm appears smaller than e.m. one:


Model	Form of density,	Predictions		Measurements
for density	dN/d^3r	$\operatorname{rms} r$	$\sigma_{ m eff}$	Scale (fm)
Solid sphere	Constant, r <rp< td=""><td>$\sqrt{3/5}r_p$</td><td>$4\pi r_p^2/4.6$</td><td>$r_p = 0.73$</td></rp<>	$\sqrt{3/5}r_p$	$4\pi r_p^2/4.6$	$r_p = 0.73$
Gaussian	$e^{-r^2/2\Sigma^2}$	$\sqrt{3}\Sigma$	$4\pi\Sigma^2$	$\Sigma = 0.34$
Exponential	$e^{-r/\lambda}$	$\sqrt{12}\lambda$	$35.5\lambda^2$	$\lambda = 0.20$
Fermi, $\lambda/r_0 = 0.2$	$(e^{(r-r_0)/\lambda}+1)^{-1}$	$1.07r_0$	$4.6r_0^2$	$r_0 = 0.56$

Understandable: Probability of 2nd scatt. is larger if 1st scatter already took place ("centrality bias").

N-parton scattering x-sections (p-p)

Assuming that the probabilities for N hard collisions to be independent of each other, one can write a generic pocket-formula for NPS x-section:

$$\sigma_{hh' o a_1 \dots \, a_n}^{ ext{NPS}} = \left(rac{ extit{m}}{n!}
ight) \, rac{\prod_{i=1}^{N} \sigma_{hh' o a_n}^{ ext{SPS}}}{\sigma_{ ext{eff}, ext{NPS}}^{n-1}}$$

normalized by the Nth-1 power of an effective x-section ($\sigma_{\text{eff,NPS}}$) plus a trivial combinatorial factor (m/n!) to avoid double,triple,N-counting in case of same particles produced:

- DPS: m = 1 if $a_1 = a_2$; and m = 2 if $a_1 \neq a_2$.
- TPS: m = 1 if $a_1 = a_2 = a_3$; m = 3 if $a_1 = a_2$, or $a_1 = a_3$, or $a_2 = a_3$; and m = 6 if $a_1 \neq a_2 \neq a_3$.
- Ignoring all parton correlations, $\sigma_{\text{eff,NPS}}$ is the inverse Nth–1 power of the integral of the Nth power of the pp overlap function:

$$\sigma_{
m eff,NPS} = \left\{ \int d^2b \, T^n(\mathbf{b})
ight\}^{-1/(n-1)}$$

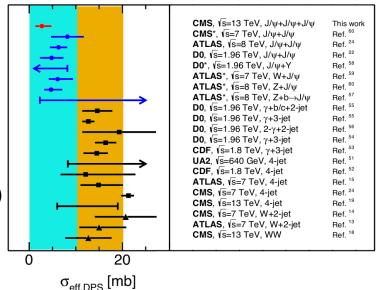
A generic framework for the most economical (geometrical) expressions for N-parton scattering cross sections is available.

Double Parton Scatterings

DPS/TPS studies at the LHC

- Motivation for studies of multiple production of hard/heavy particles:
 - (1) Generalized PDFs (x,Q^2,b) of the proton, in particular the unknown energy evolution of transverse proton profile.
 - (2) Role of partonic correlations (in space, p, x, flavour, colour, spin,...) in hadronic wave functions.
 - (3) Backgrounds for rare (B)SM resonance decays w/ multiple heavy particles
- "Pocket formula" results at the LHC:

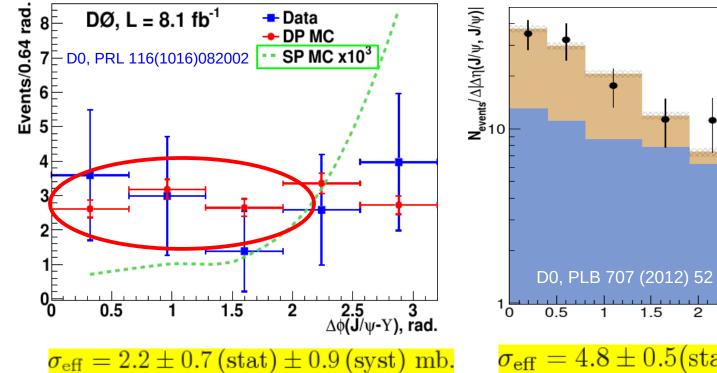
$$\sigma_{ ext{DPS}}^{ ext{pp} o\psi_1\psi_2+X} = \left(rac{m}{2}
ight)\,rac{\sigma_{ ext{SPS}}^{ ext{pp} o\psi_1+X}\sigma_{ ext{SPS}}^{ ext{pp} o\psi_2+X}}{\sigma_{ ext{eff,DPS}}}$$

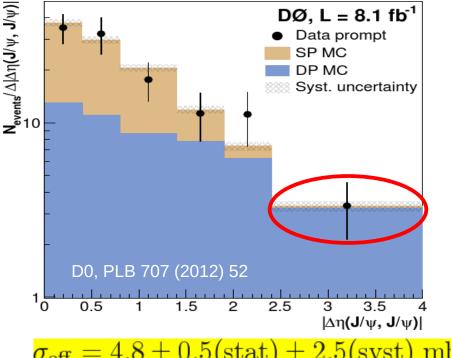

 $\sigma_{\text{eff}} \sim < \text{Interparton transv. separation} > 2$

derivable from p-p transverse overlap:

 $\sigma_{\rm eff} \sim 20-30$ mb (PYTHIA8/HERWIG p form-factor)

 $\sigma_{\text{eff}} \sim 15 \text{ mb}$ (from DPS of jets, EWK bosons)

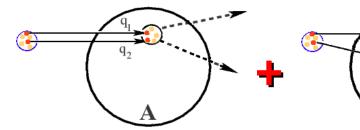

 $\sigma_{\text{eff}} \sim 5 \text{ mb}$ (from di-quarkonia)

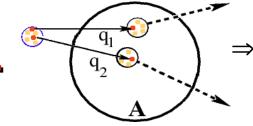


- Reasons: Parton correlations? x-,flavour-dependent transverse p profile?
- Novel observables: DPS with ions, Triple-parton scatterings (TPS) in particular with quarkonia final states: largest pQCD cross sections

Examples of DPS with $Q\overline{Q}$: $p-\overline{p} \rightarrow J/\Psi+Y$, $J/\Psi J/\Psi$

- Uncorrelated J/Ψ+Y azimuthal production in ppbar at 1.96 TeV:
- Uncorrelated J/Ψ+J/Ψ rapidity production in ppbar at 1.96 TeV:




- $\sigma_{\rm eff} = 4.8 \pm 0.5 ({\rm stat}) \pm 2.5 ({\rm syst}) \; {\rm mb}$
- Extracted $\sigma_{\text{eff}} \approx$ 2–5 mb (but not fwd, LHCb) are factors of ~3–4 smaller than σ_{eff} derived for DPS processes with harder scatterings (W,j, γ):
 - Gluon, sea-, valence-quark dependence of DPS?

Double Parton Scattering x-sections in p-A

Two contributions to DPS x-section in p-A:

[DdE, Snigirev, PLB 718 (2013)1395] [Also Treleani, Strikman, Blok...]

$$\Rightarrow \sigma_{(pA)}^{DPS} = \sigma_{(pA)}^{DPS,1} + \sigma_{(pA)}^{DPS,2}$$

$$\sigma^{\text{DPS},1}_{(pA \to ab)} = A \cdot \sigma^{\text{DPS}}_{(pN \to ab)}$$

$$\sigma_{(pA \to ab)}^{\text{DPS},1} = A \cdot \sigma_{(pN \to ab)}^{\text{DPS}} + \sigma_{(pA \to ab)}^{\text{DPS},2} = \sigma_{(pN \to ab)}^{\text{DPS}} \cdot \sigma_{\text{eff,pp}} \cdot F_{pA}$$
$$F_{pA} = \int d^2r \, T^2 \, (\mathbf{r}) = 30.4 \, \text{mb}^{-1}$$

p-A overlap function:

 $F_{pA} = \int d^2r T_{pA}^2(\mathbf{r}) = 30.4 \text{ mb}^{-1}$ Pb Woods-Saxon density (r=6.62 fm, a=0.546 fm)

Relative weight of DPS terms: $\sigma^{DPS,1}$: $\sigma^{DPS,2} = 0.7 : 0.3$ (small A), 0.33 : 0.66 (large A)

"Pocket" formula for DPS p-A x-section:

$$\sigma_{(pA \to ab)}^{\text{DPS}} = \left(\frac{m}{2}\right) \frac{\sigma_{(pN \to a)}^{\text{SPS}} \cdot \sigma_{(pN \to b)}^{\text{SPS}}}{\sigma_{\text{eff,pA}}}$$

$$\sigma_{\text{eff,pA}} = \frac{\sigma_{\text{eff,pp}} (\sigma_{\text{eff,pp}} = 13 \pm 2\text{mb})}{A + \sigma_{\text{eff,pp}} F_{pA}} = 21.5 \pm 1.1 \,\mu\text{b}$$

- ► Ratio of DPS p-Pb/p-p x-sections: $\sigma_{\rm eff,DPS}/\sigma_{\rm eff,DPS,pA} \approx [A + A^{4/3}/\pi]$
- DPS x-sections are large in p-A: a factor \times 600 (not \times 208) for p-Pb (!)
- Pb transverse density (F_{pA}) well known: Alternative extraction of $\sigma_{eff,pp}$

QaT2024, Aussois, Jan'24 David d'Enterria (CERN)

Examples: DPS x-sections in p-Pb (8.8 TeV)

[DdE, Snigirev, NPA 931 (2014) 303]

Cross sections & rates for DPS processes with J/ψ,Y & W, Z bosons [Also V. Goncalves (2018): double-J/ψ; Paukunen (2019): double-D,...]

pPb (8.8 TeV)	$J/\psi + J/\psi$	$J/\psi + \Upsilon$	$J/\psi + W$	$J/\psi + { m Z}$
$\sigma^{ ext{SPS}}_{ ext{pN} o a}, \sigma^{ ext{SPS}}_{ ext{pN} o b}$	$45~\mu\mathrm{b}~(\times2)$	$45~\mu\mathrm{b},2.6~\mu\mathrm{b}$	$45~\mu\mathrm{b},60~\mathrm{nb}$	$45~\mu\mathrm{b},35~\mathrm{nb}$
$\sigma_{ m pPb}^{ m \tiny DPS}$	$45~\mu\mathrm{b}$	$5.2~\mu\mathrm{b}$	$120~\mathrm{nb}$	70 nb
$N_{\rm pPb}^{\rm DPS} \ (1 \ {\rm pb}^{-1})$	~65	~60	~15	~3
	$\Upsilon + \Upsilon$	$\Upsilon+W$	$\Upsilon + Z$	ssWW
$\sigma^{ ext{SPS}}_{ ext{pN} o a}, \sigma^{ ext{SPS}}_{ ext{pN} o b}$	$2.6~\mu b~(\times 2)$	$2.6~\mu\mathrm{b},60~\mathrm{nb}$	$2.6~\mu\mathrm{b},35~\mathrm{nb}$	60 nb (×2)
$\sigma_{ m pPb}^{ m DPS}$	150 nb	$7~\mathrm{nb}$	4 nb	$150~\mathrm{pb}$
$N_{\rm pPb}^{\rm DPS} \ (1 \ {\rm pb}^{-1})$	~15	~8	~ 1.5	~4

Leptonic final states: BR(J/ ψ ,Y,W,Z) = 6%, 2.5%, 11%, 3.4% Accept.*Effic.= 1% (J/ ψ , |y|=0,2), 20% (Y, |y|<2.5), 50% (W,Z |y|<2.4)

- Many double hard scatterings processes with visible p-Pb x-sections at the LHC. (Note: J/ψ values are per unit-|y|).
- lacktriangle Useful independent extraction of $\sigma_{
 m eff,pp}$

QaT2024, Aussois, Jan'24 10/26 David d'Enterria (CERN)

First study of DPS in p-Pb (LHCb, 8.2 TeV)

[LHCb, PRL 125 (2020) 212001]

⊗d'Enterria et al.

 $y(D^0, J/\psi)$

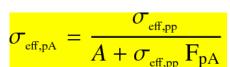
 $-\phi J/\psi D^0$

Double-charm production in p-Pb collisions:

- select pairs of D^0 , \overline{D}^0 , D^+ , D^- , D_s^+ , $D_s^$ and J/ψ
- sort them into pair production and "DPS" categories $\sigma_{C_1,C_2} = \alpha \frac{\sigma_{C_1} \sigma_{C_2}}{\sigma_{\mathsf{eff}}}$

$$R_{forward}^{D_1D_2} = rac{\sigma_{D_1D_2}}{\sigma_{D_1ar{D}_2}} = 0.308 \pm 0.015 \pm 0.010$$
 $R_{backward}^{D_1D_2} = 0.391 \pm 0.019 \pm 0.025$ $R_{pp}^{D^0D^0} = 0.109 \pm 0.008$

Like sign charm fraction tripled!


$$\sqrt{\mathrm{s_{NN}}} = 8.2~\mathrm{TeV}$$
 Phys. Rev. Lett. 125 (2020) 212001

Albert Bursche

Useful independent

extraction of $\sigma_{\text{eff,pp}}$

charming DPS

 $\sigma_{\text{eff,pp}} = \frac{\sigma_{\text{eff,pp}}}{A + \sigma_{\text{eff,pp}} F_{pA}} \quad \sigma_{\text{eff,pp}}(D^0D^0) = 7-16 \text{ mb}$ $\sigma_{\text{eff,pp}}(J/\psi D^0) = 13-40 \text{ mb}$

10th October 2021

LHCb

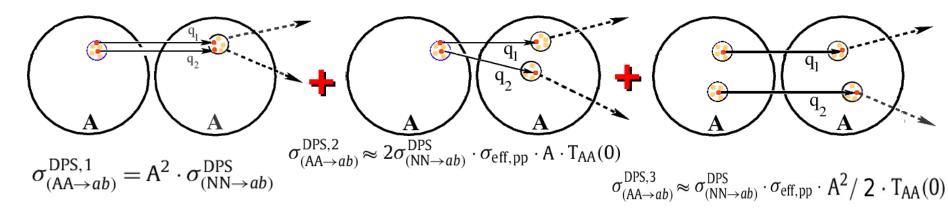
0.8

0.6

0.4

0.2

 $\sqrt{s_{NN}} = 8.16 \text{ TeV}$


nPDF effects visible in -y/+y results.

(LHCb should quote the equivalent $\sigma_{\text{eff,pp}}$ values...)

Double Parton Scattering x-sections in A-A

[DdE, Snigirev, PLB727 (2013)157]

Three contributions to DPS x-section in A-A:

- ► Third " N_{coll} term" $\propto A^2 \cdot T_{AA}(0)$, clearly dominant (1:4:200 ratio for PbPb) "Genuine" DPS (within same nucleon): ~2.5% (in Pb-Pb) or ~13% (Ar-Ar)
- "Pocket formula" for DPS A-A x-section:

$$\sigma_{(\text{AA} \to ab)}^{\text{DPS}} = \left(\frac{m}{2}\right) \frac{\sigma_{(\text{NN} \to a)}^{\text{SPS}} \cdot \sigma_{(\text{NN} \to b)}^{\text{SPS}}}{\sigma_{\text{eff}, \text{AA}}} \qquad \sigma_{\text{eff}, \text{AA}}^{\text{SPS}} = \frac{1}{A^2 [\sigma_{\text{eff}, \text{pp}}^{-1} + \frac{2}{A} T_{\text{AA}}(0) + \frac{1}{2} T_{\text{AA}}(0)]} = 1.5 \text{ nb}$$

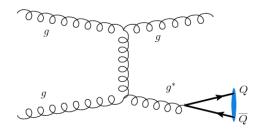
- ► Ratio of DPS Pb-Pb/p-p x-sections: $\sigma_{\rm eff,pp}/\sigma_{\rm eff,AA} \propto {\rm A}^{3.3}/5 \simeq 9 \cdot 10^6$!
- Strong centrality dependence:

$$\sigma_{(\mathsf{AA} o ab)}^{\mathsf{DPS}}[b_1, b_2] pprox \left(rac{m}{2}
ight) \sigma_{(\mathsf{NN} o a)}^{\mathsf{SPS}} \cdot \sigma_{(\mathsf{NN} o b)}^{\mathsf{SPS}} \cdot f_{\%} \sigma_{\mathsf{AA}} \cdot \left\langle \mathsf{T}_{\mathsf{AA}}[b_1, b_2] \right\rangle^2$$

Examples: DPS x-sections in Pb-Pb (5.5 TeV)

[DdE, Snigirev, NPA 931 (2014)303]

■ Cross sections & rates for DPS processes with $J/\psi, Y \& W, Z$ bosons:


PbPb (5.5 TeV)	$J/\psi + J/\psi$	$J/\psi + \Upsilon$	$J/\psi + W$	$J/\psi + Z$
$\sigma_{ ext{NN} o a}^{ ext{SPS}}, \sigma_{ ext{NN} o b}^{ ext{SPS}}$	25 μ b (×2)	$25~\mu\mathrm{b},1.7~\mu\mathrm{b}$	$25~\mu\mathrm{b},30~\mathrm{nb}$	$25~\mu\mathrm{b},20~\mathrm{nb}$
$\sigma^{ ext{DPS}}_{ ext{PbPb}}$	$210~\mathrm{mb}$	$28~\mathrm{mb}$	$500~\mu\mathrm{b}$	$330~\mu\mathrm{b}$
$N_{\text{PbPb}}^{\text{DPS}}$ (1 nb^{-1})	~ 250	~340	$\sim \!\! 65$	~14
	$\Upsilon + \Upsilon$	Υ+W	Υ +Z	ssWW
$\sigma^{ ext{SPS}}_{ ext{NN} o a}, \sigma^{ ext{SPS}}_{ ext{NN} o b}$	1.7 μ b (×2)	$1.7~\mu\mathrm{b},30~\mathrm{nb}$	$1.7~\mu\mathrm{b},~20~\mathrm{nb}$	30 nb (×2)
$\sigma^{ ext{DPS}}_{ ext{PbPb}}$	$960~\mu\mathrm{b}$	$34~\mu\mathrm{b}$	$23~\mu\mathrm{b}$	$630~\mathrm{nb}$
$N_{\text{PbPb}}^{\text{DPS}}$ (1 nb^{-1})	~ 95	~35	~8	~15

Leptonic final states: BR(J/ ψ ,Y,W,Z) = 6%, 2.5%, 11%, 3.4% Accept.*effic.= 1% (J/ ψ , |y|=0,2), 20% (Y, |y|<2.5), 50% (W,Z |y|<2.4)

■ Visible rates for many double hard scatterings processes in Pb-Pb! (Note: J/ψ values are per unit-|y|).

Example: Pb-Pb → J/ψ J/ψ at 5.5 TeV

■ FONLL+CEM (R.Vogt): Single-parton J/ψ

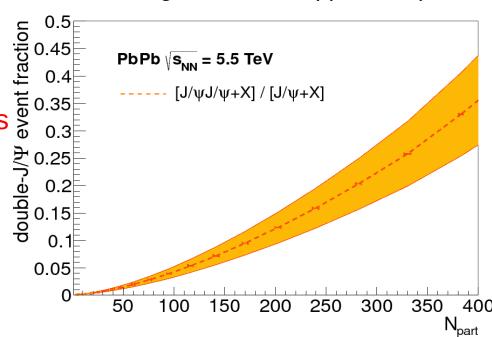
- NLO accuracy.
- Scales: $\mu_{\rm p}$ = $\mu_{\rm p}$ = 1.5·m_c
- Good agreement with Tevatron&LHC data
- EPS09 Pb nPDF

20–35% shadowing x-section reduction At 5.5 TeV: $\sigma^{\text{DPS}}(\text{Pb-Pb} \rightarrow J/\psi J/\psi X) = 200 \pm 50 \text{ mb}$

20% of min.bias Pb-Pb collisions have two J/ ψ produced!

Example: Pb-Pb → J/ψ J/ψ at 5.5 TeV

[DdE, Snigirev, PLB727 (2013)157]

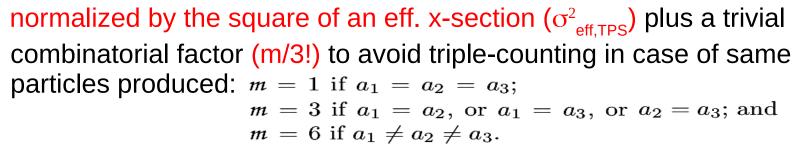

Visible rates:

- ▶ Fiducial x-section per unit-y: $d\sigma_{J/\psi}/dy \approx \sigma_{J/\psi}/8$
- ► BR(J/ ψ → I⁺I⁻) ≈ 6%
- ► Typical ALICE/CMS acceptance & efficiencies: $\epsilon \approx 1/12$
- Expected dimuon rates including yield all loses & 1 nb⁻¹ integ. luminosity:

$$\mathcal{N} = \sigma_{\text{Pb-Pb} \to \text{J/}\psi \text{J/}\psi'}^{\text{DPS}} / (\varepsilon \cdot \mathcal{L}_{\text{int}}) \approx 250 \text{ double-J/}\psi \text{ per year (per unit-|y|)}$$
(x2 less including final-state suppression)

Centrality dependence of double-J/ψ fraction:
 35% of central Pb-Pb collisions have two J/ψ produced!

Seeing 2 J/ ψ on event-by-event basis not to be blindly taken as signal of c-cbar recombination.



Triple Parton Scatterings

Triple parton scattering x-sections (p-p)

Assuming that the probabilities for 3 hard collisions to be independent of each other, one can again write a pocket-formula for TPS x-section:

$$\sigma_{hh' \to a_1 a_2 a_3}^{\text{TPS}} = \left(\frac{m}{3!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdot \sigma_{hh' \to a_2}^{\text{SPS}} \cdot \sigma_{hh' \to a_3}^{\text{SPS}}}{\sigma_{\text{eff,TPS}}^2}$$

- How to interpret $\sigma_{\text{eff,TPS}}$? Relationship with σ_{eff} ? What values to expect?
- Most generic expression for TPS cross section:

$$\begin{split} \sigma_{hh'\to a_1 a_2 a_3}^{\text{\tiny TPS}} &= \left(\frac{\textit{m}}{3!}\right) \sum_{i,j,k,l,m,n} \int \Gamma_h^{ijk} x_1, x_2, x_3; \, \mathbf{b_1}, \, \mathbf{b_2}, \, \mathbf{b_3}; \, Q_1^2, \, Q_2^2, \, Q_3^2) \\ &\times \hat{\sigma}_{a_1}^{il} \left(x_1, x_1', \, Q_1^2\right) \cdot \hat{\sigma}_{a_2}^{jm} \left(x_2, x_2', \, Q_2^2\right) \cdot \hat{\sigma}_{a_3}^{kn} \left(x_3, x_3', \, Q_3^2\right) \\ &\times \Gamma_{h'}^{lmn} \left(x_1', \, x_2', \, x_3'; \, \mathbf{b_1} - \mathbf{b}, \, \mathbf{b_2} - \mathbf{b}, \, \mathbf{b_3} - \mathbf{b}; \, Q_1^2, \, Q_2^2, \, Q_3^2\right) \\ &\times dx_1 dx_2 dx_3 dx_1' dx_2' dx_3' d^2 b_1 d^2 b_2 d^2 b_3 d^2 b. \end{split}$$
 Generalized PDFs = $\mathbf{f}(\mathbf{x}, \mathbf{Q}^2, \mathbf{b})$

QaT2024, Aussois, Jan'24 David d'Enterria (CERN)

Triple parton scattering x-sections (p-p)

Assumption 1: Factorize generalized Triple-PDF into longitudinal &

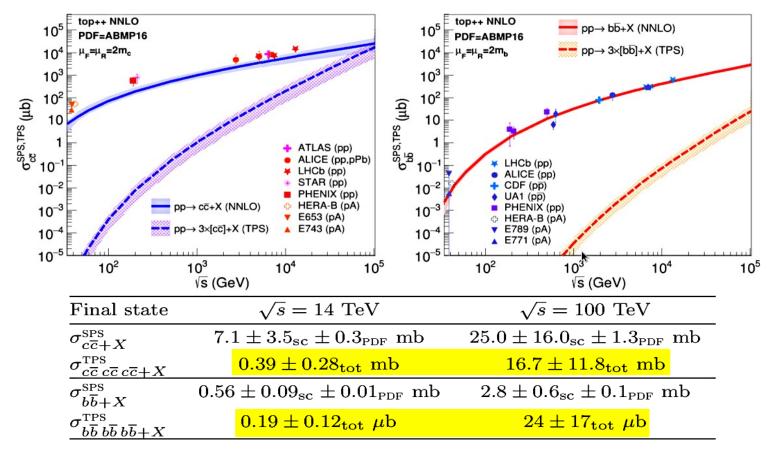
transverse components:
$$\Gamma_h^{ijk}(x_1,x_2,x_3;\mathbf{b_1},\mathbf{b_2},\mathbf{b_3};Q_1^2,Q_2^2,Q_3^2)$$
 $= D_h^{ijk}(x_1,x_2,x_3;Q_1^2,Q_2^2,Q_3^2) f(\mathbf{b_1}) f(\mathbf{b_2}) f(\mathbf{b_3}),$ p-p transv. overlap function (mb⁻¹): $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} - \mathbf{b}) d^2b_1$, with $\int d^2b T(\mathbf{b}) = 1$.

 Assumption 2: Longitudinal triple-PDF is the product of 3 single PDFs (i.e. no parton correlations in colour, momentum, flavour, spin,...)

$$D_h^{ijk}(x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2) D_h^k(x_3; Q_3^2)$$

■ Then, $\sigma_{\text{eff,TPS}}^2$ is simply the inverse of the cube of the transv. pp overlap:

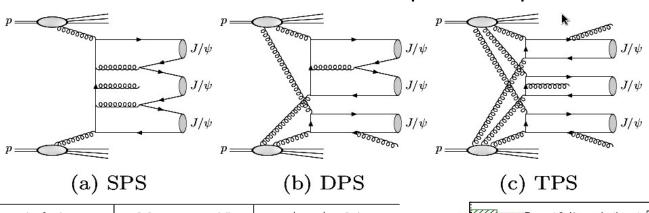
$$\sigma_{ ext{eff,TPS}}^2 = \left[\int d^2 b \, T^3(\mathbf{b}) \right]^{-1}$$

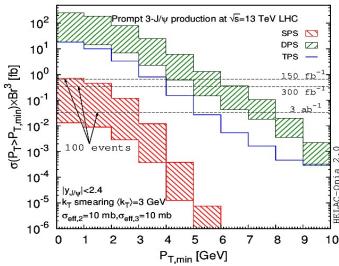

■ By testing many proton overlaps/profiles (hard sphere, Gaussian, expo, dipole fit), we find a close relationship between $\sigma_{\text{eff,TPS}} \& \sigma_{\text{eff}}$:

$$\sigma_{\rm eff,TPS} = k \times \sigma_{\rm eff,DPS}$$
, with $k = 0.82 \pm 0.11$

Measuring TPS provides independent info on σ_{eff} and p transv. profile.

Triple charm & beauty production (p-p)


- TPS x-sections are small: $\sigma(SPS)^3/\sigma(eff)^2 \approx 1$ fb for $\sigma(SPS) \approx 1$ μb , but rise fast (cube of SPS) with c.m. energy.
- **Charm & beauty** have large enough $\sigma(SPS)$ to attempt TPS observation:


■ Triple charm amounts to ~15% (50%) of inclusive charm x-sections at LHC (FCC). Contribution from triple-SPS, double-SPS processes?

Triple-J/ψ from SPS production (p-p)

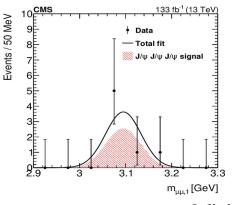
■ H.-S. Shao et al. [arXiv:1902.04949, PRL 122(2019)192002] computed all triple-J/Ψ x-sections with SPS HELAC-ONIA plus TPS pocket formula:

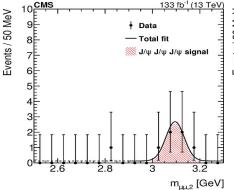
		inclusive	$2.0 < y_{J/\psi} < 4.5$	$ y_{J/\psi} < 2.4$
	SPS	$0.41^{+2.4}_{-0.34} \pm 0.0083$	$(1.8^{+11}_{-1.5} \pm 0.18) \times 10^{-2}$	$(8.7^{+56}_{-7.5} \pm 0.098) \times 10^{-2}$
13 TeV	DPS	$(190^{+501}_{-140}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(7.0^{+18}_{-5.1}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(50^{+140}_{-37}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$130 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff,3}}}\right)^2$	$1.3 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$18 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
	SPS	$0.46^{+2.9}_{-0.39} \pm 0.022$	$(3.2^{+22}_{-2.8} \pm 0.21) \times 10^{-2}$	$(5.8^{+39}_{-5.1} \pm 0.29) \times 10^{-2}$
$27 \mathrm{TeV}$	DPS	$(560^{+2900}_{-480}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(19^{+97}_{-16}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(120^{+630}_{-100}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$570 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff,3}}}\right)^2$	$5.0 imes \left(rac{10 ext{ mb}}{\sigma_{ ext{eff},3}} ight)^2$	$57 imes \left(rac{10 ext{ mb}}{\sigma_{ ext{eff},3}} ight)^2$
	SPS	$0.59^{+4.4}_{-0.52} \pm 0.016$	$(3.0^{+25}_{-2.7} \pm 0.23) \times 10^{-2}$	$(7.2^{+63}_{-6.5} \pm 0.38) \times 10^{-2}$
$75 \mathrm{TeV}$	DPS		$(57^{+340}_{-50}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(310^{+2000}_{-270}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$3900 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff,3}}}\right)^2$	$27 imes \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}} \right)^2$	$260 imes \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}} \right)^2$
100 TeV	SPS	$1.1^{+8.4}_{-1.0} \pm 0.044$	$(4.5^{+33}_{-4.0} \pm 0.72) \times 10^{-2}$	$(36^{+290}_{-32} \pm 1.8) \times 10^{-2}$
	DPS	$(3400^{+19000}_{-2900}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(100^{+550}_{-86}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(490^{+3000}_{-430}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	/ \2	$45 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{max}}}\right)^2$	$380 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{max}}}\right)^2$

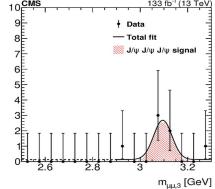
■ SPS negligible, DPS (TPS) dominates at low (high) p_{T} .

Clear sensitivity to $\sigma_{\text{eff}}!$

TPS in p-p collisions (13 TeV, CMS)

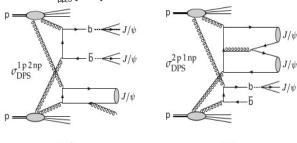

■ Triple parton scatterings x-sections in p-p: alternative extraction of $\sigma_{\text{eff.DPS}}$

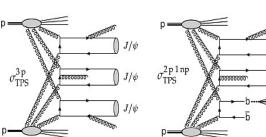

$$\sigma_{hh' \to a_1 a_2 a_3}^{\text{TPS}} = \left(\frac{m}{3!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdot \sigma_{hh' \to a_2}^{\text{SPS}} \cdot \sigma_{hh' \to a_3}^{\text{SPS}}}{\sigma_{\text{eff}, \text{TPS}}^2}$$


$$\sigma_{\rm eff,TPS}$$
 = (0.82 ± 0.11) $\sigma_{\rm eff,DPS}$

[DdE, Snigirev, PRL 118(2017)122001]

■ First observation of triple-J/ψ production (CMS):

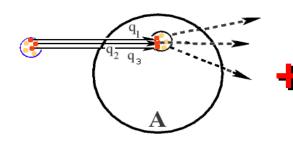


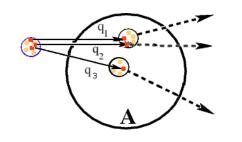

[arXiv:2111.05370 Nat. Phys. to appear]

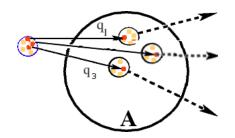
- Measurement of fiducial cross section $\sigma(pp \rightarrow 3J/\psi) = 272^{+141}_{-104}$ (stat) ± 17 (syst) fb
- Pocket formula with (N)NLO for single-,double-, triple-J/ψ SPS x-sections:

• Triple-J/ψ fractions: ~6% SPS, ~74% DPS, ~20% TPS -

- $\sigma_{\text{eff,DPS}} = 2.7^{+1.4}_{-1.0} \text{ (exp)} + \frac{1.5}{1.0} \text{ (theo)}$ mb consistent with for di-quarkonia (lower than jet/ γ /W/Z DPS results):
- q/g x-dependent transverse profile & correlations






Triple Parton Scattering x-sections in p-A

Three contributions to TPS x-section in p-A:

[DdE, Snigirev, EPJC 78 (2018)359]

$$\sigma_{\mathrm{pA} o abc}^{\mathrm{\scriptscriptstyle TPS},1} = A \cdot \sigma_{\mathrm{pN} o abc}^{\mathrm{\scriptscriptstyle TPS}}$$

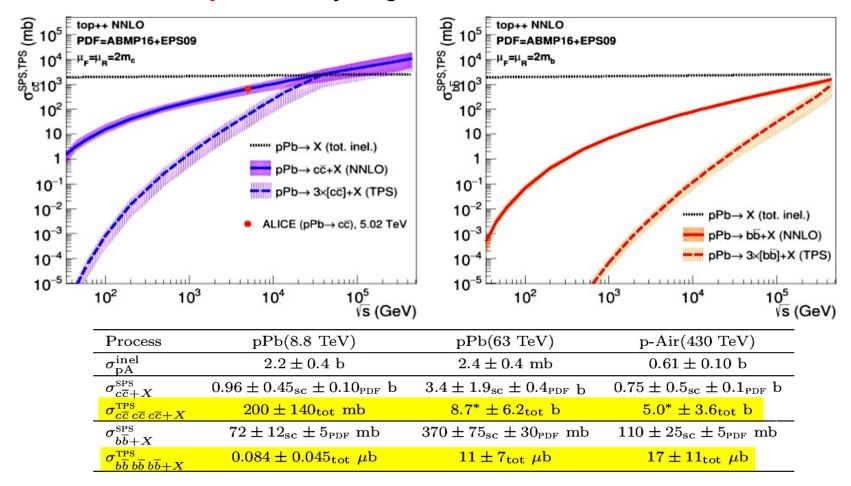
$$\sigma_{\mathrm{pA} o abc}^{\mathrm{\scriptscriptstyle TPS},2} = \sigma_{\mathrm{pN} o abc}^{\mathrm{\scriptscriptstyle TPS}} \cdot 3 \, rac{\sigma_{\mathrm{eff},\mathrm{\scriptscriptstyle TPS}}^2}{\sigma_{\mathrm{eff},\mathrm{\scriptscriptstyle DPS}}} \, F_{\mathrm{pA},\mathrm{res}}$$

$$\sigma_{\mathrm{pA}\to abc}^{\mathrm{\scriptscriptstyle TPS},1} = A \cdot \sigma_{\mathrm{pN}\to abc}^{\mathrm{\scriptscriptstyle TPS}} \qquad \sigma_{\mathrm{pA}\to abc}^{\mathrm{\scriptscriptstyle TPS},2} = \sigma_{\mathrm{pN}\to abc}^{\mathrm{\scriptscriptstyle TPS}} \cdot 3 \\ \frac{\sigma_{\mathrm{eff},\mathrm{\scriptscriptstyle TPS}}^2}{\sigma_{\mathrm{eff},\mathrm{\scriptscriptstyle DPS}}} F_{\mathrm{pA}}, \qquad \sigma_{\mathrm{pA}\to abc}^{\mathrm{\scriptscriptstyle TPS},3} = \sigma_{\mathrm{pN}\to abc}^{\mathrm{\scriptscriptstyle TPS}} \cdot \sigma_{\mathrm{eff},\mathrm{\scriptscriptstyle TPS}}^2 \cdot C_{\mathrm{pA}}, \quad \text{with} \\ C_{\mathrm{pA}} = \frac{(A-1)(A-2)}{A^2} \int d^2b \, T_{\mathrm{pA}}^3(\mathbf{b}) \, ,$$

Relative weight of TPS terms: $\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS},1}:\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS},2}:\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS},3}=1:4.54:3.56$

(TPS yields in pPb: 10% "genuine", 50% involve 2 nucleons, 40% involve 3 different Pb nucleons)

"Pocket" formula for TPS p-A x-section:


$$\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS}} = \left(\frac{m}{6}\right) \frac{\sigma_{\mathrm{pN}\to a}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to b}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to c}^{\mathrm{SPS}}}{\sigma_{\mathrm{eff,TPS,pA}}^2}$$

$$\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS}} = \left(\frac{m}{6}\right) \frac{\sigma_{\mathrm{pN}\to a}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to b}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to c}^{\mathrm{SPS}}}{\sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}}^{2}} \qquad \sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}}^{\mathrm{SPS}} = \left[\frac{A}{\sigma_{\mathrm{eff},\mathrm{TPS}}^{2}} + \frac{3 \, F_{\mathrm{pA}} [\mathrm{mb}^{-1}]}{\sigma_{\mathrm{eff},\mathrm{DPS}}} + C_{\mathrm{pA}} [\mathrm{mb}^{-2}]\right]^{-1/2}$$

- $ightharpoonup \sigma_{\text{eff,TPS,pPb}} = 0.29 \pm 0.04 \text{ mb}$ (×45 times the p-p case with $\sigma_{\text{eff,TPS}} = 12.5 \text{ mb}$)
- TPS x-sections are large in p-A: a factor \times 45 for p-Pb compared to p-p
- Pb transv. density (F_{pA}, C_{pA}) well-known: Alternative extraction of $\sigma_{eff,pp}$

Example: Triple charm & beauty in p-Pb colls.

Charm & beauty have very large TPS x-sections at the LHC & above:

- Triple charm amounts to ~20% (~100%!) of inclusive charm x-sections at LHC (FCC). Large triple J/ Ψ production at FCC: $\sigma(J/\psi J/\psi J/\psi + X) \approx 1 \text{ mb}$
- \blacksquare Triple beauty amounts to ~3% of inclusive beauty x-sections at FCC.

Summary: DPS studies

- What's the parton transverse density of a proton? Its energy evolution? How do partons correlate (kinemat., quantum numbers) transversely?
- Double hard parton scatterings in p-p collisions:

$$\sigma^{\text{DPS}}_{(hh'\to ab)} = \left(\frac{m}{2}\right) \frac{\sigma^{\text{SPS}}_{(hh'\to a)} \cdot \sigma^{\text{SPS}}_{(hh'\to b)}}{\sigma_{\text{eff}}}$$

In absence of parton correlations:

$$\sigma_{\rm eff} = \left[\int d^2 b t^2(\mathbf{b}) \right]^{-1}$$
 geom. overlap area of 2 proton transv.

- $\sigma_{\rm eff}(\exp) \approx 2-20$ mb at Tevatron/LHC. Can HI colls. help to clarify this?
- Available DPS x-sections "pocket formula" for p-A and A-A:

$$\sigma_{\text{eff,AA}} = \frac{1}{A^2 [\sigma_{\text{eff,AA}}^{-1} + \frac{2}{4} T_{\text{AA}}(0) + \frac{1}{2} T_{\text{AA}}(0)]} = 1.5 \text{ nb}$$

 $\sigma_{\text{eff,pA}} = \frac{\sigma_{\text{eff,pp}}}{A + \sigma_{\text{eff,pp}} F_{\text{pA}}} = 21.5 \pm 1.1 \,\mu\text{b} \qquad \sigma_{\text{eff,AA}} = \frac{1}{A^2 [\sigma_{\text{eff,pp}}^{-1} + \frac{2}{A} T_{\text{AA}}(0) + \frac{1}{2} T_{\text{AA}}(0)]} = 1.5 \,\text{nb}$

Huge enhancements! $\sigma_{\rm eff,DPS}/\sigma_{\rm eff,DPS,pA} \approx 600$, $\sigma_{\rm eff,pp}/\sigma_{\rm eff,AA} \propto A^{3.3}/5 \simeq 9 \cdot 10^6$

- p-Pb: Large DPS yields in p-A (in particular with quarkonia) provide many useful independent extractions of σ_{effnn} . 1st-ever measurement by LHCb.
- Pb-Pb: Large DPS but dominated by scatts. from different nucleons. (~16% sensitivity on $\sigma_{\text{eff,pp}}$ from DPS with lighter ions such as Ar-Ar).

Summary: TPS studies

- What's the parton transverse density of a proton? Its energy evolution? How do partons correlate (kinemat., quantum numbers) transversely?
- Derived a generic expression for NPS x-sections in p-p collisions:

$$\sigma_{hh' o a_1 \dots a_n}^{ ext{NPS}} = \left(rac{m}{n!}
ight) \cdot \frac{\prod_{i=1}^{N} \sigma_{hh' o a_n}^{ ext{SPS}}}{\sigma_{ ext{eff,NPS}}^{n-1}}$$

$$\sigma_{ ext{eff,NPS}} = \left\{ \int d^2 b \, T^n(\mathbf{b}) \right\}^{-1/(n-1)}$$

And used it to derive pocket formula for triple parton scatterings in p-p...

$$\sigma_{hh' \to a_1 a_2 a_3}^{\text{TPS}} = \left(\frac{m}{3!}\right) \left. \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdot \sigma_{hh' \to a_2}^{\text{SPS}} \cdot \sigma_{hh' \to a_3}^{\text{SPS}}}{\sigma_{\text{eff,TPS}}^2} \right|$$

$$\sigma_{
m eff, TPS}^2 = \left[\int d^2 b \, T^3(\mathbf{b}) \right]^{-1}$$

Summary: TPS studies

- What's the parton transverse density of a proton? Its energy evolution? How do partons correlate (kinemat., quantum numbers) transversely?
- Triple hard parton scatterings in p-p collisions:

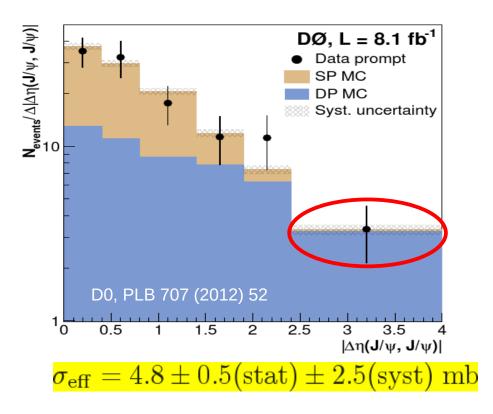
$$\sigma^{\text{\tiny TPS}}_{hh' \to a_1 a_2 a_3} = \left(\frac{\textit{m}}{3!}\right) \, \frac{\sigma^{\text{\tiny SPS}}_{hh' \to a_1} \cdot \sigma^{\text{\tiny SPS}}_{hh' \to a_2} \cdot \sigma^{\text{\tiny SPS}}_{hh' \to a_3}}{\sigma^2_{\text{\tiny eff,TPS}}}$$

(closely related to DPS in the absence of parton correlations):

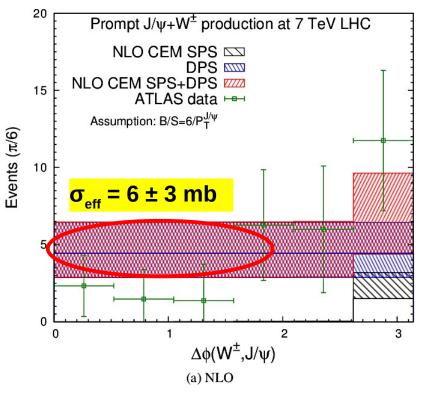
$$\sigma_{\text{eff,TPS}}$$
 = (0.82 ± 0.11) $\sigma_{\text{eff,DPS}}$

- Triple charm amounts to ~15% of inclusive charm x-sections in p-p collisions at the LHC. Triple-J/ Ψ fully dominated by DPS/TPS: "golden channel" to extract $\sigma_{\text{eff,nn}}$: 1st-ever observation by CMS.
- Derived TPS x-sections "pocket formula" for p-A:

$$\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS}} = \left(\frac{m}{6}\right) \frac{\sigma_{\mathrm{pN}\to a}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to b}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to c}^{\mathrm{SPS}}}{\sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}}^2}$$


$$\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS}} = \left(\frac{m}{6}\right) \frac{\sigma_{\mathrm{pN}\to a}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to b}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to c}^{\mathrm{SPS}}}{\sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}}^{2}} \qquad \sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}}^{\mathrm{SPS}} = \left[\frac{A}{\sigma_{\mathrm{eff},\mathrm{TPS}}^{2}} + \frac{3 \, F_{\mathrm{pA}} [\mathrm{mb}^{-1}]}{\sigma_{\mathrm{eff},\mathrm{DPS}}} + C_{\mathrm{pA}} [\mathrm{mb}^{-2}]\right]^{-1/2}$$

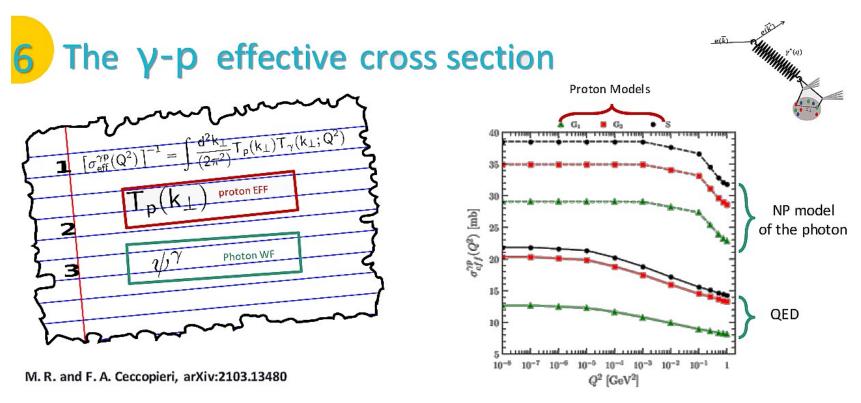
Large TPS yields in p-Pb, e.g. σ_{TPS} (triple-ccbar)=200 mb (~20% of incl. ccbar x-section): provide useful independent extractions of $\sigma_{\text{eff.pp}}$. [Don't be shy to attempt a 1st-ever measurement in p-Pb...].


Backup slides

DPS studies with Q \overline{Q} : p-p \rightarrow W+J/ Ψ , J/ Ψ J/ Ψ

■ Uncorrelated J/Ψ+J/Ψ rapidity production in ppbar at 1.96 TeV:

■ Uncorrelated W+J/Ψ azimuthal production in pp at 7 TeV:

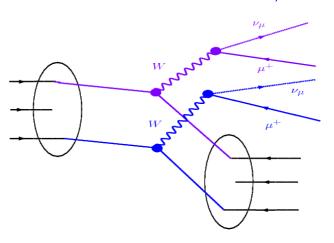

- **Extracted** σ_{eff} values differ at 1.96 TeV & 7 TeV:
 - (Higher-order) SPS contributions under control?
 - Energy-dependent parton transverse profile? (Quark vs. gluon?)

Lansberg&Shao&Yamanaka, PLB781 (2018) 485

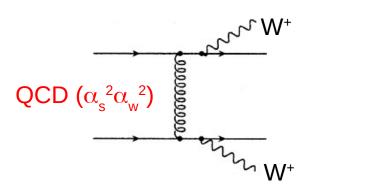
DPS in Ultraperipheral p-Pb collisions?

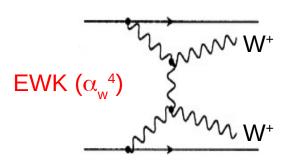
[M.Rinaldi, et al.]

Rinaldi&Ceccopieri (also Blok & Strikman) have proposed to study DPS from photon-proton collisions (where photon = vector meson):



Such studies (based on HERA data so far) could be tested with UPCs in p-Pb with the photon emitted from the Pb ion (we should go beyond searching for 'ridges' in UPCs, and extract some quantitative x-sections...)

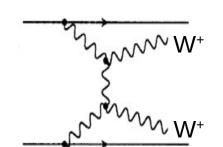

DPS "golden channel": Same-sign WW


- Same-sign W-W production from 2 independent hard scatterings is a "golden" DPS signature:
 - Well controlled pQCD x-sections.
 - Clean experimental final-state:
 2 like-sign leptons + missing-E_T

[Kulesza, Stirling, Gaunt, Treleani, Del Fabbro, ...]

Backgrounds: Same-sign W-W production in single parton scatterings (SPS) is higher-order and occurs only with 2 extra jets:

■ $\sigma(WW,DPS)\sim 1/3 \cdot \sigma(WWjj,SPS)$, but SPS background reducible by more than x20 applying jet cuts.


Case study: $p-Pb \rightarrow W^+W^+, W^-W^-$ at 8.8 TeV

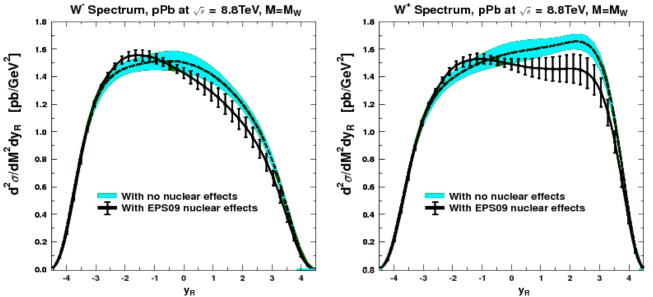
Theoretical setup:

- ► MCFM 6.2: Single-parton W⁺,W⁻ W+W+jj (QCD) background
 - NLO accuracy.
 - Scales: $\mu(W) = m_{w}$, $\mu(WW) = 150 \text{ GeV}$
 - CT10 proton PDF, EPS09 Pb nuclear PDF
 - Uncertainties: ~10%

- NLO accuracy
- Scales: $\mu^2 = t_{wz}$
- CT10 PDF
- Uncertainties: <10%

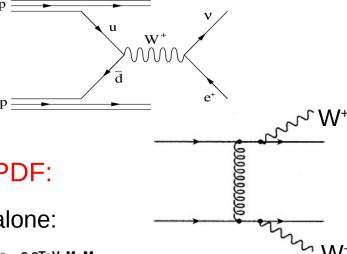
[DdE, Snigirev, PLB718 (2013)1395]

Cross sections in pb (signal & background):


p-Pb final-state:	W^{+}	W^-	W^+W^-	W ⁺ W ⁺ jj (QCD)	W ⁺ W ⁺ jj (VBF)	W [±] W [±] (DPS)
Code (process #):	MCFM (1)	MCFM (6)	MCFM (61)	MCFM (251)	VBFNLO (250)	Eq. (15)
Order (σ units):	NLO (μb)	NLO (µb)	NLO (nb)	'NLO' (pb)	NLO (pb)	(pb)
$\sqrt{s_{NN}} = 5.0 \text{ TeV}$	6.85 ± 0.68	5.88 ± 0.59	5.48 ± 0.56	12.1 ± 1.2	12.4 ± 0.6	44. ± 8.
$\sqrt{s_{\rm NN}} = 8.8 \text{ TeV}$	12.6 ± 1.3	11.1 ± 1.1	13.0 ± 1.3	40.4 ± 4.0	51.8 ± 2.0	$152. \pm 27.$

Case study: $p-Pb \rightarrow W^+W^+, W^-W^-$ at 8.8 TeV

Theoretical setup:


- MCFM 6.2: Single-parton W⁺,W⁻ W⁺W⁺jj (QCD) background
 - NLO accuracy.
 - Scales: $\mu(W) = m_W$, $\mu(WW) = 150 \text{ GeV}$
 - CT10 proton PDF, EPS09 Pb nuclear PDF:

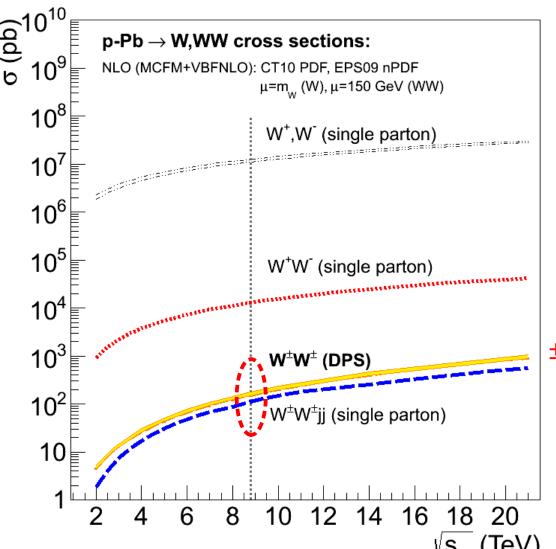
~10% effects due nuclear (anti)shadowing alone:

[Paukkunen&Salgado JHEP 1103 (2011) 071]

[DdE,Snigirev, PLB718 (2013)1395]

Isospin+shadow.
effects on total
inclusive x-sections:

W⁻: +7%


W⁺: -15%

compared to p-p

Results: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

[DdE,Snigirev, PLB718 (2013)1395]

Cross sections for all relevant SPS & DPS processes vs sqrt(s):

p-Pb @ 8.8 TeV:

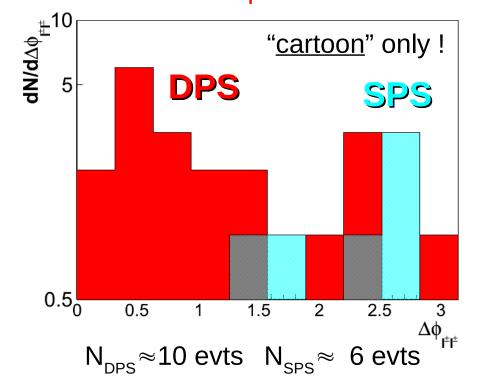
 $\sigma(WW,DPS) \approx 150 \text{ pb}$ $\sigma(WWjj) \approx 100 \text{ pb}$

±18% uncertainties

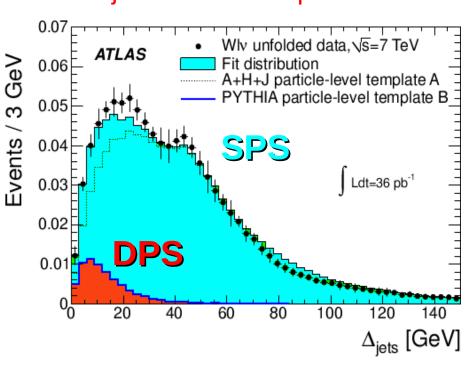
 $\pm 15\%$ for σ_{eff} $\pm 10\%$ for scales&PDFs

Results: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

[DdE,Snigirev, PLB718 (2013)1395]

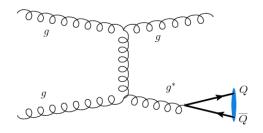

- Measurable final-states:
 - ► W's branching ratios:
 - BR(W \rightarrow Iv) \approx 3 \times 1/9, BR(W \rightarrow qq') \approx 2/3
 - Both leptonic: 4 final-states ($\mu\mu$,ee,e μ , μ e): $4\times(1/9)^2\approx 1/20$, 1/16 (+ τ) [1 leptonic + 1 hadronic (jet-charge): $2/9\times4/3\approx0.3$]
 - Typical ATLAS/CMS acceptances & efficiencies:
 - Leptons: |y| < 2.5, $p_T > 15$ GeV $\Rightarrow \epsilon_{ww} \approx 40\%$
- LHC p-Pb luminosities (note: very small pileup):
 - = 0.2–2 pb⁻¹ (increase to nominal p intensity, reduce beam size) \mathcal{L}_{int}
- Expected (purely leptonic) rates including yield loses & luminosity:

$$N_{\text{DPS}} = \sigma_{pPb \to WW}^{\text{DPS}}/(\varepsilon \cdot \mathcal{L}_{\text{int}}) \approx 1$$
—10 same-sign WW pairs/year (factor ×6 more in 1 lepton + 1-jet channel)

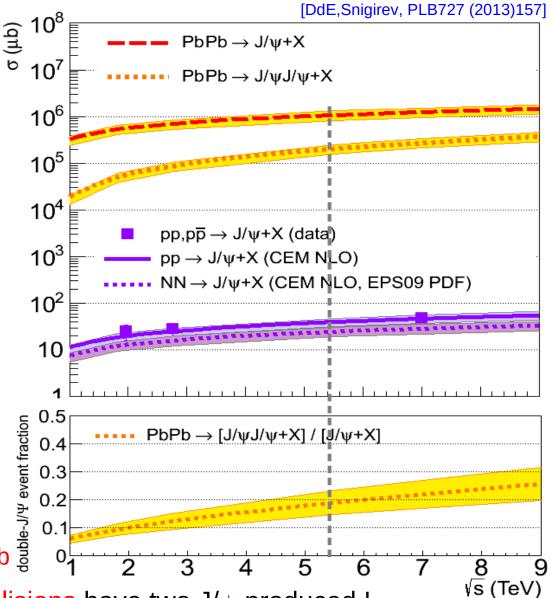

Results: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

Typical DPS-sensitive kinematical distributions for signal & background:

p-Pb @ 8.8 TeV (2 pb⁻¹): Same-sign leptons azimuthal separation:


Compare to: $p-p \rightarrow W+2j @ 7 \text{ TeV (36 pb}^{-1}):$ dijet azimuthal separation

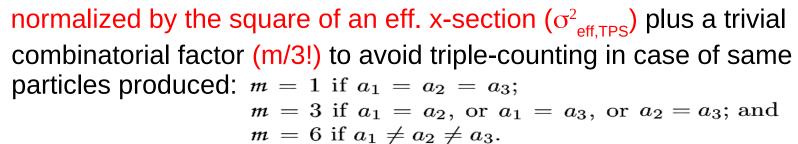
(Other reducible bckgds: WZ,Z^(*)Z^(*),B⁰B⁰)


Example: Pb-Pb $\rightarrow J/\psi J/\psi$ at 5.5 TeV

■ FONLL+CEM (R.Vogt): Single-parton J/ψ

- NLO accuracy.
- Scales: $\mu_{\rm p}$ = $\mu_{\rm p}$ = 1.5·m_c
- Good agreement with Tevatron&LHC data
- EPS09 Pb nPDF

20–35% shadowing x-section reduction At 5.5 TeV: $\sigma^{\text{DPS}}(\text{Pb-Pb} \rightarrow J/\psi J/\psi X) = 200 \pm 50 \text{ mb}$



20% of min.bias Pb-Pb collisions have two J/ ψ produced!

Triple parton scattering x-sections (p-p)

Assuming that the probabilities for 3 hard collisions to be independent of each other, one can again write a pocket-formula for TPS x-section:

$$\sigma_{hh' \to a_1 a_2 a_3}^{\text{TPS}} = \left(\frac{m}{3!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdot \sigma_{hh' \to a_2}^{\text{SPS}} \cdot \sigma_{hh' \to a_3}^{\text{SPS}}}{\sigma_{\text{eff,TPS}}^2}$$

- How to interpret $\sigma_{\text{eff,TPS}}$? What values one naively expects for it?
- Most generic expression for TPS cross section:

$$\begin{split} \sigma_{hh'\to a_1 a_2 a_3}^{\text{\tiny TPS}} &= \left(\frac{\textit{m}}{3!}\right) \sum_{i,j,k,l,m,n} \int \Gamma_h^{ijk} x_1, x_2, x_3; \, \mathbf{b_1}, \, \mathbf{b_2}, \, \mathbf{b_3}; \, Q_1^2, \, Q_2^2, \, Q_3^2) \\ &\times \hat{\sigma}_{a_1}^{il} \left(x_1, x_1', \, Q_1^2\right) \cdot \hat{\sigma}_{a_2}^{jm} \left(x_2, x_2', \, Q_2^2\right) \cdot \hat{\sigma}_{a_3}^{kn} \left(x_3, x_3', \, Q_3^2\right) \\ &\times \Gamma_{h'}^{lmn} \left(x_1', \, x_2', \, x_3'; \, \mathbf{b_1} - \mathbf{b}, \, \mathbf{b_2} - \mathbf{b}, \, \mathbf{b_3} - \mathbf{b}; \, Q_1^2, \, Q_2^2, \, Q_3^2\right) \\ &\times dx_1 dx_2 dx_3 dx_1' dx_2' dx_3' d^2 b_1 d^2 b_2 d^2 b_3 d^2 b. \end{split}$$
 Generalized PDFs = $\mathbf{f}(\mathbf{x}, \mathbf{Q}^2, \mathbf{b})$

QaT2024, Aussois, Jan'24 37/26 David d'Enterria (CERN)

Triple parton scattering x-sections (p-p)

Assumption 1: Factorize generalized Triple-PDF into longitudinal &

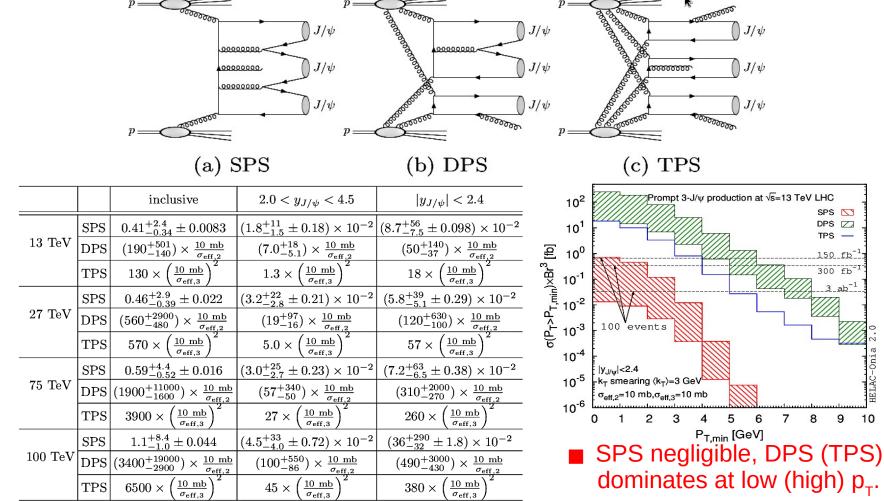
transverse components:
$$\Gamma_h^{ijk}(x_1,x_2,x_3;\mathbf{b_1},\mathbf{b_2},\mathbf{b_3};Q_1^2,Q_2^2,Q_3^2) = D_h^{ijk}(x_1,x_2,x_3;Q_1^2,Q_2^2,Q_3^2) f(\mathbf{b_1}) f(\mathbf{b_2}) f(\mathbf{b_3}),$$
 p-p transv. overlap function (mb⁻¹): $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} - \mathbf{b}) d^2b_1$, with $\int d^2b T(\mathbf{b}) = 1$.

 Assumption 2: Longitudinal triple-PDF is the product of 3 single PDFs (i.e. no parton correlations in colour, momentum, flavour, spin,...)

$$D_h^{ijk}(x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2) D_h^k(x_3; Q_3^2)$$

■ Then, $\sigma_{\text{eff,TPS}}^2$ is simply the inverse of the cube of the transv. pp overlap:

$$\sigma_{ ext{eff,TPS}}^2 = \left[\int d^2 b \, T^3(\mathbf{b}) \right]^{-1}$$


■ By testing many proton overlaps/profiles (hard sphere, Gaussian, expo, dipole fit), we find a close relationship between $\sigma_{\text{eff.TPS}}$ & σ_{eff} :

$$\sigma_{\rm eff,TPS} = k \times \sigma_{\rm eff,DPS}$$
, with $k = 0.82 \pm 0.11$

Measuring TPS provides independent info on σ_{eff} and p transv. profile.

Triple-J/ψ from SPS production (p-p)

H.-S. Shao et al. [arXiv:1902.04949, PRL 122(2019)192002] computed all triple-J/\P x-sections with SPS HELAC-ONIA plus our pocket formulas:

Clear sensitivity to σ_{eff} !

SPS 💟

DPS 🖂

300 fb

3 ab⁻¹

TPS