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▪ First look at a Muon Collider detector magnet design: Properties, stray field, conductor, 

stability, mechanics, quench protection

▪ What does a detector magnet of this size cost?

▪ CMS Solenoid development history

▪ Aluminum-stabilized Nb-Ti conductor availability 

▪ Conductor technology alternatives 

▪ Summary
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Introduction



Following [1], here considered: CLIC-like Superconducting Solenoid [2], with 3.6 T at the interaction point
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CLIC-like Solenoid Concept

Property Value

Magnetic field at IP [T] 3.6

Cold mass length [m] 7.89

Free bore diameter [m] 6.85

Proposed Muon Collider layout [1]

Field and layout, [2]

[1]. D. Lucchesi et al., 1st Muon Community Meeting, (2021).

[2]. A. Gaddi et al., International Workshop on Future Linear Colliders, (2012).



▪ 3.6 T at IP and with return yoke → 1.8 GJ stored magnetic energy 

▪ For reference, Compact Muon Solenoid has stored energy of 2.4 GJ
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Magnet Properties

Property Value

Operating current [kA] 19.5

Stored magnetic energy [GJ] 1.8

Inductance [H] 9.4

Cold mass volume [m3] 53

Cold mass weight [t] 155

Energy density [kJ/kg] 11.6

Windings (layers x turns-per-layer) 4 x 320

Conductor length [km] 36
Axial position [m]
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Magnetic Stray Field

Radial

Axial

The stray magnetic field may be optimized through optimization of the yoke geometry if needed
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Conductor Considerations (1/2)

▪ CMS design philosophy: The conductor carries a significant fraction 

(~80%) of the Lorentz forces

▪ Aluminium-based conductors are cost-effective and give favourable 

mechanical, electrical, and thermal properties

▪ Nb-Ti: Affordable and robust work-horse superconductor, available in 

long lengths from multiple vendors

▪ Two proven aluminum-stabilized Nb-Ti conductor variants combining 

good electrical, thermal, and mechanical properties

▪ CMS-like conductor [3]: Pure-aluminium conductor with 

welded-on aluminium-alloy reinforcements

▪ ATLAS CS-like conductor [4]: Nickel-doped aluminium

▪ An important consideration is manufacturing availability (more 

on this later)

Rutherford cable comprising 

Nb-Ti/Cu strands

Pure aluminium

Al-alloy reinforcement 

(E-beam welded)

Nickel-doped aluminium

CMS conductor

ATLAS CS conductor

[3]. B. Blau et al., IEEE Trans. on Appl. Supercond. 12, p. 345 (2002).

[4]. A. Yamamoto et al., IEEE Trans. on Appl. Supercond. 9, p. 852 (1999)
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Conductor Considerations (2/2)

25 mm, with insulation
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0.5 mm insulation surrounding the 

conductor

Rutherford cable: 

32 x 1.6 mm Ø 

Cu/Nb-Ti strand

Composition Vol. Fraction

Either (1) Nicked-doped aluminum or 

(2) pure aluminum + aluminum alloy 

90%

Copper 2.2%

Nb-Ti 2.2%

Insulation 5.6%

▪ Volumetric density: 2860 kg/m3

▪ Operating current: 19.5 kA →

Current density: 13.2 A/mm2

Possible conductor layout Field map with peak field

Axial position [m]
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Aluminium mandrel

Envelope for vacuum vessel, cold mass 

insertion, and coil suspension

BMax = 4.1 T
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Conductor Stability

▪ Peak field on the conductor at nominal current (19.5 

kA) = 4.1 T

▪ With: 32 x 1.6 mm Nb-Ti/Cu strands (50% Cu): 

Current sharing temperature = 6.8 K

▪ Operating temperature: 4.5 K

▪ Temperature margin between current-sharing and 

operating temperature: 2.3 K → OK

▪ The magnet is thus compatible with ‘standard’ 

aluminium-stabilized Rutherford cable 

technology

19.5 kA, 4.1 T
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Mechanics

▪ The energy density (= Stored 

magnet energy / cold mass) = 

11.6 kJ/kg (same as CMS) 

▪ At nominal current: 94 MPa 

maximum von Mises stress, and 

0.13% tensile strain applied to 

conductor due to powering of the 

coil

Peak Von Mises stress: 

94 MPa

Peak tensile strain: 

0.13%

Simulation: Stress and strain at nominal current
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Quench Protection

▪ Quench protection considered: Energy extraction after 2 s, with 0.03 mΩ dump resistor (like CMS)

▪ Gives hotspot temperature of 53 K with correct quench protection, and 149 K for complete absence of 

quench protection (= failure scenario)

TMax→

 IOp

Simulation: Magnet protected with energy extraction

Axial position [m]

R
ad

ia
l p

os
iti

on
 [m

]

Hotspot origin at edge 

of magnet 

(= worst-case)

Quench-back from 

mandrel

Assumed aluminium RRR = 

500 (conservative)

Quench propagation

FEM-based quench simulation: 

Temperature development during quench

t = 4 s

T [K]
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What does a detector magnet of this size cost?

▪ Stored magnetic energy: 1.8 GJ

▪ First-order cost estimate based on historical trends for building [5]: ~90 MCHF (2008, not corrected for inflation)

▪ This includes the magnet and associated systems, but not cryogenics, the design effort, nor the cost of 

commissioning

[5]. M. A. Green et al., IEEE Trans. on 

Appl. Supercond. 18, (2008).
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CMS Solenoid development history

The superconducting detector magnet considered for the Muon Collider is very similar to the CMS solenoid, 

albeit a bit smaller (CMS: 2.4 GJ, Muon Collider: 1.8 GJ)

▪ Technical challenge: The solenoid properties are similar to and a bit smaller than the Compact Muon 

Solenoid, so there is a recipe to be followed

▪ Organizational challenges (Based on ATLAS and CMS magnet development)

▪ ATLAS and CMS: 16 years between the finalization of a conceptual design to the finalization of 

commissioning

▪ Realized with strong support by multiple international institutes (9 in case of ATLAS, 7 in case of CMS)

▪ One-of-a-kind magnet that must work without problems, so technology demonstrators are needed to check 

aspects of the design before the design is finalized

▪ Conductor challenge: Very large magnet that requires a specific conductor, and conductor technology availability is 

a concern for future superconducting detector magnets
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Aluminum-stabilized Nb-Ti conductor 

technology availability

Aluminum-stabilized Nb-Ti = historical go-to conductor (also see slide 6):

▪ The SDMW workshop was organized in 2022 by CERN and KEK, joined by global institutes and industry. Important conclusion: 

Commercial availability of this conductor type discontinued since a few years

▪ On-going effort by Chinese institute and industry to re-establish reliable commercial long length production

▪ Organized at CERN with KEK support: Interdepartmental workgroup with steering committee (since March 2023), investigating how

commercial availability of aluminum-stabilized Nb-Ti conductor may be re-established

Superconducting Detector Magnet 

Workshop, 12/8/22

(https://indico.cern.ch/event/1162992/)
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Conductor technology alternatives 
(featuring some personal opinions)

Aluminum-stabilized Nb-Ti conductor advantages/disadvantages:

▪ Nb-Ti strands are cost-effective, mechanically extremely resilient, and widely available. 

▪ Nb-Ti gives sufficient magnetic field range for typical superconducting detector magnet applications: Comfortably up to 4 T in aluminum-stabilized conduction-

cooled superconducting detector magnets

▪ Aluminum is lightweight, transparent, good for quench protection, stability, and mechanics

▪ Well-understood and extensively proven technology, has been in use for 50 years

▪ It requires low operating temperature (4.5 K) and commercial availability is presently unclear

(Aluminum-stabilized) MgB2 conductor technology advantages/disadvantages:

▪ More expensive than aluminum-stabilized Nb-Ti, requires development for use in superconducting detector magnets, less mechanically robust than 

Nb-Ti, currently only allows a limited magnetic field range (probably not suited for 4 T)

▪ Useful for superconducting busbars

▪ Allows operation at higher temperatures, and benefits from technology developments through the HL-LHC Superconducting Link project

Aluminum-stabilized High Temperature Superconducting (ReBCO / Bi-22223) conductor advantages/disadvantages:

▪ More expensive than aluminum-stabilized Nb-Ti, not yet available in long lengths, not yet fully understood, less mechanically robust than Nb-Ti

▪ High-purity aluminum-stabilization is not needed, although aluminum is still required to carry the current during a quench

▪ Useful for superconducting busbars

▪ Enables operation at much higher temperatures and magnetic fields
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Summary

▪ A first look at the superconducting detector solenoid for the Muon Collider: A similar but slightly smaller variant of the Compact 

Muon Solenoid → There is a recipe to follow.

▪ Organizational challenges:

▪ Long-term commitment needed, with strong support from multiple institutes (ATLAS/CMS: 16 years between finalization of 

conceptual design and commissioning, strong support from up to 9 institutes).

▪ Magnet and associated systems will not be cheap, even though detector magnets are designed to be as affordable as 

possible.

▪ Demonstrators needed to check various aspects of the design before a design can be finalized

▪ Aluminum-stabilized Nb-Ti conductor challenge: 

▪ Availability of Aluminum-stabilized Nb-Ti conductor technology a concern, although there are on-going efforts to address 

this issue

▪ This magnet requires a very large conductor with excellent mechanical properties

▪ Potential alternatives to aluminum-stabilized Nb-Ti conductor technology do exist, but substantial development and associated 

support would be needed if used for this magnet.



Thank you

for attention


