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Perspectives on laser-driven sources for particle beam therapy

CHALLENGES AND OPPORTUNITIES



Radiotherapy; the challenge

Cancer: second most common cause of death globally
— Radiotherapy indicated in half of all cancer patients

Significant growth in global demand anticipated:
— 14.1 million new cases in 2012 > 24.6 million by 2030
— 8.2 million cancer deaths in 2012 -» 13.0 million by 2030

Scale-up in provision essential:
— Projections above based on reported cases (i.e. high-income countries)
— Opportunity: save 26.9 million lives in low/middle income countries by 2035

Atun, Lancet Oncol. 2015 Sep;16(10):1153-86

Provision on this scale requires:
— Development of new and novel techniques ... integrated in a
— Cost-effective system to allow a distributed network of RT facilities



The benefit of particles

* Maximise therapeutic benefit by:
— Maximising damage to tumour
— Minimising damage to healthy tissue

Tumour Control
Probability |

Small change in Normal Tissue
treatment can make a Complication Probability
huge difference to

survival and quality of
life

e X-ray therapy:
— Modality used in most radiotherapy
— Dose falls exponentially with depth
— Proximity of sensitive organs limits dose to tumour



Particle-beam therapy

Bragg Peak

Proton Beam

10
Depth in tissue (cm)

Proton and ion-beam therapy:
— Bulk of dose deposited in Bragg peak
— Significant normal-tissue sparing (entry)
— Almost no dose beyond the Bragg peak




The need for a step-change in capability
* Growing recognition of benefits of PBT worldwide:

— 70 PBT centres in operation;
40 under construction

* ‘Incremental’ development
of technique S
— Existing suppliers
— New initiatives
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Proton beam facility \4
(83 in total) N
® Carbon ion facility 5
(13 in total) L

Exciting indications of benefits of novel beams ...



Particle beam therapy today

* Cyclotron based

Protons X-Rays

MedAustron
Austria

. Synchrotron based



Beam delivery

PSI gantry

Last bending dipole:
bends beém into plane of

PSI gantry i '. - 2 DipoleS:

— Engineering tour de force!
— 360-degree irradiation

— At a price:
Size, complexity, maintenance

bending beam
away from/to axis

Particle
beam from
accelerator

—— O

rotation alhd iso-center

"

Iso-center

Coupling point: :

junction :

fixed/rotating |

beamline |
Quadrupoles: :
provide focusing




The Typical lon Source > aurie Pa rtiCIE source

Every ion source basically consists of two parts:
1. lon production inside a plasma
2. Beam extraction from the plasma

Space Charge S. Laurie

Plasma
chamber EmissionI I e 50 mA proton beam

Aperture « 5 mm initial radius
Power Feed Plasma Particle Beam

« 1000 mm drift distance
I I « Expands due to its own

Extraction » Space charge forces
== ]

Gas Feed mm

1 n
oooooooooo
o8

Electrodes velocity dependent

* Extraction energy:
— 30—80 keV
* Limited by extraction voltage
* |nstantaneous flux (current or dose):

— Determined by acceptance of first accelerator structure
e Limited by mutual repulsion of protons (ions) ... “space-charge effect”



The technological challenge

e Cancer is the second leading cause of death globally (WHO)
— Radiotherapy indicated in half of all cancer patients

* Growing requirement for radiotherapy:
— High-income countries: anticipate significant growth in demand

— Low/middle income countries; enormous unmet need:
* Opportunity to save ~30 million lives by 2035

* Scale-up in provision essential:
— Requires:
* Development of new and novel techniques ... integrated in a
* Cost-effective system to allow a distributed network of RT facilities

Atun, Lancet Oncol. 2015 Sep;16(10):1153-86

10


https://www.who.int/health-topics/cancer#tab=tab_1

The Laser-hybrid Accelerator for Radiobiological Applications (LhARA)

RADIOBIOLOGY

11



Tumour
>

| 4— Bragg peak

IA/Dlstal
fall-off

Q
(7))
o)
S
()
2
o
0
Q
oc

Depth in tissue



The case for fundamental radiobiology

Relative biological effectiveness: Paganett,
— Defined relative to reference X-ray beam . g«:}z o

— Known to depend on:
* Energy, ion species
* Dose & dose rate
* Tissue type

|
|/ .
! _~Distal
v
|,

fall-off

Relative dose

* Biological endpoint s o 2018y comers.
YEt : Depth in tissue
— p-treatment planning uses 1.1 o
— Effective values are used for C¢*

Maximise the efficacy of PBT now & in the
future:

— Require systematic programme to develop :
full understanding of radiobiology o w00 200

LET (keV/pum)




Biological impact «-« physics of ionisation

e Low-LET radiation:

— Repairable single/double
strand breaks

g fraction

h Low LET tracks \\\\:‘h ‘% I|:|cl);v|’l- -LLEE-I:r

. i - iati . =L 0.1

High-LET radlatlon.. \&(s\\\\\m ———
— Complex DNA lesions - @\‘m Dose (Gy)

Proton-IR (58 MeV)

M Proton-IR (58 MeV; modified)
Proton-IR (11 MeV)
Proton-IR (11 MeV; modified)

* Multiple DNA pathways T vl
* More difficult to repair
* Enhances cell death

" | e

* Programmatic approach:
— Dynamic studies of impact of radiation T s postan 4
— Interpret with advanced computer models (e.g.

14



A complex, multi-facetted problem

Radiotherapy

l

- * Excitations
Physical phase e
t=10"%-10"2s * [onizations

low concentration of
ionisation events

* Breakage of chemical Low LET tracks

Chemical phase bonds
t=10°-10°s

g fraction

|
|
Low-LET |

Hi gh -LET Carter et al, and Parsons
(2018) I/IROBP & (2019) I/ROBP

* Free radical formation

o-radiation
High LET track high concentration of

. Repair processes ionisation events
Biochemistry phase * Apoptosis
t=1-12h » Stress response 2 3 4
* Cell proliferation Dose (Gy)

©  Survivin

» Early side effects

Biological phase (necrosis, inflammation)

t = 1 day to several years * Late side effects
(fibrosis, oncogenesis)

Source; Expert Rev Proteomics @ 2013 Expert Reviews Ltd



Radiobiology in new regimens

Worked example: FLASH

Conventional regime: ~2 Gy/min
FLASH regime : >40 Gy/s

i.e. enhanced therapeutic window

Time line:

e Confirmation in mini-pig & cat: 2018 (Clin. Cancer Research 2018)

* First treatment 2019 (Bourhis et al, Rad.Onc. Oct 2019)

16



Prezado; 13Nov19

Worked example: micro beams

Conventional regime: > 1 cm diameter; homogeous
Microbeam regime :<1 mm diameter; no dose between ‘doselets’

Remarkable increase of normal rat brain resistance.
[Dilmanian et al. 2006, Prezado et al., Rad. Research 2015]

Dose escalation in the tumour possible — larger tumor control prob.

Radiobiology in new regimens

17



Laser-driven sources are disruptive

I will argue that laser-driven sources have the potential to:

* Create the capability to deliver particle-beam therapy in completely new regimens
— Flexibility!

 Combine a variety of ion species in a single treatment fraction, exploiting ultra-high dose rates in novel
spatial- and spectral-fractionation schemes

 Make "best in class" treatments available to the many

— Automated, triggerable system - remove requirement for large gantry:

* System incorporating dose-deposition imaging in fast feedback-and-control system; track movement,
deliver dose at optimum tissue alighment

18



Perspectives on laser-driven sources for particle beam therapy

THE IN-PRINCIPLE ADVANTAGE
OF THE LASER-DRIVEN SOURCE

19



Sheath acceleration
* Laser incident on foil target:
— Drives electrons from material
— Creates enormous electric field

* Field accelerates protons/ions
— Dependent on nature of target

* Active development:
— Laser: power and rep. rate
— Target material, transport

20



Advances
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* Ultrathin foil irradiated by "long", linearly-polarised laser pulse

* Mechanism:
— Radiation-pressure/target-normal sheath acceleration
— High-energies confined to narrow angular range by radiation-induced transparency

21



Advantages

* Protons (and ions) produced at “high energy”:

— e.g. 15 MeV > 250 times energy of conventional proton source

* High energy substantially reduced impact of space charge
— Allows evasion of instantaneous dose-rate limitation of today’s sources

* Pulsed operation “natural”:
— Discharge sources are DC; accelerator imposes time structure

— Pulsed operation determined by laser:
* A triggerable, “on demand”, source

* Critical issues:
— Efficient capture of divergent, high-energy ion flux

— Transformation of captured flux into useful beam
22



Experimental Hall 4 ELIMAIA lon Acceleration P4 A \
= V4

3§ Qua Bea 018 8- d0i:10.3390/aubs2020008

= Dosimetry and In-air Sample Irradiation Plasma Mirror Chamber
7 = \
0 g x ed. P & age sfo U 39/1Tp 020.5649(

Beam Transport

Selection, Transport
& Diagnostics

am-PW/30]/10Hz

“/e / \‘ “‘t ! (ll; g
WA, = \~_?'\1,v\ =

Y/ . lon Accelerator

N,

Interaction Chamber

AMme : - e, Prague 5 PPUl
D 1 d AYe]e atIC 0 ASE 0 A eleratic
ALA
Dical and 0 N 7 =Je]e atic )
AIA S€ 0 gedicateda to Io 0 Z =1[= 0
aracte atio anc adiatio
Proton energile 0 0 U a 7 ported to 3 & 0




Applications in biological research, ambition to push toward clinical application ...

A selection ...

Phys Lett A. (2002) 299:240-7. doi: 10.1016/50375-9601(02)00521-2

Med Phys. (2003) 30:1660-70. doi: 10.1118/1.1586268

Med Phys. (2004) 31:1587-92. doi: 10.1118/1.1747751

Science. (2003) 300:1107-111

New J Phys. (2010) 12:85003. doi: 10.1088/1367-2630/12/8/085003

Phys Med Biol. (2011) 56:6969-82. doi: 10.1088/0031-9155/56/21/013

Appl Phys Lett. (2011) 98:053701. doi: 10.1063/1.3551623

Appl Phys Lett. (2012) 101:243701. doi: 10.1063/1.4769372

AIP Adv. (2012) 2:011209. doi: 10.1063/1.3699063

Appl Phys B. (2013) 110:437-44. doi: 10.1007/s00340-012-5275-3

Appl Phys B. (2014) 117:41-52. doi: 10.1007/s00340-014-5796-z

Radiat Res. (2014) 181:177-83. doi: 10.1667/RR13464.1

Phys Rev Acceler Beams. (2017) 20:1-10. doi: 10.1103/PhysRevAccelBeams.20.032801

J Instrum. (2017) 12:C03084. doi: 10.1088/1748-0221/12/03/C03084

A-SAIL Project. (2020). Available online at: https://www.qub.ac.uk/research-centres/A-SAILProject/
Vol. 8779. Prague: International Society for Optics and Photonics. SPIE (2013). p. 216-25.
Vol. 11036. International Society for Optics and Photonics. SPIE (2019). p. 93-103.
Nuovo Cim C. (2020) 43:15. doi: 10.1393/ncc/i2020-20015-6

10th International Particle Accelerator Conference. Melbourne, VIC (2019). p. TUPTS005.

| will not attempt a review, choosing instead to focus on opportunity ...

Many initiatives in Americas, Europe, Asia

24



Opportunity; a hybrid approach

* Create protons (ions) at “modest” energy:
— Consider 10—15 MeV; high flux, “plateau” region

e Capture and manipulate proton (ion) flux:
— Inject into post accelerator for biomedical application

High Energy Density Physics 37 (2020) 100847

Tape target E~13MeV [ E~25Mev |8 stoo
- 40 4 10
N | 2 C :
: : 9
i > \
' ' E ~ 40 MeV E =~ 50 MeV 8
- g : 7
20 30 40 50
S0 £ (MeV)
eV, AE = 1%E, Sr
X 6

.................. (opnonaD é
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Laser-hybrid Accelerator for Radiobiological Applicatons
Vision: * Lh -R—

LhARA will be a uniquely-flexible, novel system that will:
* Deliver a systematic and definitive radiobiology programme
* Prove the feasibility of the laser-driven hybrid-accelerator approach

* Lay the technological foundations for the transformation of PBT
— automated, patient-specific: implies online imaging & fast feedback and control

or for
Radiobiological Applications

Ambition:

— Develop:

necessary techniques, technologies, and systems
— Exploit:

system approach to novel bring techniques into clinical practice as they mature
— Integrate:

production prototypes in a production system for radiobiological research
— Engage:

industry and clinical PBT centres

during development of techniques, technologies, and systems
26



tor for
Radiobiological Applications

Perspectives on laser-driven sources for particle beam therapy

LHARA
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Laser-hybrid Accelerator for Radiobiological Applications
A novel, hybrid, approach:

 Laser-driven, high-flux proton/ion source

— Overcome instantaneous dose-rate limitation
* Capture at >10 MeV

— Delivers protons or ions in very short pulses
* Bunches as short as 10—40 ns

— Triggerable; arbitrary pulse structure

* Novel “electron-plasma-lens” capture & focusing
— Strong focusing (short focal length) without the use of high-field solenoid

* Fast, flexible, fixed-field post acceleration

— Variable energy
* Protons: 15—127 MeV
* lons: 5—34 MeV/u

Front. Phys., 29 September 2020; DOI: 10.3389/fphy.2020.567738
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Laser-driven proton/ion source

Advantage:
— Enormous proton/ion flux at 10—15MeV in tiny (30 fs) pulse at 10 Hz

Smilei 2D: X-Z Position Space at 1 ps
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Ti:Sapphire commercial system >15TW
Pulse ~35fs at rep-rate of at least 10Hz
At least 500mJ laser energy - I, ~ 1020 Wcm*2

Requirement:
— Efficient capture, focusing, selection and manipulation of divergent ion beam




Posocco, Pozimski

Beam capture/production principle
e “Electron-plasma” (Gabor) lens: '

— Strong focusing exploiting electron
gas in “Penning/Malmberg” trap ) C. CRTTEer:

Gabor Lens
RF Cavity

Octupole
Collimator

.
'}
:
‘ Dipole Vertical Matching Arc

Quadrupole

- Beam Dump

_ _ Beam Shaping
Capture Matching and Energy Selection and Extraction
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Abstract: An electron plasma lens is a cost-effective, compact, strong-focusing element that can
ensure efficient capture of low-energy proton and ion beams from laser-driven sources. A Gabor lens
prototype was built for high electron density operation at Imperial College London. The parameters
of the stable operation regime of the lens and its performance during a beam test with 1.4 MeV protons
are reported here. Narrow pencil beams were imaged on a scintillator screen 67 cm downstream
of the lens. The lens converted the pencil beams into rings that show position-dependent shape
and intensity modulation that are dependent on the settings of the lens. Characterisation of the
focusing effect suggests that the plasma column exhibited an off-axis rotation similar to the m = 1
diocotron instability. The association of the instability with the cause of the rings was investigated
using particle tracking simulations.

Keywords: plasma trap; space-charge lens; beam transport; instability; proton therapy

1. Introduction

One of the principal challenges that must be addressed to deliver high-flux pulsed
proton or positive-ion beams for many applications is the efficient capture of the ions ejected
from the source. A typical source produces protons with kinetic energies of approximately
60keV [1-3] and ions with kinetic energies typically below 120 keV [4,5]. At this low energy
the mutual repulsion of the ions causes the beam to diverge rapidly. Capturing a large
fraction of this divergent flux therefore requires a focusing element of short focal length.
Proton- and ion-capture systems in use today employ magnetic, electrostatic, or radio
frequency quadrupoles, or solenoid magnets to capture and focus the beam [2,6-8].

Laser-driven proton and ion sources are disruptive technologies that offer enormous
potential to serve future high-flux, pulsed beam facilities [9-16]. Possible applications in-
clude proton- and ion-beam production for research, particle-beam therapy, radio-nuclide
production, and ion implantation. Recent measurements have demonstrated the laser-
driven production of large ion fluxes at kinetic energies in excess of 10 MeV [17-20]. The fur-
ther development of present technologies and the introduction of novel techniques [21,22
makes it conceivable that significantly higher ion energies will be produced in the fu-
ture [13,23,24]. By capturing the laser-driven ions at energies two orders of magnitude
greater than those pertaining to conventional sources, it will be possible to evade the current
space-charge limit on the instantaneous proton and ion flux that can be delivered. While
in some situations the high divergence of laser-driven ion beams can be reduced [25,26],
for the tape-drive targets proposed for medical beams [16,20] it necessary to capture the
beam using a strong-focusing element as close to the ion-production point as possible.

Appl. Sci. 2021, 11, 4357. https:/ /doi.org/10.3390/app11104357
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LhARA Stage 1 beamline
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Beam Size Evolution Comparison

0.016 1 S —— |deal Twiss; oy
&
0014 r'# —— Ideal Twiss; oy,
'f - -+- Sampled Beam; o,
0.012 i Aoy -+- Sampled Beam; o,
— ] '
I
E 0.0107 4 ) oo -
J 3 .'AT 5\ /
> 0-008 1 / U A /A -
: f.i' i ; '1.' H——wrr——————— -
5‘& 0.0061 | v 2 !
I
)
0.0041 ]
0.002 ~
0.000 A
0 2 4 6 8 10 12 14 16
S [m]

m |deal beam simulation repeated but included nozzle and other collimators.
m Space charge effects included for both beams.
m For energies 14.7 < KE < 15.3MeV 812
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LhARA - Stage 2

* In-vitro radiobiology using animal models:
— Post-acceleration required

e Baseline:fixed field accelerator:

— X3 increase in momentum
15 MeV protons accelerated to 127 MeV
* 3.8 MeV/u carbon 6+ ions accelerated to 33 MeV/u




Fixed Field Accelerator

FFAG

*  Bending magnetic fields do not vary in time. - energy“ E.'
— Rapid acceleration. Low energy o L
ey |
* Alternating gradient gives strong focussing. Beam dynamics 48 &,
(and orbits) are ”, "
* Very large acceptance. more complicated g "
than the » ‘o
— Useful, e.g. to accelerate muon beams. cyelotron. "y o
\\i 4

* Advantages over conventional medical cyclotron
— Variable energy operation without energy degraders
— Operation with different ions
— Multiple extraction ports



* Early 1950s, FFAG developed independently:

Japan by Tihiro Ohkawa
— US by Keith Symon
— Russia by Andrei Kolomensky.

* The first prototype was operated in 1956 \-
Jones, Terwilliger, Technical Report MURA-LWJ/KMT-5 %=

(MURA-104), April 3, 1956.
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" Rap id, flexible acceleration

Dimensions in

w for stage 2

Evolution of
RACCAM design;
prototype magnet
demonstrated

* Fixed-field alternating-gradient
accelerator (FFA):

— Invented in 1950s
 Kolomensky, Okhawa, Symon

— Compact, flexible solution:
* Multiple ion species
* Variable energy extraction
* High repetition rate (rapid acceleration)
* Large acceptance

— Successfully demonstrated:

* Proof of principle at KEK
* Machines at KURNS
* Non-scaling pop, EMMA, at DL

s [m]

.ainnin

Front. Phys., 29 September 2020; DOI: 10.3389/fphy.2020.567738



FFA for acceleration in LhARA — Stage 2

 Baseline: x3 increase in momentum
— 15 MeV protons accelerated to 127 MeV
— 3.8 MeV/u carbon 6+ ions accelerated to 34 MeV/u

aaaaaaaaaaaaaaaaaaaaaaaaaaa



LhARA performance: doses and dose rates

LhARA performance summary ariv:2006.00493

_ 12 MeV Protons | 15 MeV Protons | 127 MeV Protons | 33.4 MeV/u Carbon
Dose per pulse 7.1Gy 12.8 Gy 15.6 Gy 73.0 Gy

Instantaneous dose rate | 1.0 x 10° Gy/s | 1.8 x 10” Gy/s 3.8 x 10% Gy/s 9.7 x 103 Gy/s
Average dose rate 71 Gy/s 128 Gy/s 156 Gy/s 730 Gy/s




Perspectives on laser-driven sources for particle beam therapy

CONCLUSIONS
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Conclusions

Laser-driven sources are disruptive technologies ...
— With the potential to drive a step-change in clinical capability

Laser-hybrid approach has potential to:
— Overcome dose-rate limitations of present PBT sources

— Deliver uniquely flexible facility:
* Range of: ion species; energy; dose; dose-rate; time; and spatial distribution

— Be used in automated, triggerable system - reduce requirement for large gantry
* Disruptive/transformative approach to “distributed PBT for 2050”

The LhARA collaboration now seeks to:
— Prove the novel laser-hybrid systems in operation

— Contribute to the study of the biophysics of charged-particle beams
* Enhance treatment planning

— Create novel capabilities to ‘spin back in’ to science and innovation

Lh~R~+ OCAP 4

Laser-hybrid Accelerator for Centre for the Clinical
Radiobiological Applications Application of Particles
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Accelerator Design Project

« Accelerator Design Study for
— Electron SPS: 2020-2021
— FCC-ee Booster Ring: 2021-2022
— FCC-ee Positron Damping Ring:
2022-2023
— Design work consisted of study
of the lattice, magnet systems
and RF cavities.
“The design project significantly
contributes to the value of a PhD at the JAI
and is a very effective learning tool ... it

played an essential role in helping me to
find a postdoc.”

“To me, the design project was by far the
best part of the course. It puts the material
taught into context and bridges the gap
between lectures ... and a DPhil project ... .”

Imperial College For 2022-2023:

- OXFORD e | onclon
Accelerator Design Studies for the FCCee Posit: - . . .
T DisloeBEEH DR FCC-ee Positron Damping Ring Design
John Adams Institute Student Design Project 2023 R e po rt p u bI |S h ed on C DS

(10.17181/CERN.EO6E.3CHI)

Darren Chan, Sasha Horney, Emily Howling,
Sebastian Kalos, Vlad Musat, John Salvesen

Students delivered JAI Seminar on
N o G e 9 March 2023.

Student Poster at FCC Week, London

%ﬂums Institute
for Accelerator Science

Accelerator Design Studies for the FCC-ee Positron Damping Ring

Meet the Team
- 7r




}4/ LhARA Student Design Project Plan

Studies for Stage 1

Gabor Lens
— Study particle production/focusing from source

Optics Studies
— Optimisation of lattice (phase space, final focusing for beam spot)

Magnet Design
— Optimise dipole and quadrupole magnets (sustainable designs).

RF System

— Design of RF system. Many thanks to Prof. Ken Long / Imperial College London
for the slides on LhARA.




