JAI Design Project: LhARA

Ken Long William Shields Jaroslaw Pasternak

22nd November 2023

Imperial College London

The Case for LhARA

- Growing particle therapy demand
 - Improve availability & accessibility with new & cost-effective technologies
- Systematic study of the radiobiology of proton & ion beams
 - Uncertainties due to:
 - Energy, ion species, dose, spatial distribution, dose rate, tissue type, biological endpoint
 - RBE variation
 - Proton treatment planning RBE = 1.1
 - Ion RBE even higher

ROYAL HOLLOWAY

- Novel treatment modalities
 - Ultra-high dose rates: FLASH
 - Spatially fractionated mini-beams
- LhARA: a dedicated radiobiology research facility

Potential benefit of new regimens

<u>FLASH</u>

Conventional regime: ~2 Gy/min FLASH regime (p) : >40 Gy/s

Evidence of normal-tissue sparing while tumour-kill probability is maintained:

i.e. enhanced therapeutic window

Time line:

- Reports: 2014 (e.g. Flauvadon et al, STM Jul 2014)
- Confirmation in mini-pig & cat: 2018 (Clin. Cancer Research 2018)
- First treatment 2019 (Bourhis et al, Rad.Onc. Oct 2019)

3

Potential benefit of new regimens

Worked example: micro beams

Conventional regime: > 1 cm diameter; homogenous Microbeam regime : < 1 mm diameter; no dose between 'doselets'

Remarkable increase of normal rat brain resistance.

[Dilmanian et al. 2006, Prezado et al., Rad. Research 2015]

Dose escalation in the tumour possible – larger tumor control probability

LhARA: Stage 1

- Laser-target acceleration via TNSA mechanism
 - 15 MeV protons, ~ 4 MeV/u ¹²C ions
 - 10⁹ protons / pulse, 10⁸ ions / pulse
- Gabor lens focusing & capture
 - Confined electron cloud solenoid-like focusing from radial electric field
- Beam transport & delivery to an end station for in-vitro radiobiology studies
 - Spot-size flexibility

Sheath acceleration

- Laser incident on foil target:
 - Drives electrons from material
 - Creates enormous electric field
- Field accelerates protons/ions
 - Dependent on nature of target
- Active development:
 - Laser: power and rep. rate
 - Target material, transport

Source [2]

Phase space at source

Proton & Ion Capture

- Novel Gabor electron-plasma-lens
 - Penning-Malmberg trap
 - Solenoid field for radial confinement, electric field for longitudinal confinement

$$B_{GPL} = B_{sol} \sqrt{Z \frac{m_e}{m_{ion}}} \, ; \label{eq:gpl}$$

- LhARA capture & focusing
 - Solenoid-like strong focusing without high power, high-field magnet
 - Radial focussing in both planes simultaneously
 - Energy-dependent focusing strength

Electrodes

LhARA: Stage 1 Beam Transport

- 5 optics configuration for 1-3 cm spot sizes (2**o** diameter)
 - $\alpha = 0, D = 0 m, \sigma_x = \sigma_y$ at the end station pencil beam
- Additional configuration known of β = 50m, α =0 after 7th Gabor lens
 - LhARA stage 2 FFA injection line
- Beam parameters exiting the laser-target housing (15 cm upstream of 1st Gabor lens):

Beam Parameter	Value (RMS)
Mean RMS emittance [m]	8.25x10 ⁻⁸
Mean beta [m]	20.24
Mean alpha	-204.99

LhARA: Design Project Objectives

- Meet end station beam requirements + flexibility
 - Maintain:
 - Variety of spot sizes full well plate irradiation
 - > 95% spatial distribution uniformity with octupolar focusing

